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Abstract

Several phenomena encountered in nature are characterized by very localized events
occurring randomly at given times. Random pulses are an appropriate modelling tool
for such events. Usually, the impulses are hidden in the noise due to unwanted con-
volution. In some cases, the problem is more complex because of the short time lag
between the pulses. Considering these problems, the resulting signal is unclear and
can lead to an erroneous analysis. Hence the need for deconvolution to restore the
pulsed signal in order to obtain a more accurate diagnosis. The main objective of
this study is to propose a new algorithm called orthogonal least absolute value. The
particularity of this algorithm lies in its selection criterion. The algorithm iteratively
selects the atom minimizing the absolute value of the approximation error. This allows
the proposed algorithm to outperform classical greedy algorithms when the peaks are
very close to each other. Numerical and experimental simulations are performed to
study the proposed algorithm and compare its behavior to other greedy algorithms in
deconvolution framework. Simulations results prove the performance of the proposed
algorithm, especially when the impulses are very close to each other.

Keywords Sparsity - Random impulses - Deconvolution - Greedy algorithm -
Phonocardiogram signal

1 Introduction

Pulsed signals are suitable tools that allow physicists to model highly localized events
occurring randomly at different times or points of the state space. This study focuses on
particular signals made of few nonzero impulses with random amplitudes like peaks,
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possibly at very close range. This type of signals is often encountered in several fields
such as geology [6], mechanical engineering [10], or biomedical engineering [11].

In this study, the modeling framework is represented by the situation where a known
system H(t) is excited by a signal x(¢) with random impulses. The output signal is
expressed as: y(t) = ZZ:I X H(t — (tr)) + n(t), where n(t) is the random noise,
d is the number of impulses with x; and 73 being their amplitude and delay factors,
respectively. The output measurement y(#) represents an image of the original signal
x(t) which has been distorted by passage through a known linear and time-invariant
system H(¢) in the presence of noise. The matrix notations of this relationship can be
written as follows: y = Hx + n. The objective is to retrieve the original sparse signal
x(t) given H(t) and y(t), which corresponds to a deconvolution problem. Deconvo-
lution belongs to inverse problems and is particularly well-known to be an ill-posed
problem since the Impulse Response Function (IRF) works as a low-pass filter, and the
convolved signal is always affected by noise. Fortunately, regularization methods gives
satisfying solutions accounting for a priori information on the original object [12].

In recent frameworks, the sparse approximation of signals has drawn significant
interest in many areas. The fundamental idea is that a signal can be approximated
with only few elementary signals (from now on referred to as atoms) taken from a
redundant family (often referred to as dictionary), while its projection onto a basis of
elementary signals may result to a more significant number of nonzero coefficients.
Such a basic idea is the source of recent theoretical development and many practical
applications in denoising, blind source separation, and compression [2,7,9]. Unlike
orthogonal transforms, a redundant dictionary leads to non-unique representations of
a given signal. Put differently, minimizing the number of nonzero coefficients in a
linear combination approximating the data results to an exhaustive search which is an
NP-hard problem. Many techniques and algorithms, with some sufficient conditions,
have been proposed to resolve this problem. These Algorithms can be approximately
classified into two strategies: greedy pursuit algorithms and convex relaxation algo-
rithms. Greedy pursuit algorithms are computationally more preferable than £o-norm
minimization methods. They iteratively refine the approximation by choosing at
each iteration additional elementary signals. Many algorithms based on this scheme
were developed in literature, such as matching pursuit (MP) [17], orthogonal match-
ing pursuit (OMP) [21], orthogonal least square (OLS) [3], compressive sampling
MP(CoSaMP) [19], forward—backward pursuit (FBP) [13] and its extension iterative
forward—backward pursuit (IFBP) [26], and multipath matching pursuit (MMP) [15].
However, the majority of these methods share either the OMP selection criterion or the
OLS selection criterion. The principle of convex relaxation techniques is to replace the
minimization of the number of elements by the minimization of a different function.
This function should be minimized more efficiently and ensure the solution to have
large zero coefficients. A £1-norm is largely used to this end [4,22,24].

Recently, the recovery of sparse spike signal using sparse approximation became
an interesting research topic. Maud and Bell proposed a mismatched greedy pursuit
algorithm that overcome the limitation of recovering sparse signal with a coherent
dictionary [18]. In recent papers, sparse approximation methods are often combined
with other techniques as the toeplitz sparse matrix factorization [27], Shearlet-Cauchy
constrained inversion [16], or Bergman algorithm [20] for more accuracy and low
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computational efficiency. Other sparse spike deconvolution algorithms incorporate
interesting features that produce attractive results in harsh conditions as the normal-
ization of the input data and search for a suitable regularization parameter [8], and the
use of autoregressive models to recover state dynamics from noisy and under-sampled
measurement. [14].

This study focuses on sparse spike deconvolution in order to reconstruct pulsed
signal where some of the peaks are very close to each other. To this end, an algorithm
called orthogonal least absolute value (OLAV) is proposed. The particularity of OLAV
lies in the selection criterion which is based on minimizing the absolute value of the
error between the signal and its approximation. To show the advantage of the proposed
algorithm, OLAV is compared to other greedy algorithms in different situations and
noisy environments.

The paper is arranged as follows, Sect. 2 recalls the theory of sparse approximation
problem and the description of two greedy algorithms: OMP and OLS. The princi-
pal contribution of this paper is illustrated in Sect. 3 with an analysis of the greedy
algorithms selection criterion. A performance evaluation of OMP, OLS, FBP, MMP
and OLAV is realized in Sect. 4 to show the advantage of the proposed algorithm. In
Sect. 5, the three greedy algorithms analyzed in the theoretical study, OMP, OLS and
OLAV , are applied to phonocardiogram (PCG) signals for more detailed investigation
and comparison. Finally, conclusions are drawn in Sect. 6.

2 Sparse Approximation Theory
2.1 Recall of Sparse Approximation Problem

The problem of sparse signal approximation consists in approximating a signal as a
linear combination of a limited number of elementary signals chosen from a redundant
collection (dictionary). This problem can be formulated as: find sparse coefficients x
such that ®x ~ y, where y is the measured data and ® corresponds to a known matrix
with atoms {¢y}r=1..0. A compromise between a satisfying approximation and the
number of included elementary signals is part of the sparse approximation problem.
Mathematically such compromise results from minimizing the following criterion:

J(x) = ||y — x5 + BlIxIlo (1)

The scalar § is an essential parameter that adjusts the trade-off between the spar-
sity of the solution and the quality of the approximation [12]. Of course, minimizing
such a criterion is a combinatory optimization problem which is generally known
to be NP-hard. However, two strategies are usually utilized to avoid sweeping every
combination: (1) Greedy algorithms, which iteratively improve the approximation by
successively identifying additional elementary signals that ameliorate the approxima-
tion quality [17,25]; (2) convex relaxation algorithms are based on the relaxation of the
criterion (1), which replace the combinatorial problem with an simpler optimization
problem often chosen convex [4]. In the latter, the £p-norm is usually relaxed with
a {p-norm. For p = 1 this problem corresponds to the least absolute shrinkage and
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selection operator regression (LASSO) [24] or Basis Pursuit Denoising (BPDN) in
signal processing [4].

2.2 Structure of the Dictionary H

In the case of deconvolution, the dictionary must be generated from the IRF and cannot
be chosen, contrarily to sparse approximation where the dictionary is generally selected
as a combination of bases or wavelet dictionary.

Let specify the boundary condition considered in the convolution operator such as
boundary hypothesis that affects the size and structure of the dictionary H generated
from the IRF. It is assumed that the convolution Hx is performed with the zero-padded
edges. By applying this option, the resulting signal has length L, = L, +Lj, —1 where
L, and L; denote respectively the length of the sparse signal and the length of IRF.
Note that H is a sparse matrix of dimension Ly x Ly with L, x L, nonzero elements
(the length of the IRF usually is largely lesser than the length of the signal). However,
as the L, atoms of the dictionary correspond to delayed versions of the IRF, the matrix
H is formed entirely with the Lj, elements of the IRF. Furthermore, the matrix H has
a Toeplitz structure (diagonal—constant matrix) as it models a convolution operator.

2.3 Greedy Algorithms Description

Let the sub-matrix H, constructed from the columns of H where the indexes are in
A, h; = Hy;y, and A® is the set of the chosen indexes at iteration k. The vectors are
defined as follows, x = [x1,...,x, 1% y = [y1..... yr, 1% n = [n1,...,nr,]" and
r=1[rg,..., er]T which stands for the residual. Finally, L, Ly and Lj represent
respectively the length of x, y and H .

In this study, the interest is focused on the restoration of a pulsed signal with
some peaks very close to each other by using greedy algorithms and a dictionary.
The dictionary is given by the Toeplitz matrix H generated from the IRF H. Greedy
algorithms are iterative algorithms constituted of two major steps at each iteration: (1)
the selection of an additional atom in the dictionary; (2) the update of the solution and
the corresponding approximation. The stopping rule at the end of the loop limits the
iterations.

Let x® be the solution of the kth iteration, xﬁf) being its coefficients at indexes A®
andr® = y —Hx® the residual corresponding to the solution at the kth iteration. The
usual structure of a greedy algorithm has three major steps. First, initialization of the
main paramters. Second, the search for the best atom %; improving the approximation.
Third, the solution and the residue update. The difference between the several algo-
rithms lies in the selection or the updating steps. The most known greedy algorithms
are the MP [17] and its orthogonal version OMP [21].

The OMP algorithm has a simple structure that makes its implementation easy. The
additional atom maximizes the dot product with the residual. Then, the update is an
orthogonal projection of the data on the whole set of the selected atoms. As aresult, the
selection of previously selected atoms is avoided, but the computation cost increases
as the amplitudes associated with all the selected atoms are updated. The OLS differs
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Algorithm 1: OMP and OLS algorithms
Result: Solution x and residue r

1 Initialize: k = 0, A© = gand r©@ = y.

2 repeat

3 Atom selection: A® = AG=D y {i(k)}

For OMP : i® = argmax |h] rk=D) 2)
1

For OLS : i) = argmin |y —H, o H} o Hy0) " Hy o313 (3)
l

. k _
4 Solution update: xj\()k) = (H;F\(k) HA(k)) 1Hf\(k)y

. k
5 Residue update: rk) =y — HA(k)xE\()k)

6 until stopping criterion met;

from the OMP on the atom selection step as the selected atoms minimizes the energy
of the approximation error. However, the computation cost of the OLS is higher than
that of the OMP. Algorithm 1 summarizes the OMP and OLS algorithms. More details
about the stopping rule can be found in [23].

3 Theoretical Study
3.1 The Proposed Algorithm

The OLAV is derived from the OLS algorithm and has roughly the same computation
cost. The OLAV differs in the selection step as the selected atom minimizes the absolute
value of the approximation error. This idea came after noticing that the OLS could not
correctly restore very close peaks of some experimental data. Fortunately, replacing
the £>-norm of the approximation error by the £-norm allowed the correct restoration
of these peaks, and hence the emergence of the OLAV method. The algorithm 2 gives
the OLAV steps.

3.2 Analysis of Selection Criteria
OLAV and OLS are the more coherent greedy algorithms as they both aim to minimize
the approximation error. However, minimizing the energy of the error is different from

minimizing the absolute value of the error. To explain this point, let develop the OLS
selection criterion of Eq. (3),

lly—Haxll3 = [Iy[13+Hax |32y Hpx o where xo = (HyHA) " 'H}y (5)

The term yTH A x 5 represents the correlation between the measure y and the contri-
bution of the signal Hpx  in the measure. After several iteration, the variance term
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Algorithm 2: OLAV algorithm
Result: Solution x and residue r

1 Initialize: k = 0, A© = gand r©@ = y.

2 repeat

3 Atom selection: A® = AG=D y {i(k)}

i®) = argmin ||y — Hy (H Hp) ' HY yll) “)

l

- k _
4 Solution update: xj\()k) = (H;F\(k)HAq()) 1H;f\(k)y

. k
5 Residue update: rk) =y — HA(’f)xE\()k)

6 until stopping criterion met;

[[HAX A |§ is slightly less than y"H A x o as impulses being sparse, close to one another,
and independent of noise. This is due to the fact that y = Hax o +Hj x ; +n, where A
denotes the set of non selected atom indexes at the k" iteration. Both sets are updated
in every selection criterion trial as A = A®~D U {{®} and A = A*=D\{i®}. When
the spacing between impulses is greater than the length of significant coefficients of
the IRF, the term (Hl-\x[-\)THAxA is equal to zero. Therefore, the terms ||[Hpx 5 | |%
and yTHpx 5 are exactly equal as the sparse signal is independent of noise. More-
over, the quantity ||y —Hax A | |% becomes smaller as yTH A x o grows more important.
Unfortunately, when the impulses are very close, this term tends towards high values
for indices between the locations of the close impulses.

The same problem is observed for the selection criterion of the OMP in Eq. (2)
because the terms are similar. To demonstrate this ,the OMP selection criterion at the
kth iteration is developed as follows:

r=DTH| = |(y — H,x-1nx a-1)"H|

— [xT T T
= |x[\(k—1)H[\(k—l)H+n Hi

(6)

74— H3 ¢ H is maximum too. The latter
suffers from the same problem as the selection criterion of the OLS, since H/T-\ (k—l)H
presents larger values for i situated between the index of close peaks. Furthermore,
Eq. (6) shows that, in contrast to OLS, the selection criterion of the OMP is sensitive
to noise because of nTH.

The OLAV selection criterion in Eq. (4) is equivalent to:

Generally, |rk= 1)TH| is maximum when x

lly —Haxalli = [[Hzx; +nl) (N

Unlike OLS and OMP, the latter problem problem is not encountered for the OLAV
since the selection criterion of Eq. (4) aims only to minimize the absolute value of the
error. As aresult, it leads to a considerable enhancement of performances, particularly
for pulsed signal with peaks close to each other. However, Eq. (7) clearly points out
that the selection criterion of the OLAV is sensitive to noise as well as OMP.
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Fig. 1 a The measured signal (SNR = 20 dB). b The IRF used for the convolution
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Fig.2 The reconstructed signal versus the original one for the three algorithms. a OMP. b OLS. ¢ OLAV
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Fig.3 The tracking of selection criteria of the three algorithms for every iteration

To visualize how the three algorithms perform, a numerical simulation based on
the example in Sect. 4.1 with a pulsed input signal consisting only of d = 2 random
impulses at very close indexes 24 and 30 is considered. The time representations of the
IRF and the resulting signal with a Signal-to-Noise Ratio (SNR) of 20 dB are reported
in Fig. 1.

Figure 2 reports the true sparse signal (blue line) and the estimated signal (red
line) for each method. The results shows that only OLAV algorithm reconstructed
both peaks without any false detection unlike OMP and OLS. To understand what
happened to OMP and OLS algorithms, the three selection criteria are tracked in Fig.
3.

For the OLS, when the impulses are very close, the terms y"Hpx 5 and ||[Hpx 4 | |%
tend towards higher values for indices situated between the impulses of the sparse
signal as shown in Fig. 4.

Almost similar behavior is observed for the selection criterion of the OMP. On
the other hand, the behavior of the OLAV is completely different as its selection
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Fig.5 a The measured signal (SNR = 26 dB). b The IRF used for all simulations

criterion aims to minimize the absolute value of the error which leads to the exact
recovering of both impulses. For the second iteration, OMP and OLS continue to
detect false impulsions as errors propagate through iterations, whereas the OLAV
restores precisely the remaining impulse. The aim of this study is not to make valid
detections with accuracy and precision in the case of very close peaks, but to limit
the propagation of errors through future iteration. Accordingly, the performances of
OMP and OLS can be degraded if they are not interrupted after a certain number of
iterations.

4 Simulation Tests
4.1 Description

To assess the performance of the proposed algorithm, a comparative study between
OMP, OLS, and OLAV is conducted. This study involves a difficult deconvolution
situation with low amplitudes, small spacing between impulses, and noise.

In this simulation a pulsed signal sampled at 128 Hz is considered. This input
signal consists of d = 4 random impulses at indexes 14, 20, 35 and 40 characterized
by two close peaks followed by another two close peaks. The signal is then filtered

by the IRF given by the relationship : H(¢) = e > cos(2m fot) where o and fj
represent respectively the damping and the frequency of the waveform. Moreover, an
i.i.d. Gaussian noise is added to the convolved signal such that the SNR is 26 dB. The
number of iterations was fixed at four to prevent the performance degradation of the
algorithms. The resulting signal and the IRF are reported in Fig. 5.

_t
H
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Fig.6 The reconstructed signal versus the actual one for each algorithm. a OMP. b OLS. ¢ OLAV

Figure 6 report deconvolution results with the blue line representing the true sparse
signal and the red line the recovered signal for each method. The results shows that
OLAV, unlike OMP and OLS, allows to restore the four peaks with the exact ampli-
tudes and provide the best recovery for this simulation. To investigate thoroughly the
behaviour of the three algorithms, two other simulations were performed.

4.2 Comparative Study

The objective of this simulation is to present the performance of the studied greedy
algorithms in different i.i.d. noisy environments. The simulation is performed with
the same parameters as the example of Sect. 4.1 except for the SNR and the impulses
amplitude. Actually, the SNR will change from —10 to 30 dB and the impulses ampli-
tude follows an uniform distribution between 0.1 and 1.1. Besides OMP and OLS,
two other recent sparse recovery algorithms that share the same selection criterion as
the OMP, FBP and MMP, are added to the comparative study. More details about FBP
and MMP algorithms can be found in [13,15]. Furthermore, the performance compar-
ison between these methods is realized by the average mean squared error (MSE) and
average histogram over 1000 Monte Carlo (MC) runs.

4.2.1 Mean-Squared Error-Based Evaluation

The first test concerns the evaluation of the recovered signal quality through the MSE.
The MSE of the estimate & with respect to x is defined as, MSE(%) = E[(® — x)?].
For a reliable study, the MSE results are averaged over the number of MC runs for
each SNR value.

Figure 7 describes the MSE variation for each algorithm over the SNR values. In
general, the calculated MSE for the five algorithms decreases while the SNR increases
because of lower noise effect on the observed data y. In this simulation, the OLAV
presents efficient performances, especially for SNR values over 12 dB. For an SNR
between 0 and 12 dB, the MMP performs slightly better because of its strategy to
find the best sparse support by using a combinatory tree search approach. For lower
SNR values, the OLAV algorithm struggles to recover the sparse signal and performs
similarly to the other algorithms. It should be noted that the difficulties encountered
by OMP, OLS, FBP, and MMV are principally linked to the small distances between
impulses rather than noise level. In overall, OLAV is more suited for the recovery of
very close peaks.
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Fig.7 The effect of varying SNR from —10 to 30 dB over MC runs on the MSE

4.2.2 Sparse Signal Distribution-Based Evaluation

The second test aims to analyse thoroughly the performances of the five algorithms
by displaying the number of the true impulses and false/missing detections that occur
within the actual impulses as well. The distribution of data values is obtained through
the averaged the histogram of the reconstructed signals. Hence, this test is a suitable
tool to analyse the number of erroneous detections for each algorithm.

Figure 8 presents the averaged reconstructed signal distribution for each SNR values
and for each algorithm. On the whole, the histogram is nearly the same for OMP, OLS,
and FBP algorithms, with higher missing/false detections for higher SNR. In contrast,
OLAV and MMYV has lower missing/false detections occurring at lower SNR. The
false detections are not very far from the true impulse’s location, which is acceptable
for some applications. The heights of the bars in the averaged histograms is related
to the number of times the impulses are detected. Hence, the results show that the
missing detections distribution is wider for the first close impulses. This is more
related to the opposite sign of the last close peaks and the waveform of the IRF
than the algorithms selection criterion. In summary, OLAV has a smaller number of
missing/false detections and slightly surpasses MMP, especially for the first close
impulses.

5 Application to Experimental Signals

Motivated by the good performance of OLAV in various i.i.d. noisy environments, it
seems to be natural to investigate its application to experimental data. Thus, OLAV is
applied to real-life PCG signals in comparative study, with OMP and OLS, to restore
an almost periodic random sparse impulses occurring at very close factor delay.

5.1 Problem Formulation

For a healthy subject, two heart sounds known as S1 and S2 can be found in PCG
signals. The first heart sound S1 results from the closure of the mitral valve (M1)
followed closely by the closure of the tricuspid valve (T1) at each cardiac cycle. The
same process is repeated for the second heart sound S2 with the aortic valve (A2) and
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Fig.8 The effect of varying SNR from 1 to 30 dB on the sparse signal distribution

the pulmonary valve (P2). Regarding the asynchronous heart valves closure, the time
split between them is very critical to diagnose some pathologies (< 30 ms for normal
cases). Hence, the objective of this simulation is the accurate detection of the time
split between the heart valves closure instants. Due to the convolution between the
valves closure impacts and low-frequencies IRFs [5], the PCG mathematical model is
expressed as follows:

2
_2
y@) = E ain8(t — pin —nT) xe i cos(2m fit — i)
i,n
 —pj g —nT)?

= aine’ 7 cosQufi(t = pin —nT) — @) ®)
i,n

where i and n denotes respectively the impact indices produced by each valve closure
(M1, T1, A2, and P2) and the cardiac cycle index, ¢ stands for Dirac distribution, a; ,
is the normally distributed random amplitude, 1; , and T corresponds respectively to
the instants of the heart valves closure in each cycle and the cardiac cycle duration.
Furthermore, the Gaussian kernel shape for each IRF is controlled by f;, o; and ¢;.

5.2 Experimental Deconvolution Results

For further investigation, the proposed algorithm OLAV, OMP, and OLS are applied
to a PCG database collected from a clinical trial in hospitals to detect valves closure
instants. This database includes two datasets published in the Classifying Heart Sounds
Pascal Challenge contest [1]. The real-life PCG signals chosen for this simulation
were recorded using the Littmann Model 3100 digital stethoscope with a sampling
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Table 1 The Gaussian kernel parameters estimated values for each IRF and for each PCG signal

Parameters 1st PCG signal 2nd PCG signal

fi(Hz) o @i (rad) fi(Hz) i @i (rad)
M1 92.07 0.0063 0.22 108.70 0.0075 —0.15
Tl 36.10 0.0086 0.12 108.74 0.0087 -2
A2 52.98 0.0075 0.02 119.40 0.0047 1.65
P2 72.28 0.0074 0.12 142.23 0.0061 2.78

frequency of 4000 Hz. Furthermore, information regarding gender, age or condition
of the subjects is not available.

To apply the three algorithms and restore the heart valves closure impacts success-
fully, suitable dictionaries must be generated from the low-frequency IRFs. In this
study, the three main parameters controlling the Gaussian kernel are manually esti-
mated to match the shape of each IRF. The three parameters values for each IRF and
for each signal are listed in Table 1. It should be noted that a valid estimation of the
IRF is critical to provide a suitable dictionary and reach better performance.

In overall, the deconvolution results for the three algorithms, presented in Fig. 9, are
interesting with a slight difference for the proposed algorithm. The resulting sparse
signals reveals the time split between impacts with precision and accuracy despite
having some minor erroneous impacts detections. Those erroneous detections can
be explained by the fact that the IRFs slightly change their shape from one cycle to
another and that perfect results require perfect IRFs estimation. It is very difficult
to give conclusions from experimental signals without knowing the exact impacts
position before convolution. However, the OLAV algorithm seems to produce more
convincing results because the time differences between the restored impacts are closer
to those estimated visually.

6 Conclusion

This paper presents the OLAV algorithm for sparse signal recovery. The particularity
of this algorithm lies in its selection criterion that minimizes the absolute value of the
error between the signal and its approximation. The OLAV selection criterion allows
the algorithm to perform efficiently in the case of close peaks deconvolution. This
was confirmed by the tracking of different selections criteria. Unlike the OLAV, the
OMP and OLS selections criteria do not choose the right first atoms in the studied
case, which generate erroneous detections that spread through future iterations. Other
computer simulations in close peaks deconvolution framework were performed to
prove the effectiveness of the proposed algorithm OLAV. To push our comparative
study further, the three greedy algorithms were applied to real-life PCG signals to
recover heart valves closure impacts occurring at very close factor delay. Future work
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Fig.9 The restored heart valves closure impacts with each algorithm. a First PCG signal. b Second PCG
signal

will focus on ways to enhance the performance of OLAV in noisy environments and
more complex situations.

Data Availability The generated data and the codes of the proposed work are available from the correspond-
ing author on reasonable request.
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