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Abstract
This paper is concerned with the problem of H∞ control for a class of uncertain
switched singular systems with time-varying state delays under asynchronous switch-
ing. The asynchronous phenomenon is caused by the choice of controller lagging
behind the corresponding subsystem in practice. First, sufficient conditions by find-
ing a novel piecewise Lyapunov–Krasovskii function combining with average dwell
time technique are given to guarantee the exponential admissibility of the system.
The algebraic equations and differential equations of the original system are proved
to be exponentially stable. Then, a condition guaranteeing the H∞ performance of
the original system is derived based on the above analysis. Furthermore, strict LMI
formulas for solving the state feedback controller are given. Finally, the effectiveness
of the proposed methods is illustrated by numerical examples.

Keywords Switched singular systems · Asynchronous switching · Time-varying
delay · Average dwell time · Linear matrix inequality

1 Introduction

In recent years, the research on switched singular systems has attracted much attention
from many scholars [7,13,33]. This is mainly due to the fact that this form of the
model is widely applied to many practical engineering problems, see [24–26] and
the references therein. Compared with the switched nonsingular system, one of the
biggest differences is that solutions of a singular system may contain instantaneous
state jumping phenomena. Therefore, the conclusion about singular systems is not a
simple generalization of the conclusion of conventional linear systems. Meanwhile,
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due to the delay in system information transmission and the insensitivity and aging of
measuring devices, the system has time delay inevitably. The appearance of time delay
usually changes the normal response of the control system, even makes it difficult to
ensure the stability of the system, resulting in the decline of the system performance
indicators [14,37]. System control problems with time delay have special difficulties
in solving mathematical and engineering problems [3,12,41].

Not only the state time delay but also the presence of time delay in the controller is
extremely important in the whole stabilization stability analysis. In practical engineer-
ing applications, accompanied by the occurrence of time delay and it takes time for
the system to identify the controller that matches the current subsystem. Therefore,
the research of asynchronous control has attracted the attention of many scholars
[5,7,29,38]. Without emphasizing the existence of asynchronism, [37]’s research
groups have analyzed the exponential H∞ filtering problem for a class of discrete-
time switched singular systems. The object studied by the authors in [4] is a class of
switched neutral systems. However, the focus of our work is on asynchronous non-
weighted H∞ control of the uncertain switched singular systems. This requires us to
consider the stability problem of algebraic subsystems under the control of the asyn-
chronous controller. Besides, uncertainty is another reason for the instability of the
system. This uncertainty mainly comes from the measurement error of parameters and
the change in environment and operating conditions [19]. Because of the widespread
existence of uncertainty, the stability of systems with uncertainties is studied in a large
number of references [17,21,22]. In reference [38], the stability problem of a class of
discrete-time switched singular systems with time delay was investigated. Finite-time
control and asynchronous control for discrete-time switched singular systems with
time delays were studied in references [1,7,15,20].

Previous studies are concerned about work taking account of some of the factors
mentioned above [34,42,43]. The impulse-free property of the original system is not
required in [11] and the global stability of the original system is controlled by limiting
the upper and lower bounds of dwell time. In [8], a class of uncertain switched singular
systems with time-varying delay by using the average dwell time approach was inves-
tigated. Asynchronous control and system performance analysis for switched singular
systems become more complex and challenging when delay and uncertainty are both
taken into account. Comparing with [28], not only the singular matrix E but also the
disturbance variable and control output variable are adding to the model studied in
our paper. Therefore, we need to consider the regularity and impulsivity of the system
compared with the system in [28]. Second, the state variable x(t) of singular sys-
tems can be divided into the slow subsystem variable and the fast subsystem variable.
Uncertain switching singular systems with a time delay can be applied to describe the
model of oil catalytic cracking and the typical DC chopper circuit in practical engi-
neering. See the numerical examples in [27,30,39]. Now still less study has been made
on asynchronous non-weighted H∞ control of uncertain switching singular systems
with time delay.

In this paper, the stabilization and non-weighted H∞ performance for a class of
uncertain switched singular systems are investigated via a new insight. It is remark-
able that though state feedback controller has been widely used in switched singular
systems; see [2,23,29], we use it to study the problem of asynchronous control for
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uncertain switched singular systems with time-varying delays. The main contribu-
tions are stated as follows.

(i) By constructing a more flexible Lyapunov function, a sufficient condition for
the original system to be stable is obtained. The system instability caused by
asynchrony is offset by a limit on the average dwell time of each subsystem. In
the process of derivation, the time node has been reconstructed to facilitate the
analysis and this is also the major contribution of our work.

(ii) The problem of asynchronous controller design for uncertain switched singular
time-delay system is solved in this paper. By adding some free weight matrices,
less conservation conditions are presented. A non-weighted H∞ disturbance
attenuation level for the considered system is obtained. The result has less
conservation compared with [5,36,38].

(iii) In solving the controller gains, sufficient conditions in terms of strict linear
matrix inequality (LMI) have been obtained by removing non-strict inequality
constraints. Thus, the results are less conservative than those obtained by the
approximate solution method.

The remaining parts of the paper are organized as follows. InSect. 2, the system form
to be studied and some useful lemmas are given. Section 3 embraces the main results.
Taking the asynchronous situation into account, a state feedback controller is designed
in this section such that the considered switched singular system is stabilization and
the state solutions of the system have H∞ performance. Specific examples along with
numerical and simulation results are provided in Sect. 4. Section 5 is the conclusion
of the work of this paper.

2 Problem Statement and Preliminaries

Consider a class of switched singular systems with time-varying delay described by
the following equation

⎧
⎪⎨

⎪⎩

Eẋ(t) = (Aσ(t) + ΔA)x(t) + (Bσ(t) + ΔB)x(t − d(t)) + Gσ(t)u(t) + Eσ(t)ω(t)

z(t) = Cσ(t)x(t) + Dσ(t)x(t − d(t)) + Fσ(t)ω(t)

x(t) = φ(t), t ∈ [−h, 0]
(1)

where x(t) ∈ R
n , u(t) ∈ R

m and z(t) ∈ R
l are the state vector, control input and

channel output, respectively. ω(t) ∈ R
h belonging to the space of square integrable

denotes the disturbance. φ(t) is initial vector valued continuous function, and the
switching signal σ(t) : [0,∞) → I = {1, 2, . . . ,N} is a piecewise constant function
of time t where N is the number of subsystems. d(t) is a time delay that satisfies

d1 ≤ d(t) ≤ d2, ḋ(t) ≤ μd < 1. (2)

ΔA and ΔB are the uncertainties of the system and have the following form

[ΔA ΔB] = MF (t) [N Nd ], (3)



Circuits, Systems, and Signal Processing (2021) 40:3756–3781 3759

where M, N , Nd are known constant matrices with appropriate dimensions and F (t)
satisfies F(t)TF(t) ≤ I , t ≥ 0 (the identity matrix of appropriate dimension). The
forms of time-varying delays and uncertainties introduced in this paper exist widely
in the previous literature on engineering system control. This just shows that this form
of time delay and uncertainty is commonly used in practical application. The matrix
E ∈ R

n×n may be singular and it is assumed that rankE = r ≤ n. Since rankE =
r ≤ n, there exist nonsingular matrices P, Q ∈ R

n×n such that PEQ =
[
Ir 0
0 0

]

,

then, without lose of generality, let E =
[
Ir 0
0 0

]

.

The delay between the matched controller and corresponding subsystems is taken
into account in this paper based on practical engineering application background. In
other words, the switching sequence of the subsystems and the practical switching
signal of the controllers can be described by

σ : {(0, σ (0)) , (t1, σ (t1)) , . . . , (tk, σ (tk)) , . . .} ,

σ̃ : {(0, σ (0)) , (t1 + Δ1, σ (t1)) , . . . , (tk + Δk, σ (tk)) , . . .} ,

respectively. Therefore, the form of the asynchronous controller is

u(t) = Kσ(t−Δk )x(t),

where Δk is time-varying delay and conforms to 0 < Δk ≤ Δmax < tk+1 − tk .
The parametric equation after the decomposition of equation (1) has been founded.

Ãσ(t) = (Aσ(t) + Gσ(t)Kσ̃ (t) + ΔA) =
[
Aσ1 Aσ2
Aσ3 Aσ4

]

, Pσ(t) =
[
Pσ1 Pσ2
Pσ3 Pσ4

]

,

B̃σ(t) = (Bσ(t) + ΔB) =
[
Bσ1 Bσ2
Bσ3 Bσ4

]

.

When ω(t) = 0, the following closed-loop system can be obtained by adding the
above asynchronous controller to the original system (1).

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ẋ1(t) = Āσ1x1(t) + Ādσ1x1(t − d(t)) + Ādσ2x2(t − d(t))

x2(t) = Āσ3x1(t) + Ādσ3x1(t − d(t)) + Ādσ4x2(t − d(t))

z(t) = Cσ(t)x(t) + Dσ(t)x(t − d(t)) + Fσ(t)ω(t)

x(t) = φ(t), t ∈ [−h, 0]

(4)

where Āσ1=Aσ1 − Aσ2A
−1
σ4 Aσ3, Ādσ1 = Bσ1 − Aσ2A

−1
σ4 Bσ3, Ādσ2 = Bσ2 −

Aσ2A
−1
σ4 Bσ4, Āσ3 = −A−1

σ4 Aσ3, Ādσ3 = −A−1
σ4 Bσ3, Ādσ4 = −A−1

σ4 Bσ4.
Therefore, the stability problem of system (1) is equivalent to the stability problem

of system (4).
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Lemma 1 (Schur Complement) For a given symmetric matrix Φ =
[
Φ11 Φ12

ΦT
12 Φ22

]

, the

following conditions are equivalent:

(i) Φ < 0;
(ii) Φ11 < 0, Φ22 − ΦT

12Φ
−1
11 Φ12 < 0;

(iii) Φ22 < 0, Φ11 − Φ12Φ
−1
22 ΦT

12 < 0.

Some relative definitions and lemmas are listed as follows.

Definition 1 For the switching signal σ(t), and any delay satisfying (2), the system
(1) with ω(t) = 0 is said to be

(i) regular if det(sE − Ai ) is not identically zero for each σ(t) = p, p ∈ I;
(ii) impulse free if deg(det(sE − Ai )) = rankE for each σ(t) = p, p ∈ I;
(iii) exponentially stable under the switching signal σ(t) if the solution x(t) of the

system satisfies ‖x (t)‖ ≤ ce−λ(t−t0) ‖x (t0)‖d ,∀t ≥ t0;
(iv) exponentially admissible if it is regular, impulse free and exponentially stable

under the switching signal σ(t).

Definition 2 For the switching signal σ(t) of system (1) and any T2 > T1 ≥ 0, let
Np(T1, T2)denotes the number of switchingof subsystempover (T1, T2), the total time
for synchronization of the controller and subsystem p is represented by Tp(T1, T2), if

Np(T1, T2) ≤ N0 + Tp(T1, T2)

τp
(5)

holds for τp > 0, N0 ≥ 0, then τp is called average dwell time of subsystem p and N0
is called a chatter bound.

Definition 3 (i) For given α > 0, γ > 0, system (1) with ΔA = ΔB = 0 is said
to be uniformly asymptotically stable with γ -disturbance attenuation if (1) with
ω(t) = 0 is exponentially admissible and for a given scalar γ > 0, for any
disturbance ω(t) ∈ L2[0,∞) and for the initial condition φ(t) = 0, t ∈ [−h, 0],
the following H∞ performance is satisfied:

∫ ∞

t0
e−αs zT (s) z (s) ds ≤ γ 2

∫ ∞

t0
ωT (s) ω (s) ds.

(ii) System (1) is said to be uniformly robust asymptotically stable with γ -disturbance
attenuation if it is uniformly asymptotically stable with γ -disturbance attenuation
for all uncertainties satisfying (3).

Besides, if α = 0, the switched system will be said to have a non-weighted
(normal) L2 gain. The condition (i) of non-weighted L2 gain can be rewritten as∫∞
t0

zT (s) z (s) ds ≤ γ 2
∫∞
t0

ωT (s) ω (s) ds. Relatively speaking, as discussed in
[6,16], the non-weighted L2 gain is less conservative than the weighted one.
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Lemma 2 [31] For matrices M, N and Φ of appropriate dimensions and with Φ

symmetric, then
Φ + MF (t) N + (MF (t) N )T < 0

for all F (σ ) satisfying F (σ )T F (σ ) ≤ I , if and only if there exists a scalar ε > 0
such that

Φ + ε−1MMT + εNTN < 0.

Lemma 3 [10] For a vector function x(t) with first-order continuous-derivative
entries, a scalar d > 0, and any matrices E and R = RT > 0. Then, the follow-
ing descriptor integral inequality holds,

∫ t

t−d
(Eẋ (t))TREẋ (t) ds ≥ 1

d

∫ t

t−d
(Eẋ (t))T dsR

∫ t

t−d
E ẋ (t) ds.

3 Main Results

Theorem 1 Consider system (4) for prescribed scalars d1 ≥ 0, d2 > 0,Δmax >

0, μd < 1, αp > 0, αpq > 0, μ̂ ≥ 1, and assume that there exist matrices Pp, Qp >

0, Rp > 0, Ppq , Qpq > 0, Rpq > 0, such that

ETPσ(t) = PT
σ(t)E ≥ 0, (6)

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

Φ11 PT
p Bp + ε−1NTNd HT

1 (Ap + GpKp) 0

∗ Φ22 HT
1 Bp 0

∗ ∗ Φ33 0

∗ ∗ ∗ −e−αpd2 Rp
(d2−d1)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0, (7)

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ψ11 PT
pq Bp + ε−1NTNd HT

1 (Ap + GpKq) 0

∗ Ψ22 HT
1 Bp 0

∗ ∗ Ψ33 0

∗ ∗ ∗ −eαpqd1 Rpq
(d2−d1)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0, (8)

Pp ≤ μ̂Ppq , Qp ≤ μ̂Qpq , Rp ≤ μ̂Rpq ,

Ppq ≤ μ̂Pq , Qpq ≤ μ̂Qq , Rpq ≤ μ̂Rq ,
(9)
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where

Φ11 = PT
p

(
Ap + GpKp

) + (
Ap + GpKp

)T
Pp + αpE

T Pp + Qp + ε−1NTN

+ ε
(
PT
p MMTPp + HT

1 MMTH1

)
,

Φ22 = − (1 − μd) e
−αpd2Qp + εHT

1 MMTH1 + ε−1NT
d Nd ,

Φ33 = (d2 − d1)Rp − H1 − HT
1 + ε−1

(
NTN + NT

d Nd

)
,

Ψ11 = PT
pq

(
Ap + GpKq

) + (
Ap + GpKq

)T
Ppq − αpq E

TPpq + Qpq + δ−1NTN

+ δ
(
PT
pqMMTPpq + HT

1 MMTH1

)
,

Ψ22 = − (1 − μd) e
αpqd1Qpq + δHT

1 MMTH1 + δ−1NT
d Nd ,

Ψ33 = (d2 − d1)Rpq − H1 − HT
1 + δ−1

(
NTN + NT

d Nd

)
.

Then, the controller can guarantee that system is exponential admissibility for any
switching signal with average dwell time satisfying

τp ≥ τ ∗
p = ln(μmμ̂2) + (

αpq + αp
)
Δmax

αp
, (10)

where μm = max
p,q∈I

e(αq+αpq)d2 .

Proof Firstly, the proof of the stability of the partial differential equations in the origi-
nal system is given. The following piecewise Lyapunov function candidate for system
(1) is designed. 
�

V (t, x(t)) = xT(t)ETPσ(t)x(t) +
∫ t

t−d(t)
eν(t−s)xT(s)Qσ(t)x(s)ds

+
∫ −d1

−d2

∫ t

t+θ

eν(t−s) ẋT(s)ETRσ(t)Eẋ(s)dsdθ,

where ν is

ν =
{

αpq , t ∈ [
tk, tk+Δk)

−αp, t ∈ [
tk+Δk, tk+1)

.

Then, when t ∈ [
tk + Δk, tk+1), along the trajectories of system, we have
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V̇ (t, x(t)) = 2xT(t)PT
σ(t)Eẋ(t) + xT(t)Qσ(t)x(t)

− (1 − ḋ(t))eνd(t)xT(t − d(t))Qσ(t)x(t − d(t))

+ ν

∫ t

t−d(t)
eν(t−s)xT(s)Qσ(t)x(s)ds + (d2 − d1)ẋ

T(t)ETRσ(t)Eẋ(t)

−
∫ −d1

−d2
e−νθ ẋT(t + θ)ETRσ(t)Eẋ(t + θ)dθ

+ ν

∫ −d1

−d2

∫ t

t+θ

eν(t−s) ẋT(s)ETRσ(t)Eẋ(s)dsdθ

= νV (t, x(t)) − νxT(t)ETPσ(t)x(t) + 2xT(t)PT
σ(t)Eẋ(t)

+ xT(t)Qσ(t)x(t) − (1 − ḋ(t))eνd(t)xT(t − d(t))Qσ(t)x(t − d(t))

+ (d2 − d1)ẋ
T(t)ETRσ(t)Eẋ(t)

−
∫ −d1

−d2
e−νθ ẋT(t + θ)ETRσ(t)Eẋ(t + θ)dθ.

(11)
By considering t ∈ [

tk + Δk, tk+1), according to Jensen’s inequality in Lemma 3, the
following inequalities can be obtained,

−
∫ −d1

−d2
eαpθ ẋT(t + θ)ETRpE ẋ(t + θ)dθ

≤ −e−αpd2

(∫ −d1

−d2
Eẋ(t + θ)dθ

)T
Rp

(d2 − d1)

(∫ −d1

−d2
Eẋ(t + θ)dθ

)

,

(12)

− (1 − ḋ(t))e−αpd(t)xT(t − d(t))Qpx(t − d(t))

≤ − (1 − μd) e
−αpd2xT(t − d(t))Qpx(t − d(t)).

(13)

Thus, Eq. (11) can be transformed into

V̇ (t, x(t)) + αpV (t, x(t))

≤ αpx
T(t)ETPpx(t) + 2xT(t)PT

p

(
Ã px(t) + B̃px(t − d(t))

)

+ xT(t)Qpx(t) + (d2 − d1)ẋ
T(t)ETRpE ẋ(t)

− e−αpd2

(∫ −d1

−d2
Eẋ(t + θ)dθ

)T
Rp

(d2 − d1)

(∫ −d1

−d2
Eẋ(t + θ)dθ

)

− (1 − μd) e
−αpd2xT(t − d(t))Qpx(t − d(t))

(14)
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= αpx
T(t)ETPpx(t) + 2xT(t)PT

p

((
Ap + GpKp + ΔA

)
x(t)

)

+ (
Bp + ΔB

)
x(t − d(t)) + xT(t)Qpx(t)

+ (d2 − d1)ẋ
T(t)ETRpE ẋ(t) − e−αpd2

(∫ −d1

−d2
Eẋ(t + θ)dθ

)T

× Rp

(d2 − d1)

(∫ −d1

−d2
Eẋ(t + θ)dθ

)

− (1 − μd) e
−αpd2xT(t − d(t))Qpx(t − d(t)).

By noting free matrices, for any matrices H1 with appropriate dimensions such that

0 = 2 (Eẋ (t))T HT
1

[
−Eẋ (t) + Ã px (t) + B̃px (t − d (t))

]
(15)

and also taking (12) into consideration, inequality (14) can be rewritten as

V̇ (t) + αpV (t) ≤ ξTΦ̃ξ, (16)

with ξT =
[

xT (t) xT (t − d(t)) (Eẋ (t))T
(∫ −d1

−d2
Eẋ(t + θ)dθ

)T
]

. We denote

Y =

⎡

⎢
⎢
⎣

Φ̃11 PT
p B HT

1

(
Ap + GpKp

)
0

∗ Φ̃22 HT
1 B 0

∗ ∗ Φ̃33 0
∗ ∗ ∗ −e−αpd2 R

d2−d1

⎤

⎥
⎥
⎦ ,

where

Φ̃11 = PT
p

(
Ap + GpKp

) + (
Ap + GpKp

)T
Pp + αpE

TPp + Qp,

Φ̃22 = − (1 − μd) e
−αpd2Qp,

Φ̃33 = (d2 − d1)Rp − H1 − HT
1 .

And

Y1 =

⎡

⎢
⎢
⎣

PT
p M HT

1 M 0
0 0 HT

1 M
0 0 0
0 0 0

⎤

⎥
⎥
⎦ ,Y2 =

⎡

⎣
N Nd 0 0
0 0 N 0
0 0 Nd 0

⎤

⎦ ,

Y3 = diag{F(σ ), F(σ ), F(σ )}. By Lemma 2, the inequality Φ̃ = Y + Y1Y3Y2 +
(Y1Y3Y2)T < 0 is established if and only if there exists a scalar ε > 0 such that
Φ = Y + εY1Y T

1 + ε−1Y T
2 Y2 < 0. From condition (7), we have ξT(t)Φξ(t) ≤ 0

which implies ξTΦ̃ξ < 0, then V̇ (t) ≤ −αpV (t). As for t ∈ [tk, tk + Δk), it is
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similar to the result of the above deduction, then we have

V̇ (t) ≤ νV (x) =
{

αpqV (t), t ∈ [tk, tk + Δk)

−αpV (t), t ∈ [
tk + Δk, tk+1) .

(17)

From condition (9), we can get

V (tk + Δk) = xT(t)ETPpx(t) +
∫ t

t−d(t)
e−αp(t−s)xT(s)Qpx(s)ds

+
∫ t

t−d1
e−αp(t−s)xT(s)Rpx(s)ds

≤ μ̂V ((tk + Δk)
−),

(18)

V (tk) = xT(t)ETPpq x(t) +
∫ t

t−d(t)
eαpq (t−s)xT(s)Qpqx(s)ds

+
∫ t

t−d1
eαpq (t−s)xT(s)Rpq x(s)ds

≤ μ̂e(αq+αpq)d2V (t−k )

≤ μmμ̂V (t−k ),

(19)

where μm = max
p,q∈I

e(αq+αpq)d2 .

We note Tp(s, t) as the total time for synchronization of the controller and subsys-
tems in [s, t]. For simplicity of notation, let Tpq(s, t) stand for total time of mismatch
between controller and subsystem. Considering t ∈ [tk, tk + Δk) and combining (18)
with (19), we have

V (t) ≤ eαpq Tpq (tk ,t)V (tk)

≤ μmμ̂eαpq Tpq (tk ,t)V
(
t−k
)

≤ μmμ̂eαpq Tpq (tk ,t)−αpTp(tk−1,t)V (tk−1 + Δk−1)

≤ μmμ̂2eαpq Tpq (tk ,t)−αpTp(tk−1,t)V
(
(tk−1 + Δk−1)

−)

≤ · · ·

≤ eN0
(
lnμmμ̂2+(αpq+αp)Δmax

)

× e

(
lnμm μ̂2+(αpq+αp)Δmax

τp −αp

)

(t−t0)

V (t0) .

(20)

Similarly, we can also get when t ∈ [
tk + Δk, tk+1),
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V (t) ≤ e−αpTp(tk+Δk ,t)V (tk + Δk)

≤ μ̂e−αpTp(tk+Δk ,t)V
(
(tk + Δk)

−)

≤ μ̂eαpq Tpq (tk ,tk+Δk )−αpTp(tk+Δk ,t)V (tk)

≤ μmμ̂2eαpq Tpq (tk ,tk+Δk )−αpTp(tk+Δk ,t)V
(
t−k
)

· · ·

≤ 1

μ̂
eN0

(
lnμmμ̂2+(αpq+αp)Δmax

)

× e

(
lnμm μ̂2+(αpq+αp)Δmax

τp −αp

)

(t−t0)

V (t0) .

(21)

Let

λ1 = min
i, j

λmin(Pσ̃11),

λ2 = max
i, j

{
λmax(Pσ(t))

} + d2 max
{
λmax(Qσ(t))

} + (d2−d1)2

2 max
{
λmax(Rσ(t))

}
,

and set δ =
√

λ2
λ1
e
1
2 N0

(
lnμmμ̂2+(αpq+αp)Δmax

)

, η = 1
2

{
αp − lnμmμ̂2+(αpq+αp)Δmax

τp

}
.

Thus, we can get

λ1 ‖x1(t)‖2 ≤ V (t) , V (t0) ≤ λ2 ‖x(t0)‖2d .

That is ‖x1(t)‖ ≤ δe
−η(t−t0) ‖x(t0)‖ . Here, we have proved the stability of the differ-

ential equations contained in the original system.
Secondly, the proof of the stability of the algebraic equations in the original system

is given. Considering the case of t ∈ [ti , ti + Δi ), inspired by the literature [35], some
new variables are used to characterize the effects of time delay in x2(t). Define

k0 = t, k1 = t − d (t) = k0 − d (k0) , k2 = k1 − d (k1) , . . . , ki = ki−1 − d (ki−1) .

It is known from the deformed system (4) that

x2(k0) = Ā pq3x1(k0) + Ādpq3x1(k1) + Ādpq4x2(k1),

x2 (k1) = Ā pq3x1(k1) + Ādpq3x1(k2) + Ādpq4x2(k2),

x2(k0) = Ā3
dpq4x2(k3) +

2∑

m=0

Ām
dpq4

[
Ā pq3x1 (km) + Ādpq3x1 (km+1)

]
.

There exists an integer Ni,i−1 such that kNi,i−1 ∈ [
ti−1 + Δi−1, ti ) , kNi,i−1−1 ∈

[ti , ti + Δi ). By iteration, we have

x2(k0) = Ā
Ni,i−1
dpq4 x2(kNi,i−1) +

Ni,i−1−1∑

m=0

Ām
dpq4

[
Ā pq3x1 (km) + Ādpq3x1 (km+1)

]
.
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Then, following a similar procedure as above, there exists integer Ni−1,i−1 such that

kNi−1,i−1 ∈ [
ti−1, ti−1 + Δi−1) , kNi−1,i−1−1 ∈ [

ti−1 + Δi−1, ti ) .

By iteration, we have

x2(kNi,i−1+Ni−1,i−1) = Ā
Ni−1,i−2
dpq4 x2(kNi,i−1+Ni−1,i−1+Ni−1,i−2)

+
Ni−1,i−2−1∑

mi−1=0

Āmi−1
dpq4

[
Ā pq3x1

(
kmi−1

) + Ādpq3x1
(
kmi−1+1

)]
.

There exists an integer kNi,i−1+Ni−1,i−1+···+N0 ∈ [−d2, 0) such that

x2(k0) =
∏

i

Ā
Ni,i−1
dpq4 Ā

Ni−1,i−1
dp4 x2(kNi,i−1+Ni−1,i−1+···+N0)

+ Ā
Ni,i−1
dpq4 Ā

Ni−1,i−1
dp4 · · · ĀN1,0

dpq4

N0−1∑

n0=0

Ān0
dp4[ Ā p3x1(kNi,i−1+Ni−1,i−1+···+N1,1+N1,0+n0)

+ Ādp3x1(kNi,i−1+Ni−1,i−1+···+N1,1+N1,0+n0+1)]
+ · · ·

+ Ā
Ni,i−1
dpq4

Ni−1,i−1−1∑

ni−1=0

Āni−1
dp4

[
Ā p3x1(kNi,i−1+ni−1) + Ādp3x1(kNi,i−1+ni−1+1)

]

+
Ni,i−1−1∑

mi=0

Āmi
dpq4

[
Ā pq3x1

(
kmi

) + Ādpq3x1
(
kmi+1

)]
.

Let Â pq3 = max
p,q∈I

∥
∥ Ā pq3

∥
∥ , Âdpq3 = max

p,q∈I
∥
∥ Ādpq3

∥
∥. Inequality (7) implies that

[
PT
p22 + Pp22 + Qp22 PT

p22 Ādp4

∗ − (1 − μ) e−αpd2Qp22

]

< 0.

Then, from [8], there exist constants �i > 1 and �i > 0 such that

∥
∥
∥
∥

(
e
1
2αpd2 Ādp4

)N
∥
∥
∥
∥ ≤ �ie

−li N .
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Therefore,

‖x2 (k0)‖ ≤
[

k
Π
i=0

�ie
−li Ni,i−1

]

e
− 1

2

(

αp− ln(μm μ̂2)
τp

)

(t−t0) ‖x (t0)‖

+ �i Â pq3

√
λ2

λ1

eli

eli−1 e
− 1

2

(

αp− ln(μm μ̂2)
τp

)

(t−t0) ‖x (t0)‖

+ �ie
1
2αpd2 Âdpq3

eli

eli−1 e
− 1

2

(

αp− ln(μm μ̂2)
τp

)

(t−t0) ‖x (t0)‖
+ · · ·

+ Â pq3

√
λ2

λ1

(
k∑

i=1

�i

[
k
Π
j=i

� je
−l j N j, j−1

]
eli

eli−1

)

e
− 1

2

(
αp− ln

τp

)
(t−t0) ‖x (t0)‖

+ e
1
2αpd2 Âdpq3

√
λ2

λ1

(
k∑

i=1

�i

[
k
Π
j=i

� je
−l j N j, j−1

]
eli

eli−1

)

e
− 1

2

(

αp− ln(μm μ̂2)
τp

)

(t−t0) ‖x (t0)‖ .

Then, we have

‖x2 (t)‖ = ‖x2 (k0)‖ ≤ ĉe− 1
2 λ̄(t−t0) ‖x(t0)‖ ,

which confirms exponential stability of the algebraic subsystems.
Finally, we show that the switched singular system is regular and impulse free.

Equation (6) implies that Pσ2 = 0. From inequalities (7) and (8), Φ11 = PT
σ(t) Ãσ(t) +

ÃT
σ(t)Pσ(t) + νETPσ(t) + Qσ(t) < 0. Thus, PT

σ(t) Ãσ(t) + ÃT
σ(t)Pσ(t) + νETPσ(t) < 0,

PT
σ4Aσ4 + AT

σ4Pσ4 < 0, which implies that Aσ4 is nonsingular. By [32], closed-loop
system (4) is regular and impulse free. Therefore, there exists a continuous solution
of the original system. This completes the proof.

Remark 1 When the controller selection lags behind the switching of subsystems, that
is, the asynchronous control problem is considered in the above theorem. On the
contrary, if we take Δmax = 0, the theorem in this paper can be applied to general
switched singular system under synchronous control.

Remark 2 When we construct the Lyapunov function, the parameters αp and αpq

are model-dependent. So the dwell time that we get is also model-dependent. It is
more flexible than the average dwell time obtained in [18], which is to be met by all
subsystems. The multi-parameter selection is also beneficial to the feasibility solution
of linear matrix inequality. In the matching period time between the subsystem and
controller, the energy of the Lyapunov function corresponding to subsystem decreases.
During the mismatching period between the subsystem and controller, the energy
of corresponding the Lyapunov function is allowed to increase. By constraining the
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average dwell time, the energy of the Lyapunov function is reduced as a whole, thus
ensuring the stability of the differential equations.

Theorem 2 For the switched singular system (1), let γ > 0, d1 ≥ 0, d2 > 0,Δmax >

0, μd < 1, αp > 0, αpq > 0, μ̂ > 1, if there exist matrices Pp, Qp > 0, Rp >

0, Ppq , Qpq > 0, Rpq > 0, ε > 0, δ > 0, such that (6), (9) and the following
inequalities hold

⎡

⎢
⎢
⎢
⎢
⎢
⎣

Θ11 Θ12 HT
1 (Ap + GpKp) 0 Θ15

∗ Θ22 HT
1 Bp 0 DT

p Fp

∗ ∗ Θ33 0 HT
1 Ep

∗ ∗ ∗ −e−αpd2 Rp
(d2−d1)

0
∗ ∗ ∗ ∗ −γ 2 I + FT

p Fp

⎤

⎥
⎥
⎥
⎥
⎥
⎦

< 0, (22)

⎡

⎢
⎢
⎢
⎢
⎢
⎣

Σ11 Σ12 HT
1 (Ap + GpKq) 0 Σ15

∗ Σ22 HT
1 Bp 0 DT

p Fp

∗ ∗ Σ33 0 HT
1 Ep

∗ ∗ ∗ −eαpqd2 Rpq
(d2−d1)

0
∗ ∗ ∗ ∗ −γ 2 I + FT

p Fp

⎤

⎥
⎥
⎥
⎥
⎥
⎦

< 0, (23)

where

Θ11 = PT
p

(
Ap + GpKp

) + (
Ap + GpKp

)T
Pp + αpE

TPp + Qp + ε−1NTN

+ ε
(
PT
p MMTPp + HT

1 MMTH1

)
+ CT

pCp,

Θ12 = PT
p Bp + ε−1NTNd + CT

p Dp,Θ15 = CT
p Fp + PT

p Ep,

Θ22 = − (1 − μd) e
−αpd2Qp + εHT

1 MMTH1 + ε−1NT
d Nd + DT

p Dp,

Θ33 = (d2 − d1)Rp − H1 − HT
1 + ε−1

(
NTN + NT

d Nd

)
,

Σ11 = PT
pq

(
Ap + GpKq

) + (
Ap + GpKq

)T
Ppq − αpq E

TPpq + Qpq + δ−1NTN

+ δ
(
PT
pqMMTPpq + HT

1 MMTH1

)
+ CT

pCp,

Σ12 = PT
pq Bp + ε−1NTNd + CT

p Dp,Σ15 = CT
p Fp + PT

pq Ep,

Σ22 = − (1 − μd) e
αpqd1Qpq + δHT

1 MMTH1 + δ−1NT
d Nd + DT

p Dp,

Σ33 = (d2 − d1)Rpq − H1 − HT
1 + δ−1

(
NTN + NT

d Nd

)
.

Then, the looped system is exponential admissibility with H∞ performance level
γ̂ under the switching signal with average dwell time satisfying (10), where γ̂ =√
e(αpq+αp)Δmaxγ .

Proof Inequality constraints (7) and (8) can be obtained from (22) and (23). Thus, by
Theorem 1, switched singular system (1) is exponentially admissible with ω(t) = 0.
Then, the analysis of the H∞ performance of the system (1) is given.
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When t ∈ [
tk+Δk, tk+1), constructing the Lyapunov function as above and using

the same method in Theorem 1, we have

V̇ (t, x(t)) ≤ −αpV (t, x(t)) − Γ (t) + ηTΛη,

where

η =
[

xT (t) xT (t − d(t)) (Eẋ (t))T
(∫ −d1

−d2
Eẋ(t + θ)dθ

)T
ωT (t)

]T

,

Γ (t) = zT (t) z (t) − γ 2ωT (t) ω (t) .

From the condition (22), we have ηTΛη < 0, then

V̇ (t, x(t)) ≤ −αpV (t, x(t)) − Γ (t) , t ∈ [
tk+Δk, tk+1) . (24)

Similarly, we also have

V̇ (t, x(t)) ≤ αpqV (t, x(t)) − Γ (t) , t ∈ [
tk, tk+Δk) . (25)

Integrating both sides of (24) and (25), it holds that

V (t) ≤ e−αp(t−tk+Δk)V (tk+Δk) −
∫ t

tk+Δk

e−αp(t−s)Γ (s) ds,

V (tk+Δk) ≤ eαpqΔk V (tk) −
∫ tk+Δk

tk
eαpq (tk+Δk−s)Γ (s) ds.

(26)

After many iterations, we have

V (t) ≤ e−αp(t−tk+Δk )

[

eαpqΔk V (tk) −
∫ tk+Δk

tk
eαpq (tk+Δk−s)Γ (s) ds

]

−
∫ t

tk+Δk

e−αp(t−s)Γ (s) ds

≤ e−αp(t−tk)+(αp+αpq)Δkμmμ̂V
(
t−k
)

−
∫ tk+Δk

tk
e−αp(t−s)+(αp+αpq)(tk+Δk−s)Γ (s) ds

−
∫ t

tk+Δk

e−αp(t−s)Γ (s) ds

≤ . . .
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≤ μk
mμ̂2keαpq Tpq (0,t)−αpTp(0,t)V (t0)

−
∫ t

t0
eαpq Tpq (s,t)−αpTp(s,t)+Nσ (s,t) lnμmμ̂2

Γ (s) ds

≤ μk
mμ̂2keαpq Tpq (0,t)−αpTp(0,t)V (t0)

−
∫ t

t0
e(αpq+αp)Nσ (s,t)Δmax−αp(t−s)+Nσ (s,t) lnμmμ̂2

Γ (s) ds. (27)

Under the zero initial condition,

∫ t

t0
e

N∑

p=1
[(αpq+αp)Nσ (s,t)Δmax−αp(t−s)+Nσ (s,t) lnμmμ̂2]

Γ (s) ds ≤ 0. (28)

Then, multiplying both sides by e

N∑

p=1
[−(αpq+αp)Nσ (0,t)Δmax−Nσ (0,t) lnμmμ̂2]

,

∫ t

t0
e

N∑

p=1
[−(αpq+αp)Nσ (0,s)Δmax−αp(t−s)−Nσ (0,s) lnμmμ̂2]

Γ (s) ds ≤ 0.

Combining (5) and (10) leads to

∫ t

t0
e

N∑

p=1
[−αpt−(αpq+αp)Δmax−N0 lnμmμ̂2]

zT (s) z (s) ds ≤
∫ t

t0
e
−

N∑

p=1
αp(t−s)

γ 2ωT (s) ω (s) ds.

Integrating both sides of it from t = t0 to ∞ yields

∫ ∞

t0

∫ t

t0
e
−

N∑

p=1
αpt

zT (s) z (s) dsdt ≤ γ̂ 2
∫ ∞

t0

∫ t

t0
e
−

N∑

p=1
αp(t−s)

ωT (s) ω (s) dsdt,

∫ ∞

t0
e
−

N∑

p=1
αps

zT (s) z (s) ds ≤ γ̂ 2
∫ ∞

t0
ωT (s) ω (s) ds,

where γ̂ = e
1
2 [

N∑

p=1
(αpq+αp)Δmax+N0 ln(μmμ̂2)]

γ . This means that system (4) achieves
H∞ performance level. The proof is completed. 
�
Corollary 1 Given the same conditions as Theorem 2, then the looped system (1)
is exponential admissibility with non-weighted H∞ performance level γ̃ under the
switching signal with average dwell time satisfying (10), where

γ̃ 2 =
N∑

p=1

αpe

N∑

p=1
[(αpq+αp)Δmax+lnμmμ̂2]N0

γ 2. (29)
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Proof From (28), we have

∫ t

t0
e

N∑

p=1
[(αpq+αp)Nσ (s,t)Δmax−αp(t−s)+Nσ (s,t) lnμmμ̂2]

zT (s) z (s) ds

≤
∫ t

t0
e

N∑

p=1
[(αpq+αp)Nσ (s,t)Δmax−αp(t−s)+Nσ (s,t) lnμmμ̂2]

γ 2ωT (s) ω (s) ds.

Integrating the left side from t0 to ∞, we can obtain

∫ ∞

t0

∫ t

t0
e

N∑

p=1
[(αpq+αp)Nσ (s,t)Δmax−αp(t−s)+Nσ (s,t) lnμmμ̂2]

zT (s) z (s) dsdt

≥
∫ ∞

t0

∫ t

t0
e

N∑

p=1
−αp(t−s)

zT (s) z (s) dsdt

≥
∫ ∞

t0
zT (s) z (s)

⎛

⎜
⎝

∫ ∞

s
e

N∑

p=1
−αp(t−s)

dt

⎞

⎟
⎠ ds

≥ 1
N∑

p=1
αp

∫ ∞

t0
zT (s) z (s) ds.

At the same time, the integral result of the right term is

∫ ∞

t0

∫ t

t0
e

N∑

p=1
[(αpq+αp)Nσ (s,t)Δmax−αp(t−s)+Nσ (s,t) lnμmμ̂2]

γ 2ωT (s) ω (s) dsdt

≤ γ 2
∫ ∞

t0

∫ t

t0
e

N∑

p=1
[(αpq+αp)Δmax+lnμmμ̂2](N0+ t−s

τp
)−αp(t−s)

ωT (s) ω (s) dsdt

≤ e

N∑

p=1
[(αpq+αp)Δmax+lnμmμ̂2]N0

γ 2
∫ ∞

t0

∫ t

t0
e

N∑

p=1
[ (αpq+αp )Δmax+lnμm μ̂2

τp
−αp](t−s)

ωT (s) ω (s) dsdt

≤ e

N∑

p=1
[(αpq+αp)Δmax+lnμmμ̂2]N0

γ 2
∫ ∞

t0
ωT (s) ω (s)
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⎛

⎜
⎝

∫ ∞

s
e

N∑

p=1
[ (αpq+αp )Δmax+lnμm μ̂2

τp
−αp](t−s)

dt

⎞

⎟
⎠ ds

≤ e

N∑

p=1
[(αpq+αp)Δmax+lnμmμ̂2]N0

γ 2
∫ ∞

t0
ωT (s) ω (s) ds.

Accordingly, we can get
∫∞
t0

zT (s) z (s) ds ≤ γ̃ 2
∫∞
t0

ωT (s) ω (s) ds, which implies
that the system (1) has a non-weighted L2 gain as (29). Then, this corollary is proved.


�

Theorem 3 For the switched singular system (1), let γ > 0, d1 ≥ 0, d2 > 0, μd <

1, αp > 0, αpq > 0, μ̂ > 1, if there exist matrices P̄p > 0, Q̄ p > 0, R̄p >

0,Wp,Qp, P̄pq > 0, Q̄ pq > 0, R̄pq > 0,Qpq and εp > 0, εpq > 0, such that
(9) and the following inequalities hold

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ξ11 Ξ12 Ξ13 0 EpΩ(P̄p,Qp) Ω(P̄p,Qp)
TCT

p Ξ17

∗ Ξ22 Ω(P̄p,Qp)BT
p 0 0 Ω(P̄p,Qp)

TDT
p Ξ27

∗ ∗ Ξ33 0 EpΩ(P̄p,Qp) 0 Ξ37
∗ ∗ ∗ Ξ44 0 0 0
∗ ∗ ∗ ∗ −γ 2 I Ω(P̄p,Qp)

TFT
p 0

∗ ∗ ∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ ∗ ∗ −εp I

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0 (30)

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Π11 Π12 Π13 0 EpΩ(P̄pq ,Qpq) Ω(P̄pq ,Qpq)
TCT

p Π17

∗ Π22 Π23 0 0 Π26 Π27

∗ ∗ Π33 0 EpΩ(P̄pq ,Qpq) 0 Π37
∗ ∗ ∗ Π44 0 0 0
∗ ∗ ∗ ∗ −γ 2 I Ω(P̄pq ,Qpq)

TFT
p 0

∗ ∗ ∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ ∗ ∗ −εp I

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0 (31)

where

Ξ11 = Ω(P̄p,Qp)
TAT

p + ApΩ(P̄p,Qp) + WT
p G

T
p + GpWp

+ αpE
TΩ(P̄p,Qp) + Q̄ p,

Ξ12 = BpΩ(P̄p,Qp),Ξ13 = ApΩ(P̄p,Qp) + GpWp, Ξ22 = − (1 − μd) e
−αpd2 Q̄ p,

Ξ33 = (d2 − d1) R̄p − Ω(P̄p,Qp)
T − Ω(P̄p,Qp),Ξ44 = −e−αpd2

R̄p

d2 − d1
,

Ξ17 = [
Ω(P̄p,Qp)

TNT 0 2M 0
]
, Ξ27 = [

Ω(P̄p,Qp)
TNT

d 0 0 M
]
,

Ξ37 = [
Ω(P̄p,Qp)

TNT Ω(P̄p,Qp)
TNT

d 0 0
]
.
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Π11 = Ω(P̄pq ,Qpq)
T(Ap + GpKq)

T + (Ap + GpKq)Ω(P̄pq ,Qpq)

− αpq E
TΩ(P̄pq ,Qpq)

+ Q̄ pq ,Π12 = BpΩ(P̄pq ,Qpq),Π13 = ApΩ(P̄pq ,Qpq) + GpWp,

Π22 = − (1 − μd) e
αpqd1 Q̄ p,Π23 = Ω(P̄pq ,Qpq)B

T
p ,Π26 = Ω(P̄pq ,Qpq)

TDT
p,

Π33 = (d2 − d1) R̄pq − Ω(P̄pq ,Qpq)
T − Ω(P̄pq ,Qpq),Π44 = −eαpqd2

R̄pq

d2 − d1
,

Π17 = [
Ω(P̄pq ,Qpq)

TNT 0 2M 0
]
,Π27 = [

Ω(P̄pq ,Qpq)
TNT

d 0 0 M
]
,

Π37 = [
Ω(P̄pq ,Qpq)

TNT Ω(P̄pq ,Qpq)
TNT

d 0 0
]
.

Then, the looped system (4) is exponential admissibility with H∞ performance level
γ̂ under the switching signal with average dwell time satisfying (10), where γ̂ =√
e(αpq+αp)Δmaxγ . And the feedback controller can be chosen as

u(t) = WpΩ(P̄p,Qp)
−1x(t). (32)

Here,Ω(P̄p,Qp) = P̄pET + SQp, P̄p > 0, S ∈ R
n−r is any matrix with full column

rank and satisfies ES = 0.

Proof In the process of proving Theorem 1, H1 is an arbitrary matrix with suitable
dimensions. So Theorem 1 is still established when we select H1 = Pp. Pre-multiply
and post-multiply the matrix (22) by diag{P̄T

p , P̄T
p , P̄T

p , P̄T
p , P̄T

p } and it’s transposi-

tion, and denote P̄p = P−1
p , Q̄ p = P̄T

p Q p P̄p, R̄p = P̄T
p Rp P̄p, and using Schur

complement the following inequality can be obtained

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ξ̃11 Ξ̃12 (Ap + GpKp)P̄p 0 Ep P̄p P̄T
p C

T
p Ξ̃17

∗ Ξ̃22 Bp P̄p 0 0 P̄T
p D

T
p Ξ̃27

∗ ∗ Ξ̃33 0 Ep P̄p 0 Ξ̃37

∗ ∗ ∗ −e−αpd2 R̄p
(d2−d1)

0 0 0
∗ ∗ ∗ ∗ −γ 2 I P̄T

p F
T
p 0

∗ ∗ ∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ ∗ ∗ −ε I

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0, (33)

Ξ̃11 = P̄T
p

(
Ap + GpKp

)T + (
Ap + GpKp

)
P̄p + αpE

T P̄p + Q̄ p, Ξ̃12 = Bp P̄p,

Ξ̃22 = − (1 − μd) e
−αpd2 Q̄ p, Ξ̃33 = (d2 − d1)R̄p − P̄p − P̄T

p ,

Ξ̃17 = [
P̄T
p N

T 0 2M 0
]
, Ξ̃27 = [

P̄T
p N

T
d 0 0 M

]
,

Ξ̃37 = [
P̄T
p N

T P̄T
p N

T
d 0 0

]
.

It is noted that in Theorem 2, conditions (6) and (33) are non-strict LMI due to the
existence of equality (6). By following [32], replacing P̄p in (33) with Ω(P̄p,Qp),
here Ω(P̄p,Qp) = P̄pET + SQp, P̄p > 0, and S ∈ R

n−r is any matrix with
full column rank and satisfies ES = 0. Let Wp = KpΩ(P̄p,Qp) and using Schur
complement, it can be easily found that condition (30) is equivalent to (33), inequality
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(30) is equivalent to combination of (6) and (22). Similarly, formula (31) is equivalent
to formula (23). The proof is completed. 
�

Remark 3 The singular system is more extensive than the general system because it
contains algebraic constraints. In the problem statement section, we give the condition
that rankE = r ≤ n. When r = n, the switched singular system naturally degenerates
into a switched general system and the proof of Theorems 2 and 3 is also tenable.

Remark 4 With the restrictive condition (6), instead of the exact solution, an approxi-
mate solution is obtained. In order to solve the controller more conveniently, sufficient
conditions for solving the controller are transformed into strict linear matrix inequal-
ities in this paper.

4 Numerical Example

In this section, two numerical examples are given to illustrate the correctness and
validity of the theorems in this paper.

Example 1 Consider the uncertain switched singular system (1), where the parameter
matrices of each subsystem are: Subsystem 1:

E =
[
1 0
0 0

]

, A1 =
[−1 0.2
0.7 −1.2

]

, B1 =
[−0.9 0

0.2 −0.3

]

, C1 =
[
0.4 0.1
0.3 −0.6

]

,

D1 =
[

1.1 1.2
−0.4 0.1

]

, E1 =
[
0.05 0
0 0.02

]

, F1 =
[−0.1 0

−0.6 0.5

]

, G1 =
[−1.2

0.1

]

;

Subsystem 2:

A2 =
[−1.4 0.2

0.9 −1

]

, B2 =
[−1 0.6

0 −0.1

]

, C2 =
[
0.8 0.1
0.2 −0.6

]

,

D2 =
[

0.4 0.9
−0.7 0.2

]

, E2 =
[
0.08 0
0 0.03

]

, F2 =
[
0.4 0
0 0.3

]

, G2 =
[−1.1

0.4

]

.

M =
[
0.02 0
0 0.04

]

, N =
[−0.04 0

0 −0.03

]

, Nd =
[−0.05 0

0 0.02

]

.

Let d(t) = 0.3 + 0.2sin(t), α1 = 0.6, α2 = 0.3, γ = 0.5, S = [0; 0.6], then
d1 = 0.1, d2 = 0.5, μd = 0.2. According to Theorem 1, we can obtain matrices
P̄1,W1,Q1, P̄2,W2,Q2 by solving linear matrix inequality (30).

P̄1 =
[
0.6184 0

0 1.1885

]

, W1 =
[

1.1886
−0.0105

]T

, Q1 =
[
0.5627
1.8514

]T

,

P̄2 =
[
0.9290 0

0 2.3771

]

, W2 =
[

3.4468
−0.9077

]T

, Q2 =
[
1.7973
3.4963

]T

.
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Fig. 1 State response of the closed-loop system with τ1 = 1, τ2 = 2, Δmax = 0.1

Then, the controllers corresponding to each subsystem can be calculated by (32), the
results are

K1 = [
1.9270 −0.0095

]
, K2 = [

4.2125 −0.4327
]
, (34)

respectively. By selecting parameters α12 = 0.4, α21 = 0.2,Δmax = 0.1, μ̂ = 9.7,
then we can calculate μm = 1.4918, τ ∗

1 = 8.41619, τ ∗
2 = 16.6657 through condition

(10). First, we do not follow the result of Theorem 1 and choose τ1 = 1, τ2 = 2. Pulse
phenomenon of state response is discovered at switching time in Fig. 1. The result of
Fig. 1 shows that a smaller dwell time may be impracticable for asynchronous switch-
ing. Then, use the result of Theorem 1, select initial state x(0) = [−2,−1.5]T, F(t) =
diag{sin t, cos t}, τ1 = 8.5, τ2 = 16.7, ω(t) = [sin(t), cos(t)]T. Then, the state
response of the closed-loop system can be simulated as shown in Fig. 2. In order
to illustrate the proposed results, the comparison between synchronous switching sig-
nal and asynchronous switching signal is given. Let Δmax = 0, we generate the dwell
time τ ∗

1 = 3.6, τ ∗
2 = 7.2, this means that the switching of controller and subsystem

is synchronous. The corresponding state responses of the linear switched singular
systems are shown in Fig. 3. Obviously, the state of the system is not asymptotically
stable under the control of synchronous switching signal. The result indicates that the
switched singular system exhibits stability when the switching sequences are selected
appropriately. At the same time, the performance index of the system is γ̂ = 1.08.

Example 2 Delay-dependent switching system can be applied to the problem of river
pollution control [9,28,40]. We consider a set of numerical simulations according to
the practical significance of coefficient matrices, where E = I and the parameter
matrices of each subsystem are:

A1 =
[−1.5 0

−2.7 −3.4

]

, B1 =
[
0.5 1.2
0 0.5

]

, G1 =
[
2 0
0 1

]

;
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Fig. 2 State response of the closed-loop system with τ1 = 8.5, τ2 = 16.7,Δmax = 0.1 and controller
gains (34)
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Fig. 3 State response of the closed-loop system with τ1 = 3.6, τ2 = 7.2,Δmax = 0

A2 =
[ −2 0

−3.2 −1.6

]

, B2 =
[
0.7 0
0 0.7

]

, G2 =
[
0.9 0
0 1

]

;

Let d(t) = 0.1 + 0.1 sin t, d1 = 0, d2 = 0.2,Δmax = 0.5, α1 = α2 = 0.8, α12 =
α21 = 1.5, μ̂ = 3, x0 = [1.6 − 0.9]T. Then, we can obtain controller gains by
employing Theorem 0.3,

K1 =
[−0.0963 −0.7819

2.8122 1.9542

]

, K2 =
[
0.4307 −0.0000
3.2000 −0.0123

]

.
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Fig. 4 Switching signals of subsystems and controllers
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Fig. 5 State response of the closed-loop system with τ1 = τ2 = 4.8,Δmax = 0.5

The lower bound of residence time of each subsystem τ ∗ = 4.7683 can be obtained
by substituting known values into formula (10). We choose τ1 = τ2 = 4.8, then two
lines in Fig. 4 describe the switching signals of the subsystems and the controllers,
respectively. As seen in Fig. 5, under the action of the switching signal designed by
us, the exponentially stable state trajectory of the system is depicted. This shows that
the results of this paper can be applied to simplified engineering models.
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5 Conclusions

In this paper, we have investigated the asynchronous H∞ performance of uncertain
switched singular systems with interval time-varying delays, which is a more general
class of switched systems. By constructing a new piecewise Lyapunov–Krasovskii
functional, delay-dependent stability conditions have been derived for the closed-loop
system to be regular, impulse free and exponentially stable in the presence of asyn-
chronous switching. Furthermore, with the help of the average dwell time approach,
a class of switching signals has been found under which the system has non-weighted
H∞ performance and strict LMIs are given to solve controllers. By limiting the res-
idence time of each subsystem, the increased energy caused by the asynchronous
phenomenon of the system is offset. Two numerical examples are given to illustrate
the feasibility and effectiveness of the theorem.
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available from the corresponding author on reasonable request.
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