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Abstract
This paper is devoted to the problem of H

∞
 filtering for a class of discrete-time 

singular Markovian jump systems with generally uncertain transition rates. Each 
transition rate of the jumping process is completely unknown or only the estimated 
value is known. The objective is to design a H

∞
 filter such that the resulting filtering 

error system is stochastically admissible (regular, causal and stochastically stable) 
while satisfying a prescribed H

∞
 performance � . Sufficient conditions are derived 

that can guarantee the filtering error system is H
∞

 stochastically admissible. Moreo-
ver, explicit expression of the filter gains is obtained by solving a set of strict linear 
matrix inequalities. Finally, a numerical example is included to illustrate the effec-
tiveness of the proposed method.

Keywords H∞ filtering · Discrete-time singular systems · Markovian jump systems · 
Generally uncertain transition rates

1 Introduction

Singular systems, also known as generalized state space systems, descriptor sys-
tems, semi-state systems or differential–algebraic systems, have been widely applied 
in the field of electrical circuits, power systems, robotic systems and so on [2]. The 
analysis of singular systems is complicated than that of normal ones, since the regu-
larity, impulse-free (in continuous case) or causality (in discrete case) and the stabil-
ity of the close-loop systems should be considered simultaneously. During the past 
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decades, considerable attention has been paid to the stability analysis, stochastically 
admissibility and filtering problems for singular systems [7, 11, 18, 22, 27, 29].

On the other hand, stochastic systems with structural variations such as machine 
faults and repairs in manufacturing systems can be better modelled by Markovian 
jump systems than normal systems [16]. For example, the large time-delay and 
packet loss in computer network systems are usually random and cannot be pre-
dicted in advance. In this case, the normal work state can be set to be one mode, 
and the state with packet loss or large time-delay can be set to be another mode, 
and then the computer network system can be modelled to be a Markovian jump 
system with two modes; meanwhile, the real computer network system switches ran-
domly between these two modes. In recent years, more and more attention has been 
devoted to the filtering [12, 24] and control [9, 25] problems of Markovian jump 
systems. It should be mentioned that in the literature [12, 24, 25], the transition rates 
of jumping process are assumed to be completely known. However, in practice, due 
to the limitations of equipment and the influence of uncertain complex factors, the 
transition rates are usually uncertain. At present, there are three kinds of uncertain 
transition rates [32]. The first kind is bounded uncertain transition rates (BUTRs) 
[6, 14], where the precise value of each transition rate may not be known while the 
upper bound and lower bound of each transition rate are known. The second one is 
partly unknown transition rates (PUTRs) [21, 26, 36], where each transition rate is 
completely known or unknown. The third one is generally uncertain transition rates 
(GUTRs), where each transition rate is unknown or only known with its estimate. 
It is obvious that BUTRs and PUTRs are special case of the GUTRs. Recently, the 
problem of stability and state feedback control for normal Markovian jump systems 
with GUTRs were studied in [5, 20], respectively. In addition, for continuous-time 
singular Markovian jump systems (SMJSs) with GUTRs, the stabilization and H

∞
 

filtering problems were considered in [8] and [33], respectively. To the best of our 
knowledge, there are few papers studied about discrete-time SMJSs with GUTRs, 
especially considering the H

∞
 filtering and GUTRs simultaneously for SMJSs.

Motivated by above discussion, H
∞

 filtering for a class of discrete-time SMJSs 
with GUTRs is considered in this paper. Compared with the traditional Kalman fil-
tering [15, 17], H

∞
 filtering requires no assumptions about the statistical properties 

of noise [1, 3, 4, 13, 19, 23, 31, 34, 35]. H
∞

 filtering devotes to develop a proper 
filter to minimize the upper bound of the L2

(
l2
)
 gain from the noise to the filtering 

error. The main contributions of this paper are as follow: (1) Sufficient conditions in 
terms of strict linear matrix inequalities (LMIs) are given, which can guarantee the 
discrete-time singular Markovian jump filtering error system with GUTRs is regular, 
causal and stochastically stable while satisfying a prescribed H

∞
 performance; (2) 

the desired normal full-order filter is designed while the explicit expression of the 
filter parameters is also given.

This paper is organized as follows. In Sect. 2, the problem statement and pre-
liminaries are formulated including some definitions and lemmas for further 
usage. The desired filter is of full order and normal structure. In Sect. 3, based on 
the Lemma 4 proposed in Sect. 2, sufficient conditions are obtained in Theorem 1 
such that the filtering error systems is stochastically admissible with a prescribed 
H

∞
 performance � . Furthermore, by using LMI approach, the filter design method 
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is obtained in Theorem 2. In Sect. 4, a numerical example is illustrated to demon-
strate the effectiveness of the proposed method. Section 5 is the conclusion. The 
end is appendixes.

Notation Through this paper, Rm×n represents the set of all m × n real matrices, 
and Rn denotes the n-dimensional Euclidean space. �2[0 , +∞) denotes the space 
of square summable infinite sequence over [0 , +∞) . �{⋅} denotes the expectation 
operator. I denotes the identity matrix of appropriate dimension. N+ represents 
the positive integers and ℂ represents the set of complex numbers. The super-
scripts ‘T’ and ‘− 1’ represent the transpose and the inverse of a matrix, respec-
tively, and ‘ ∗ ’ denotes the symmetric term in a symmetric matrix.

2  Preliminaries and problem formulation

Consider the following discrete-time SMJSs with GUTRs:

where x(k) ∈ Rn is the state, y(k) ∈ Rq is the measured output, z(k) ∈ Rp is the signal 
to be estimated and �(k) is the external disturbance which belongs to �2[ 0, + ∞) . 
E ∈ Rn×n is singular with rank E = r < n . A

(
rk
)
 , B

(
rk
)
 , C

(
rk
)
 , L

(
rk
)
 are known real 

constant matrices with appropriate dimensions for each rk ∈ S . And rk is a discrete-
time Markovian process taking value in a finite set S = {1, 2, …,s} with

where 0 ≤ �ij ≤ 1 is the transition rate and 
∑s

j=1
�ij = 1 . The transition rate matrix is 

considered to be generally uncertain and described as follows:

where �̂�ij and Δij ∈ [−�ij , 𝛿ij](𝛿ij > 0 , i , j ∈ S) denote the estimate value and estimate 
error of the transition rate, respectively, and “?” represents the complete unknown 
transition rate.

Let Ui
(i ∈ S) be Ui

= Ui
k
∪ Ui

uk
 , where Ui

k
≜ {j: The estimate value of �ij is known 

for j ∈ S }, and Ui
uk

≜{j: The estimate value of �ij is unknown for j ∈ S }. Moreover, 
if Ui

k
≠ ∅ , it can be described as Ui

k
=

{
ki
1
 , ki

2
,…,ki

m

}
 , where ki

m
∈ N+ denote the mth 

bound-known element with the index ki
m
 in the ith row of the transition rate matrix. 

And then, the following three assumptions can be defined reasonable, since they can 
be directly derived from the features of transition rates that �ij ≥ 0 and 

∑s

j=1
�ij = 1.

(1)

⎧⎪⎨⎪⎩

Ex(k + 1) = A
�
rk
�
x(k) + B

�
rk
�
�(k)

y(k) = C
�
rk
�
x(k) + D

�
rk
�
�(k)

z(k) = L
�
rk
�
x(k)

,

(2)Pr
{
rk+1 = j|rk = i

}
= �ij,

(3)

⎡⎢⎢⎢⎣

�̂�11 + Δ11 ? �̂�13 + Δ13 ⋯ ?

? ? �̂�23 + Δ23 ⋯ �̂�2s + Δ2s

⋮ ⋮ ⋮ ⋱ ⋮

? �̂�s2 + Δs2 ? ⋯ �̂�ss + Δss

⎤⎥⎥⎥⎦
,
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Assumption 1 If Ui
k
≠ S , and i ∉ Ui

k
 , then �̂�ij ≥ 0 , ((∀j ∈ Ui

k
 ) and ∑

j∈Ui
uk
,j≠i �ij = 1 − �ii −

∑
j∈Ui

uk

�ij;

Assumption 2 If Ui
k
≠ S , and i ∈ Ui

k
 , then �̂�ij ≥ 0 , ( ∀j ∈ Ui

k
 ), and ∑

j∈Ui
uk

�ij = 1 −
∑

j∈Ui
uk

�ij;

Assumption 3 If Ui
k
= S , then �̂�ij ≥ 0 , ( ∀j ∈ S , j ≠ i ) and 

∑S

j=1,j≠i �ij = 1 − �ii.

Consider the following full-order filter

Remark 1 For the filter’s physical implementation convenience in practical engi-
neering, set Ef = I , which means that a normal filter rather than a singular filter is 
considered in this paper.

Define x̃(k)T =

[
x(k)Txf (k)

T
]T and z̃(k) = z(k) − zf (k) . It follows from (1) and (4) 

that the filtering error dynamics can be written as

where

Definition 1 Consider discrete-time singular Markovian jump system 

System (7) is said to be regular if for any rk = i(i ∈ S ), if there exists a scalar 
s ∈ ℂ such that det

(
sE − A

(
rk
))

≠ 0;
System (7) is said to be causal if for any rk = i(i ∈ S ), if there exists a scalar s ∈ ℂ 

such that deg
(
det

(
sE − A

(
rk
)))

= rank(E);
System (7) is said to be stochastically stable if there exists Lyapunov functional 

V(k) > 0 , such that 𝜀(ΔV(k)) = 𝜀(V(k + 1) − V(k)) < 0;
System (7) is said to be stochastically admissible if it is regular, causal and sto-

chastically stable, simultaneously.

Definition 2 The Markovian jump system (1) is said to be stochastically stable 
while satisfying a prescribed H

∞
 performance � if under zero initial condition, for 

any non-zero �(k) ∈ �2[ 0, + ∞) , the following condition holds:

(4)
{

Ef xf (k + 1) = Af

(
rk
)
xf (k) + Bf

(
rk
)
y(k)

zf (k) = Lf
(
rk
)
xf (k)

.

(5)
{

Ẽx̃(k + 1) = Ãx̃(k) + B̃𝜔(k)

z̃(k) = L̃x̃(k)
,

(6)
Ẽ =

[
E 0

0 I

]
, Ã =

[
A
(
rk
)

0

Bf

(
rk
)
C
(
rk
)
Af

(
rk
)
]
,

L̃ =

[
L
(
rk
)
−Lf

(
rk
) ]

.

(7)Ex(k + 1) = A
(
rk
)
x(k),
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The objective of this paper is to design a normal full-order filter (4) for system (1) 
such that the filtering error system (5) is stochastically admissible with a prescribed 
H

∞
 performance index � . For notational simplicity, in this paper, when rk = i(i ∈ S) , 

A
(
rk
)
 , B

(
rk
)
 , C

(
rk
)
 , D

(
rk
)
 , L

(
rk
)
 , Af

(
rk
)
 , Bf

(
rk
)
 , Lf

(
rk
)
 are denoted by Ai , Bi , Ci , 

Di , Li , Afi , Bfi , Lfi and so on. And for further explanation, some lemmas are intro-
duced as follows.

Lemma 1 [10] Given xk ∈ Rn , � = �
T
∈ Rn×n and B ∈ Rm×n , if rank(B) < n , the 

following conditions are equivalent

1. xT
k
𝛩xk < 0 , ∀Bxk = 0 , xk ≠ 0,

2. ∃X  , such that 𝛩 + XB + BTX
T
< 0.

Lemma 2 [30] Given any real scalar � and any matrix Q , the matrix inequality 

holds for any matrix T > 0.

Lemma 3 [28] Given matrices X, Y, Z with appropriate dimensions, and Y is sym-
metric positive definite, then the following inequality holds: 

Lemma 4 The filtering error system (5) with GUTRs is stochastically admissible 
while satisfying a prescribed H

∞
 performance index � , if there exist matrices G , F 

and Pi > 0(i ∈ S) , such that 

Proof See “Appendix A”.                                                                                           □

3  Main results

In the sequel, the sufficient conditions for the existence of H
∞

 filter are derived 
such that the resulting filtering error system (5) is stochastically admissible with a 
prescribed H

∞
 performance � . And the desired filter design method is also given. 

𝜀

(∑
∞

k=0
z̃(k)Tz̃(k)

)
≤ 𝛾

2
∑

∞

k=0
𝜔
T
(k)𝜔(k).

�

(
Q +Q

T
)
≤ �

2T +QT−1Q
T

−ZTYZ ≤ XTZ + ZTX + XTY−1X.

(8)𝜃 =

⎡
⎢⎢⎢⎢⎢⎣

−G − GT GÃ −FT
+ GB̃ 0

∗ ÃT
s∑

j=1

𝜋ijPjÃ − ẼTPiẼ ÃTFT L̃T

∗ ∗ B̃TFT
+ FB̃ − 𝛾

2I 0

∗ ∗ ∗ −I

⎤
⎥⎥⎥⎥⎥⎦

< 0.
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Firstly, based on Lemma 4, and corresponding to the aforementioned three assump-
tions, the following Theorem 1 is immediate.

Theorem 1 Given scalars �ij(i , j ∈ S) , the filtering error system (5) with GUTRs is 
stochastically admissible while satisfying a prescribed H

∞
 performance index � , if 

there exist matrices G , F and symmetric matrix Pi > 0(i ∈ S) , such that

Case I. If i ∉ Ui
k
 , Ui

k
=

{
ki
1
 , ki

2
,…,ki

m

}
 there exist a set of positive definite matrices 

Tij ∈ Rn×n
(i ∉ Ui

k
 , j ∈ Ui

k
) such that

where Pj − Pi ≤ 0(j ∈ Ui
uk

 , j ≠ i).
Case II If i ∈ Ui

k
 , Ui

uk
≠ ∅ and Ui

k
=

{
ki
1
 , ki

2
,…,ki

m

}
 , there exist a set of positive 

definite matrices Vijl ∈ Rn×n
(i , j ∈ Ui

k
 , l ∈ Ui

uk
) such that

Case III If i ∈ Ui
k
 , Ui

uk
= � , there exist a set of positive definite matrices 

Rij ∈ Rn×n
(i , j ∈ Ui

k
) such that

(9)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−G − GT GÃ −FT
+ GB̃ 0 0 ⋯ 0

∗ 𝜃1 ÃTFT L̃T ÃT
�
Pki

1
− Pi

�T

⋯ ÃT
�
Pki

m
− Pi

�T

∗ ∗ B̃TFT
+ FB̃ − 𝛾

2I 0 0 ⋯ 0

∗ ∗ ∗ −I 0 ⋯ 0

∗ ∗ ∗ ∗ −TiKi
1

⋯ 0

∗ ∗ ∗ ∗ ∗ ⋱ ⋮

∗ ∗ ∗ ∗ ∗ ⋯ −TiKi
m

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0,

(10)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−G − GT GÃ −FT
+ GB̃ 0 0 ⋯ 0

∗ 𝜃2 ÃTFT L̃T ÃT
�
Pki

1
− Pl

�T

⋯ ÃT
�
Pki

m
− Pl

�T

∗ ∗ B̃TFT
+ FB̃ − 𝛾

2I 0 0 ⋯ 0

∗ ∗ ∗ −I 0 ⋯ 0

∗ ∗ ∗ ∗ −ViKi
1
l ⋯ 0

∗ ∗ ∗ ∗ ∗ ⋱ ⋮

∗ ∗ ∗ ∗ ∗ ⋯ −ViKi
m
l

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0,
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where

Proof See “Appendix B”.                                                                                          □

Remark 2 In Theorem 1, there is a one-to-one corresponding relationship between 
the Assumptions 1, 2, 3 and the Cases I, II, III. In addition, in the system (1), rk is a 

(11)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−G − GT GÃ −FT
+ GB̃ 0 0 ⋯ 0

∗ 𝜃3 ÃTFT L̃T ÃT
�
P1 − Pi

�T
⋯ ÃT

�
Pi−1 − Pi

�T
∗ ∗ B̃TFT

+ FB̃ − 𝛾
2I 0 0 ⋯ 0

∗ ∗ ∗ −I 0 ⋯ 0

∗ ∗ ∗ ∗ −Ri1 ⋯ 0

∗ ∗ ∗ ∗ ∗ ⋱ 0

∗ ∗ ∗ ∗ ∗ ⋯ −Ri(i−1)

∗ ∗ ∗ ∗ ∗ ⋯ ∗

∗ ∗ ∗ ∗ ∗ ⋯ ∗

∗ ∗ ∗ ∗ ∗ ⋯ ∗

0 ⋯ 0

ÃT
�
Pi+1 − Pi

�T
⋯ ÃT

�
Ps − Pi

�T
0 ⋯ 0

0 ⋯ 0

0 ⋯ 0

0 ⋯ 0

0 ⋯ 0

−Ri(i+1) ⋯ 0

∗ ⋱ ⋮

∗ ⋯ −Ris

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0,

𝜃1 = −ẼTPiẼ + ÃT
∑
j∈Ui

k

�̃�ij

(
Pj − Pi

)
Ã + ÃT

∑
j∈Ui

k

𝛿
2
ij

4
TijÃ + ÃTPiÃ,

𝜃2 = −ẼTPiẼ + ÃT
∑
j∈Ui

k

�̂�ij

(
Pj − Pl

)
Ã + ÃT

∑
j∈Ui

k

𝛿
2
ij

4
VijlÃ + ÃTPlÃ,

𝜃3 = −ẼTPiẼ + ÃT

s∑
j=1,j≠i

�̂�ij

(
Pj − Pi

)
Ã + ÃT

s∑
j=1,j≠i

𝛿
2
ij

4
RijÃ + ÃTPiÃ.
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discrete-time Markovian process taking value in a finite set S = {1,2,…,s} , then sys-
tem (1) has s modes, and each mode must correspond to Assumption 1 or Assump-
tion 2 or Assumption 3, that is to say, each mode of system (1) corresponds to Case I 
or Case II or Case III. So does Theorem 2.

Theorem 1 gives sufficient conditions for solving the H
∞

 stochastic admissibil-
ity of the filtering error system (5). It should be noted that the formulas (9), (10) 
and (11) in Theorem  1 are nonlinear matrix inequalities including the cross-term 
between determined matrices G , F and filter parameters Afi , Bfi , Lfi . By using some 
appropriate matrix transformations, the corresponding sufficient conditions based on 
LMIs are obtained in the following Theorem 2.

Theorem  2 Given scalars �ij(i , j ∈ S) , �k
(
k ∈ Ui

k

)
 , the filtering error system (5) 

with GUTRs is stochastically admissible while satisfying a prescribed performance 
H

∞
 index � , if there exist approximate dimension matrices G11 , G12 , G22 , F11 , F12 , afi , 

bfi , lfi and symmetric matrix Pi > 0 ( i ∈ Ui
k
 ), such that

Case I If i ∉ Ui
k
 , Ui

k
=

{
ki
1
,ki
2
,…,ki

m

}
 , there exist a set of positive definite matrices 

Tij ∈ Rn×n
(i ∉ Ui

k
 , j ∈ Ui

k
) such that

where

(12)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝛺11 𝛺12 𝛺13 0 0 0 0 ⋯ 0

∗ 𝛺22 𝛺23 𝛺24 𝛺25 𝛺26 M21 ⋯ M2m

∗ ∗ 𝛺33 0 0 0 0 ⋯ 0

∗ ∗ ∗ −I 0 0 0 ⋯ 0

∗ ∗ ∗ ∗ 𝛺55 0 0 ⋯ 0

∗ ∗ ∗ ∗ ∗ 𝛺66 0 ⋯ 0

∗ ∗ ∗ ∗ ∗ ∗ −Tiki
1
⋯ 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ⋱ ⋮

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −Tiki
m

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0,
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Case II If i ∈ Ui
k
 , Ui

uk
≠ ∅ and Ui

k
=

{
ki
1
 , ki

2
,…,ki

m

}
 , there exist a set of positive defi-

nite matrices Vijl ∈ Rn×n
(i , j ∈ Ui

k
 , l ∈ Ui

uk
) such that

where �11 , �12 , �13 , �23 , �24 , �25 , �33 and M2k

(
k ∈ Ui

k

)
 are the same as that in 

Case I and

𝛺11 =

�
−G11 − GT

11
−G22 − GT

21

∗ −G22 − GT
22

�
, 𝛺12 =

�
G11Ai + bfiCi afi
G21Ai + bfiCi afi

�
,

𝛺13 =

�
−FT

11
+ G11Bi + bfiDi −FT

21

−GT
22
+ G21Bi + bfiDi −G

T
22

�
,

𝛺22 =

⎡
⎢⎢⎣

−ETPi1E + AT
i

∑
j∈Ui

k

�̂�ij

�
Pj1 − Pi1

�
Ai 0

0 −Pi2

⎤
⎥⎥⎦
,

𝛺23 =

�
AT
i
FT
11
+ CT

i
bT
fi
AT
i
FT
21
+ CT

i
bT
fi

aT
fi

aT
fi

�
, 𝛺24 =

�
LT
i

−lT
fi

�
,

𝛺25 =

�
AT
i
GT

11
+ CT

i
bT
fi
AT
i
GT

21
+ CT

i
bT
fi

aT
fi

aT
fi

�
, 𝛺26 =

�
AT
i
PT
i1
𝛼iC

T
i
bT
fi

0 𝛼ia
T
fi

�
,

M2k =

�
AT
i

�
Pk1 − Pi1

�T �
𝛼k − 𝛼i

�
CT
i
bT
fi

0
�
𝛼k − 𝛼i

�
aT
fi

��
k ∈ Ui

k

�
,

𝛺33 =

�
BT
i
FT
11
+ DT

i
bT
fi
+ F11Bi + bfiDi − 𝛾

2I BT
i
FT
21
+ DT

i
bT
fi

∗ −𝛾
2I

�
,

𝛺55 =

⎡⎢⎢⎢⎢⎣

∑
j∈Ui

k

𝛿
2
ij

4
Tij1 − G11 − GT

11

∑
j∈Ui

k

𝛿
2
ij

4
Tij2 − G22 − GT

21

∗

∑
j∈Ui

k

𝛿
2
ij

4
Tij3 − G22 − GT

22

⎤⎥⎥⎥⎥⎦
,

𝛺66 =

�
−Pi1 0

0 −Pi2

�
, Tij =

�
Tij1 Tij2
∗ Tij3

�
.

(13)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝛺11 𝛺12 𝛺13 0 0 0 0 ⋯ 0

∗ 𝛺
�

22
𝛺23 𝛺24 𝛺25 𝛺

�

26
M21 ⋯ M2m

∗ ∗ 𝛺33 0 0 0 0 ⋯ 0

∗ ∗ ∗ −I 0 0 0 ⋯ 0

∗ ∗ ∗ ∗ 𝛤55 0 0 ⋯ 0

∗ ∗ ∗ ∗ ∗ 𝛤66 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ −Viki
1
l ⋯ 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ⋱ ⋮

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −Viki
m
l

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0,
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Case III If i ∈ Ui
k
 , Ui

uk
= � , there exist a set of positive definite matrices 

Rij ∈ Rn×n
(i , j ∈ Ui

k
) such that

where �11 , �12 , �13 , �23 , �24 , �25 , �26 , �33 , M2k(k ∈ S , k ≠ i) and �66 are the 
same as that in Case I and

Moreover, the parameters of the filter are given as

Proof See “Appendix C”.                                                                                           □

𝛺
�

22
=

⎡
⎢⎢⎣

−ETPl1E + AT
i

∑
j∈Ui

k

�̂�ij

�
Pj1 − Pl1

�
Ai 0

0 −Pl2

⎤
⎥⎥⎦
, Vijl =

�
Vijl1 Vijl2

∗ Vijl3

�
,

𝛤55 =

⎡⎢⎢⎢⎢⎣

∑
j∈Ui

k

𝛿
2
ij

4
Vijl1 − G11 − GT

11

∑
j∈Ui

k

𝛿
2
ij

4
Vijl2 − G22 − GT

21

∗

∑
j∈Ui

k

𝛿
2
ij

4
Vijl3 − G22 − GT

22

⎤⎥⎥⎥⎥⎦
, 𝛤66 =

�
−Pl1 0

0 −Pl2

�
,

𝛺
�

26
=

�
AT
i
PT
l1
𝛼lC

T
i
bT
fi

0 𝛼la
T
fi

�
.

(14)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝛺11 𝛺12 𝛺13 0 0 0 0 … 0 0 … 0

∗ 𝛺
��

22
𝛺23 𝛺24 𝛺25 𝛺26 M21 … M2(i−1) M2(i+1) … M2s

∗ ∗ 𝛺33 0 0 0 0 … 0 0 … 0

∗ ∗ ∗ −I 0 0 0 … 0 0 … 0

∗ ∗ ∗ ∗ I55 0 0 … 0 0 … 0

∗ ∗ ∗ ∗ ∗ 𝛺66 0 … 0 0 … 0

∗ ∗ ∗ ∗ ∗ ∗ −Ri1 … 0 0 … 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ⋱ ⋮ ⋮ … ⋮

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −Ri(i−1) 0 … 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −Ri(i+1) … 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ⋱ ⋮

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ … −Ris

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0,

𝛺
��

22
=

⎡⎢⎢⎣
−ETPi1E + AT

i

s∑
j=1,j≠i

�̂�ij

�
Pj1 − Pi1

�
Ai 0

0 −Pi2

⎤⎥⎥⎦
, Rij =

�
Rij1 Rij2

∗ Rij3

�
,

I55 =

⎡⎢⎢⎢⎢⎣

s∑
j=1,j≠i

𝛿
2
ij

4
Rij1 − G11 − GT

11

s∑
j=1,j≠i

𝛿
2
ij

4
Rij2 − G22 − GT

21

∗

s∑
j=1,j≠i

𝛿
2
ij

4
Rij3 − G22 − GT

22

⎤⎥⎥⎥⎥⎦
.

(15)Afi = G−1
22
afi, Bfi = G−1

22
bfi, Lfi = lfi.
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Remark 3 In Theorem 2, �22 in Case I, �′

22
 in Case II and �′′

22
 in Case III contain 

estimate values �̂�ij , which are known for ∀j ∈ Ui
k
 , so the inequalities (12), (13) and 

(14) are LMIs since parameters in each inequality have no nonlinear cross-term.

4  Numerical example

In this section, a numerical example is demonstrated to illustrate the effectiveness of 
the proposed method. Consider the discrete-time singular Markovian jump system (1) 
with three modes and of the following transition probability matrix:

where Δ12 ∈ [−0.15, 0.15] , Δ22 ∈ [−0.05, 0.05] , Δ31 ∈ [−0.09, 0.09] , 
Δ32 ∈ [−0.11, 0.11] , Δ33 ∈ [−0.06, 0.06].

The system parameters are given as follows:

for mode 1, rk = i = 1 , Ui
k
= {2} , and i ∈ Ui

uk
= {1, 3} , then

for mode 2, rk = i = 2 , i ∈ Ui
k
= {2} , and Ui

uk
= {1, 3} , then

for mode 3, rk = i = 3 , i ∈ Ui
k
= {1, 2 , 3} , and Ui

uk
 = ∅ , then

Set �1 = 680 , �2 = 10 , �3 = 900 , and the prescribed H
∞

 performance � = 0.8, by 
solving LMIs (12), (13) and (14) simultaneously, the filter parameters can be obtained 
as follows:

⎡
⎢⎢⎣

? 0.4 + Δ12 ?

? 0.4 + Δ22 ?

0.4 + Δ31 0.25 + Δ32 0.35 + Δ33

⎤
⎥⎥⎦
,

E =

[
I 0

0 0

]
,

A1 =

[
−0.5 0.1

−0.1 0.5

]
, B1 =

[
0.5

0.5

]
, C1 =

[
−0.9 1

]
, D1 = 0.2, L1 =

[
0.3 0.5

]
.

A2 =

[
−0.5 0

0.5 −0.7

]
, B2 =

[
−0.5

0.5

]
, C2 =

[
0.3 −0.2

]
, D2 = −0.1, L2 =

[
0.2 −0.1

]
.

A3 =

[
−0.4 1

0 0.6

]
, B3 =

[
−1

0.4

]
, C3 =

[
−0.4 0.5

]
, D3 = 0.3, L3 =

[
0.3 −0.2

]
.

Af1 =

[
0.5513 0.1058

0.1120 0.3017

]
, Bf1 =

[
1.2555 2.1446

−3.2567 −5.5859

]
, Cf1 =

[
−0.2903 −0.4646

]
.

Af2 =

[
0.8196 0.1911

0.1934 0.3529

]
, Bf2 =

[
−0.7295 −1.2464

7.5637 12.8708

]
, Cf2 =

[
0.0101 0.0191

]
.

Af3 =

[
0.4543 0.0900

0.0976 0.2464

]
, Bf3 =

[
0.4544 0.7711

−2.9314 −5.0439

]
, Cf3 =

[
0.0062 0.0071

]
.
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Suppose the external disturbance �(k) = 10 sin (k)e−0.2k and a set of initial condi-
tion x1(0) = 1 , x2(0) = 0.0571 , z(0) = 0.32855 . Figure 1 shows the Markovian jump 
system switches between jumping mode 1 and jumping mode 3 and it follows from 
Fig. 1 that the initial mode is r0 = 1. Figure 2 shows the curve of resulting filtering error 
z̃(k) . It can be seen from Fig. 2 that filtering error z̃(k) approaches to 0 when the number 
of jump times is about to 30, so filtering error system (5) is stochastic admissibility 
with a prescribed H

∞
 performance index � according to Theorem 2.

It can be calculated from Fig. 2 that the H
∞

 performance � = 
�

𝜀(
∑100

k=0
z̃(k)T z̃(k))∑100

k=0
𝜔T

(k)𝜔(k)

�1∕2

= 

0.2143, which is less than the given H
∞

 performance 0.8, that is to say, the proposed 
filter design method is effective.

0 10 20 30 40 50 60 70 80 90 100

0

1

2

3

4

Fig. 1  System jumping modes

0 10 20 30 40 50 60 70 80 90 100

-2

-1

0

1

2

Fig. 2  The curve of the resulting filtering error z̃(k)
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5  Conclusion

In this paper, H
∞

 filtering problem for a class of linear discrete-time singular Marko-
vian jump system with GUTRs has been studied. Sufficient conditions in terms of 
LMIs are obtained such that the filtering error system is stochastically admissible while 
satisfying a prescribed H

∞
 performance; meanwhile, the corresponding normal full-

order filter design method is also given. Finally, a numerical example shows validity of 
the proposed approach.

Acknowledgements This work was supported by the National Natural Science Foundation of China (No. 
61673277, 61203143).

Appendix A: Proof of Lemma 4

Firstly, the regularity and causality of filtering error dynamics (5) are considered. 
Since the matrix Ẽ is singular, there must exist two non-singular matrices M and N 
such that

and write

It can obtain from (8) that

Pre- and post-multiplying (17) by N−T and N−1 , it can get that

Subscribe (16) to (18), then

which implies

Ẽ = M

[
In+r 0

0 0

]
N,

(16)MTPiM =

[
P̂i1 P̂i2

P̂T
i1
P̂i3

]
, M−1ÃN−1

=

[
A1i A2i

A3i A4i

]
.

(17)ÃT

S∑
j=1

𝜋ijPjÃ − ẼTPiẼ < 0.

(18)N−TÃT

S∑
j=1

𝜋ijPjÃN
−1

− N−TẼTPiẼN
−1

< 0.

N
−T

N
T

[
A1i A2i

A3i A4i

]T

M
T

S∑
j=1

𝜋ijPjM

[
A1i A2i

A3i A4i

]
NN

−1
− N

−T
N
T

[
In+r 0

0 0

]T

M
T
PiM

[
In+r 0

0 0

]
NN

−1
< 0,

(19)
[
Q1i Q2i

QT
2i
Q3i

]
< 0,
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where

It follows from (19) that Q3i < 0 , note that P̂j1 > 0(j ∈ S) , which implies that 
A4i(i ∈ S) is non-singular. Thus, by Definition 1, the inequality (8) guarantees that 
the filtering error system (5) is regular and causal.

Now, if the inequality (8) holds, define the following Lyapunov functional

Then, when �(k) = 0 , one can get that

It follows from (17) that

Thus, from Definition 1, the filtering error system (5) is stochastically stable.
Next, consider the following performance

Under zero-initial condition, it is easy to see

where 𝜎(k) =
[
x̃T(k + 1)ẼTx̃T(k)𝜔T

(k)
]T
,

In addition, the system (5) implies

Q3i = AT
2i

S∑
j=1

𝜋ijP̂j1A2i + AT
2i

S∑
j=1

𝜋ijP̂j2A4i + AT
4i

S∑
j=1

𝜋ijP̂
T
j2
A2i + AT

4i

S∑
j=1

𝜋ijP̂j3A4i.

V(k) = x̃T(k)ẼTPiẼx̃(k).

𝜀[ΔV(k)] = 𝜀{V( x̃(k + 1), rk+1)|x̃(k) rk = i
}
− 𝜀{V(x̃(k) , rk = i)

}

= x̃T(k)

{
ÃT

s∑
j=1

𝜋ijPjÃ − ẼTPiẼ

}
x̃(k).

𝜀[ΔV(k)] = x̃T(k)

{
ÃT

s∑
j=1

𝜋ijPjÃ − ẼTPiẼ

}
x̃(k)

< 0.

J ≜

∞∑
k=0

[𝜀(z̃(k)Tz̃(k)) − 𝛾
2
𝜔
T
(k)𝜔(k)].

J ≤

∞∑
k=0

[𝜀(z̃(k)Tz̃(k)) − 𝛾
2
𝜔
T
(k)𝜔(k) + 𝜀ΔV(k)]

=

∞∑
k=0

𝜎
T
(k)𝛩𝜎(k),

𝛩 =

⎡
⎢⎢⎢⎢⎣

0 0 0

0 ÃT
S∑
j=1

𝜋ijPjÃ − ẼTPiẼ + L̃TL̃ 0

0 0 −𝛾
2I

⎤
⎥⎥⎥⎥⎦
.
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Set

Then

Since

From the Schur complement formula, the inequality (8) is equivalent to 
𝛩 + XB + BTX

T
< 0.

By Lemma 1, 𝛩 + XB + BTX
T
< 0 is equivalent to

Hence, J  < 0, that is to say, �
{
zT(k)z(k)

}
≤ �

2
�
T
(k)�(k) , the H

∞
 performance is 

satisfied. To sum up, the condition (8) can guarantee the filtering error system (5) is 
stochastically stable with a prescribed H

∞
 performance � . This completes the proof of 

Lemma 4.

Appendix B: Proof of Theorem 1

Case I If i ∉ Ui
k
 , Ui

k
=

{
ki
1
 , ki

2
,…,ki

m

}
 . In this case, Pj − Pi ≤ 0 ( j ∈ Ui

uk
 , j ≠ i ) and ∑

j∈Ui
uk
,j≠i �ij +

∑
j∈Ui

k

�ij + �ii = 1 , then one has

[
−I Ã B̃

]
𝜎(k) = 0.

B =

�
−I Ã B̃

�
X =

⎡
⎢⎢⎣

G

0

F

⎤
⎥⎥⎦
,

𝛩 + XB + BTX
T
=

⎡
⎢⎢⎢⎣

−G − GT GÃ −FT
+ GB̃

∗ ÃT
s∑

j=1

𝜋ijPjÃ − ẼTPiẼ + L̃TL̃ ÃTFT

∗ ∗ B̃TFT
+ FB̃ − 𝛾

2I

⎤
⎥⎥⎥⎦
.

⎡⎢⎢⎣

0 0 0

0 L̃TL̃ 0

0 0 0

⎤⎥⎥⎦
= −

⎡⎢⎢⎣

0

L̃T

0

⎤⎥⎥⎦
(−I)

�
0 L̃ 0

�
,

𝜎
T
(k)𝛩𝜎(k) < 0.

S�
j=1

𝜋ijPj =

�
j∈Ui

k

𝜋ijPj + 𝜋iiPi +

�
j∈Ui

uk
,j≠i

𝜋ijPj =

�
j∈Ui

k

𝜋ijPj + 𝜋iiPi +

⎛
⎜⎜⎝
1 − 𝜋ii −

�
j∈Ui

k

𝜋ij

⎞
⎟⎟⎠
Pj

≤
�
j∈Ui

k

𝜋ijPj + 𝜋iiPi +

⎛⎜⎜⎝
1 −

�
j∈Ui

k

𝜋ij − 𝜋ii

⎞⎟⎟⎠
Pi =

�
j∈Ui

k

𝜋ij

�
Pj − Pi

�
+ Pi

=

�
j∈Ui

k

(�̂�ij + Δij)

�
Pj − Pi

�
+ Pi =

�
j∈Ui

k

�̂�ij

�
Pj − Pi

�
+

�
j∈Ui

k

Δij

�
Pj − Pi

�
+ Pi.
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It follows from Lemma 2 that

Thus

By Lemma 4, the following is immediate

Using Schur complement formula, the condition (9) is equal to 𝛽1 < 0 . Then, it 
follows from (21) that � ≤ �1 < 0. Thus, according to Lemma 4, the filtering error 
system (5) with GUTRs is stochastically admissible with a prescribed H

∞
 perfor-

mance index � . Thus, the proof of Case I is completed.
Case II If i ∈ Ui

k
 , Ui

uk
≠ ∅ and Ui

k
=

{
ki
1
 , ki

2
,…,ki

m

}
 . There must be an l ∈ Ui

uk
 for 

∀j ∈ Ui
uk

 , Pl ≥ Pj . Let

∑
j∈Ui

k

Δij

(
Pj − Pi

)
=

∑
j∈Ui

k

[
1

2
Δij

(
Pj − Pi

)
+

1

2
Δij

(
Pj − Pi

)]

≤
∑
j∈Ui

k

[
�
2
ij

4
Tij +

(
Pj − Pi

)T
T−1
ij

(
Pj − Pi

)]
.

(20)

S∑
j=1

𝜋ijPj ≤
∑
j∈Ui

k

�̂�ij

(
Pj − Pi

)
+

∑
j∈Ui

k

𝛿
2

ij

4
Tij +

∑
j∈Ui

k

(
Pj − Pi

)T
T−1

ij

(
Pj − Pi

)
+ Pi,

ÃT

S∑
j=1

𝜋ijPjÃ ≤ ÃT
∑
j∈Ui

k

�̂�ij

(
Pj − Pi

)
Ã + ÃT

∑
j∈Ui

k

𝛿
2

ij

4
TijÃ + ÃT

∑
j∈Ui

k

(
Pj − Pi

)T
T−1

ij

(
Pj − Pi

)
Ã + ÃTPiÃ.

(21)

𝜃 ≤ 𝛽1 =

⎡⎢⎢⎢⎢⎢⎢⎣

−G − GT GÃ −FT
+ GB̃ 0

∗ 𝜃1 +
∑
j∈Ui

k

ÃT
�
Pj − Pi

�T
T−1

ij

�
Pj − Pi

�
Ã ÃTFT L̃T

∗ ∗ B̃TFT
+ FB̃ − 𝛾

2I 0

∗ ∗ ∗ −I

⎤⎥⎥⎥⎥⎥⎥⎦

,

𝜃1 = −ẼTPiẼ + ÃT
�
j∈Ui

k

�̂�ij

�
Pj − Pi

�
Ã + ÃT

�
j∈Ui

k

𝛿
2

ij

4
TijÃ + ÃTPiÃ,

𝛽1 =

⎡⎢⎢⎢⎢⎢⎣

−G − GT GÃ −FT
+ GB̃ 0

∗ 𝜃1 ÃTFT L̃T

∗ ∗ B̃TFT
+ FB̃ − 𝛾

2I 0

∗ ∗ ∗ −I

⎤⎥⎥⎥⎥⎥⎦

−

⎡⎢⎢⎢⎢⎢⎢⎣

0 ⋯ 0

ÃT

�
P
ki
1

− Pi

�T

⋯ ÃT

�
P
kim

− Pi

�T

0 ⋯ 0

0 ⋯ 0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−T−1

iki
1

0 ⋯ 0

0 −T−1

iki
2

⋯ 0

⋮ ⋯ ⋱ ⋮

0 0 ⋯ −T−1

ikim

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

0 ⋯ 0

ÃT

�
P
ki
1

− Pi

�T

⋯ ÃT

�
P
kim

− Pi

�T

0 ⋯ 0

0 ⋯ 0

⎤⎥⎥⎥⎥⎥⎥⎦

T

.
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Since 
∑s

j=1
�ij = 1 , then 

∑
j∈Ui

uk

�ij = 1 −
∑

j∈Ui
k

�ij . Similar to Case I, one can 
derive that

Thus

It follows from Lemma 4 that

Similar to Case I, the condition (10) is equal to 𝛽2 < 0 , and � ≤ �2 < 0 holds. Hence, 
the condition (8) in Lemma 4 is satisfied. Thus, the proof of Case II is completed.

Case III If i ∈ Ui
k
 , Ui

uk
= � , similar to Case I and Case II, one can get that

S∑
j=1

�ijPj =

∑
j∈Ui

k

�ijPj +

∑
j∈Ui

uk

�ijPj.

S�
j=1

𝜋ijPj ≤
�
j∈Ui

k

𝜋ijPj +

⎛
⎜⎜⎝
1 −

�
j∈Ui

uk

𝜋ij

⎞
⎟⎟⎠
Pl =

�
j∈Ui

k

𝜋ijPj −

�
j∈Ui

k

𝜋ijPl + Pl

=

�
j∈Ui

k

𝜋ij

�
Pj − Pl

�
+ Pl =

�
j∈Ui

k

(�̂�ij + Δij)

�
Pj − Pl

�
+ Pl

=

�
j∈Ui

k

�̂�ij

�
Pj − Pl

�
+

�
j∈Ui

k

Δij

�
Pj − Pl

�
+ Pl

≤
�
j∈Ui

k

�̂�ij

�
Pj − Pl

�
+

�
j∈Ui

k

𝛿
2
ij

4
Vijl +

�
j∈Ui

k

�
Pj − Pl

�T
V−1
ijl

�
Pj − Pl

�
+ Pl.

(22)

ÃT

S∑
j=1

𝜋ijPjÃ ≤ ÃT
∑
j∈Ui

k

�̂�ij

(
Pj − Pl

)
Ã + ÃT

∑
j∈Ui

k

𝛿
2

ij

4
VijlÃ + ÃT

∑
j∈Ui

k

(
Pj − Pl

)T
V−1

ijl

(
Pj − Pl

)
Ã + ÃTPlÃ.

(23)

𝜃 ≤ 𝛽2 =

⎡
⎢⎢⎢⎢⎢⎣

−G − GT GÃ −FT
+ GB̃ 0

∗ 𝜃2 +
∑
j∈Ui

k

ÃT
�
Pj − Pi

�T
V−1
ijl

�
Pj − Pi

�
Ã ÃTFT L̃T

∗ ∗ B̃TFT
+ FB̃ − 𝛾

2I 0

∗ ∗ ∗ −I

⎤
⎥⎥⎥⎥⎥⎦

,

𝜃2 = −ẼTPiẼ + ÃT
�
j∈Ui

k

�̂�ij

�
Pj − Pl

�
Ã + ÃT

�
j∈Ui

k

𝛿
2
ij

4
VijlÃ + ÃTPlÃ.
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From Lemma 4

Similar to Case I and Case II, the condition (11) is equal to 𝛽3 < 0 , and then 
𝜃 ≤ 𝛽3 < 0 holds. Hence, the condition (8) in Lemma 4 is satisfied. Thus, the proof 
of Case III is completed.

In conclusion, it completes the proof of Theorem 1.

Appendix C: Proof of Theorem 2

Choose the structure of G , F and Pi in (8) as follows:

where Pi2 = �iG22

(
i ∈ Ui

k

)
.

Case I From the formulas (6), (15) and (26), one has

(24)

S∑
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𝜋ijPj =
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𝜋ijPj + 𝜋iiPi =
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𝜋ij(Pj − Pi) + Pi =

S∑
j=1,j≠i

(�̂�ij + Δij)(Pj − Pi) + Pi

≤

S∑
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�̂�ij(Pj − Pi) +

S∑
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𝛿
2

ij

4
Rij +

S∑
j=1,j≠i

(
Pj − Pi

)T
R−1

ij

(
Pj − Pi

)
+ Pi,

ÃT

S∑
j=1

𝜋ijPjÃ ≤ ÃT

S∑
j=1,j≠i

�̂�ij(Pj − Pi)Ã + ÃT
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𝛿
2

ij

4
RijÃ + ÃT

S∑
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(
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)T
R−1

ij

(
Pj − Pi

)
Ã + ÃTPiÃ.

(25)

𝜃 ≤ 𝛽3 =

⎡
⎢⎢⎢⎢⎢⎣

−G − GT GÃ −FT
+ GB̃ 0

∗ 𝜃3 +

s∑
j=1,j≠i

ÃT
�
Pj − Pi

�T
R−1
ij

�
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�
Ã ÃTFT L̃T

∗ ∗ B̃TFT
+ FB̃ − 𝛾

2I 0
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⎤
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,

𝜃3 = −ẼTPiẼ + ÃT

s�
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�̂�ij

�
Pj − Pi

�
Ã + ÃT

s�
j=1,j≠i

𝛿
2
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4
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(26)G =

[
G11 G22

G21 G22

]
, F =

[
F11 G22

F21 G22

]
, Pi =

[
Pi1 0

0 Pi2

]
,
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So, the inequality (12) can be rewritten as

where �� =
∑

j∈Ui
k

�
2
ij

4
Tij − G − GT.

Substituting (6) and (26) into ÃT
(
Pj − Pi

)
Ã yields

Since Pj − Pi ≤ 0 , then (Pj2 − Pi2) ≤ 0 , which implies [
CT
i
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fi
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]
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≤ 0 , so
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ÃTGT
=

�
AT
i
GT

11
+ CT

i
bT
fi
AT
i
GT

21
+ CT

i
bT
fi

aT
fi

aT
fi

�
, Tij =

�
Tij1 Tij2
∗ Tij3

�
,

ÃT
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In addition,

It can be obtained from (28) and (29) that

From Lemma 3, one can get that

It follows from (30), (31) that
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∑

j∈Ui
k

�̂�ij

�
Pj − Pi

�
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Then, according to Schur complement formula, it follows from (32) and (33) 
that
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Using Schur complement formula, it follows from (34) and (35) that

(33)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0

0 ÃT
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ÃTGT

0

0

⎤⎥⎥⎥⎦
G−T

⎛⎜⎜⎝
�
j∈Ui

k

𝛿
2
ij

4
Tij

⎞⎟⎟⎠
G−1

�
0 GÃ 0 0
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0 PiÃ 0 0 0

�
.



3225Circuits, Systems, and Signal Processing (2021) 40:3204–3226 

where 𝜃���� = −ẼTPiẼ + ÃT
∑

j∈Ui
k

�̂�ij

�
Pj − Pi

�
Ã + ÃT

∑
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�
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�
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Inequality (24) can be rewritten as ÃT
∑S

j=1
𝜋ijPjÃ ≤ 𝜃

����
+ ẼTPiẼ + ÃT

∑
j∈Ui
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𝛿
2
ij

4
TijÃ + ÃTPiÃ , 

which implies that (36) can guarantee (8). Thus, the filtering error system (5) with 
GUTRs is stochastically admissible with a prescribed performance H

∞
 index � in 

Case I.
The proofs of Case II and Case III are similar to that of Case I, so they are omit-

ted here.
Thus, it completes the proof of Theorem 2.
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