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Abstract
The aim of the research work is to optimally design a finite impulse response (FIR)
filter. For this purpose, an integrated optimization technique has been proposed. The
proposed optimization technique integrates the Moth flame optimization (MFO) tech-
nique and Powell’s pattern search (PPS) technique in a coherent manner to maintain a
fine balance between exploration and exploitation capabilities of the search technique.
During the search process, the best performing MFO particle is transferred to the PPS
method to avoid any possible stagnation. Initially, the proposed optimization technique
has been tested on five standard test functions and then it is applied to design opti-
mal FIR low-pass, high-pass, band-pass and band-stop filters. The performance of the
proposed optimization technique is compared with other state of art optimization tech-
niques and also with the results reported in the literature. The proposed optimization
technique yields high-quality solution with minimal computational efforts. Further,
student t test is applied to test the statistical performance of optimization technique
and found satisfactory.

Keywords FIR filter design · Integrated optimization technique · Moth flame
optimization · Powell’s pattern search

1 Introduction

In the current scenario, the signal has a significant role in the digital signal processing
(DSP) systems. Most of the signals have inherent noise and also get distorted with
external noise; hence there is a need of digital filters to achieve the desired spectral char-
acteristics. The basic building blocks of DSP systems are digital filters. Depending on
the duration of the impulse response, digital filters are categorized into finite impulse
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response (FIR) filter and infinite impulse response (IIR) filter [15]. The implementa-
tion of FIR filters uses non-recursive structures and having many desired advantages.
The coefficients of linear phase FIR filter are symmetrically located around the central
coefficient, and these filters are simple to design than IIR filters. The researchers have
applied conventional methods to design digital filters such as window method and
frequency sampling method. Various types of window function, i.e. Kaiser, Black-
mann, Hanning, Hamming have been used as per filter specifications. In windowing
method, for an ideal filter, the infinite length impulse response is approximated into a
window of finite length to accomplish the real response [15, 25, 26]. However, due to
this approximation, it does not permit the precise control of cut-off frequencies and
the transition width. For the design of FIR filter, Parks and McCellan [25] have sug-
gested a well-known method named as ‘PM algorithm’, which is based on Chebyshev
approximation method. In PMmethod, the weighting function is applied to determine
the relative values of the amplitude error in the frequency bands and not by the devia-
tions themselves. Hence, the PM method requires many iterative cycles to design the
digital filter [26]. McClellan et al. [17] have reported improved results as compared to
the results obtained by PM algorithm. These classical methods are single-point search
methods and solution struck at a local optimal point for multi-modal optimization
problems. Further, these methods are not suited for optimization problems having
discontinuous and non-differentiable objective function.

In order to overcome these drawbacks of conventional techniques, the researchers
have proposed population-based search techniques. For the design of FIR filters, a
number of population-based search techniques have been implemented in the recent
years. Karaboga and Cetinkaya [10] have applied differential evolution technique for
the design of digital FIR filter. The fuzzy adaptive simulated annealing technique has
been implemented to design FIR filters [24]. Kar et al. [8] have proposed craziness-
based PSO technique and employed for FIR stop-band filter. Saha et al. [28] have
applied cat swarm optimization (CSO) technique to determine the optimal coefficients
of FIR filters. Aggarwal et al. [2] have applied the L1-norm based real-coded genetic
algorithm to search optimal coefficients of high-pass FIR filter. In another attempt, few
evolutionary and swarm-based optimization techniques have also been applied for the
design of digital FIR filters by Aggarwal et al. [1]. For the design of the optimal FIR
filter and multi-band filters, the adaptive cuckoo search algorithm [30] and improved
cuckoo search PSO technique [5] have also been applied, respectively.

The digital filters encounter the problem of time delays. Hence, researchers give
much attention to the stability problem of digital filters. The Markovian jump systems
are an effective tool for the design of filters. Researchers are continuously working
to deal with issues related to Markovian jump system. Recently, Xia et al. [36] have
addressed the problemofmixed passivity andH∞ filter design for a class ofMarkovian
jumpdelay systemswith nonlinear perturbationunder quantization and event-triggered
scheme. In another attempt, the problem of extended dissipativity analysis for digital
filters which simultaneously consists time delay and Markovian jumping parameters
have been addressed [37]. Xia et al. [35] have extended the work to deal with the prob-
lem of filter design for discrete-time neural networks subject to Markovian jumping
parameters and time-varying delay.
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The population-based search techniques have been classified into different cat-
egories, namely evolutionary techniques, physics-based techniques, swarm-based
techniques etc. Recently,Mirjalili [19] has suggested a swarm-based algorithm,Moth-
flame optimization, which is a nature-inspired algorithm based on the navigation
mechanism of Moths in transverse orientation. The MFO technique has been used
to resolve various practical optimization problems, i.e. optical network unit place-
ment in fibre-wireless access network [31], optimal reactive power dispatch [18, 21],
thresholding image segmentation [3], unit commitment problem [27], and circular
antenna array synthesis [4].

TheMFO technique is inspired byMoths navigationmethod in the night. TheMoths
fly by making a certain angle corresponding to the moon. By using this process, they
travel for long distances in a straight line. Nevertheless, these Moths can simply con-
fuse due to artificial lights. The researchers have proposed various modifications in
the MFO technique or integrated with other optimization techniques for better per-
formance. Li et al. [13] have proposed Lévy-flight strategy-based MFO (LMFO) and
tested on constrained and unconstrained benchmark functions successfully. Elsakaan
et al. [6] have proposed enhanced MFO algorithm which combines the merits of the
MFO and Lévy flight search. The enhanced MFO has been applied to solve economic
dispatch problemwith emissions. Recently, aMoth search algorithm [14, 33] has been
proposed, which is inspired by the phototaxis and Lévy flights of theMoths. They have
successfully tested the proposed algorithm on benchmark problems. Wang et al. [34]
have proposed chaos theory to exploit MFO’s potential and to enhance its perfor-
mance. They have applied proposed technique for parameter optimization of kernel
extreme learning machine and feature selection. Khalilpourazari and Khalilpourazary
[12] have proposed an integration of water cycle optimization algorithm and MFO
algorithm to solve the constraint optimization problems. Zhang et al. [39] have pro-
posed an evolutionary algorithmby exploiting the spiral search behaviour ofMoths and
also incorporates search actions of fireflies to explore the search space. The proposed
algorithm has been applied for intelligent facial emotion recognition. Xu et al. [38]
have integrated Gaussian mutation, Cauchymutation, Levymutation and combination
of thesewithMFO technique and tested on benchmark functions. They have concluded
that the integrate technique is able to search better quality results as compared to other
population-based techniques. Despite of the various advantages of global search tech-
niques, the exploitation capability of these algorithms is inferior as compared to local
search techniques [7].However, local search techniques are computationally expensive
and can easily trap into local optimal solution due to single-point search. The Powell’s
pattern search as a potential local search technique has been applied by researchers
and its performance has been found very promising [22, 23].

In this work, an integrated optimization technique has been proposed to maintain
a fine tuning between exploration and exploitation capability of the search algorithm.
In the proposed technique, the search process initiates with MFO technique and a
move to the PPS method by an adaptive mechanism and this process continues till the
termination criteria. In the light of these observations, the main contributions of the
research work are summarized as:



2898 Circuits, Systems, and Signal Processing (2021) 40:2895–2925

• An integrated optimization technique has been aimed to incorporate the positive
traits of global and local search techniques.

• The MFO and PPS techniques have been undertaken as a global and local search
technique, respectively. In the proposed technique, the best performingMFOparticle
transferred to PPS technique in an adaptive manner for further improvement.

• The proposed optimization technique has been implemented to solve standard
benchmark functions and for designing of optimal FIR filters.

The paper is structured into five sections. The design formulation of FIR filter is
given in Sect. 2. In Sect. 3, the proposed optimization technique has been presented. In
Sect. 4, results anddiscussion are discussed andfinally, Sect. 5 outlines the conclusions.

2 FIR Filter Design Formulation

In this section, the mathematical model of various types of FIR filters, i.e. low pass,
high pass, band pass and band stop has been presented. The impulse response of FIR
filter in terms of Z-Transform is given as:

H (z) � h(0) + h(1)z−1 + h(2)z−2 + · · · , h(N )z−N (1)

where h(0), h(1), …, h(n) represents the impulse response of FIR filter; hence Nth
order filter requires a N + 1 number of coefficients.

Equation (1) is represented as:

H (z) �
N∑

n�0

h(n)z−N (2)

The frequency response of the FIR filter is given as:

H (ωk) �
N∑

n�0

h(n)e− jωkn (3)

where H(ωk) represents Fourier transform complex vector; The frequency is sampled
in the range of [0, π] with N sample points and ωk � (2π/N).

The magnitude response of the ideal filter is given as:

Hi (ω) �

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{
1 0 ≤ ω ≤ ωc

0 otherwise
; LP

{
0 0 ≤ ω ≤ ωc

1 otherwise
; HP

{
1 ωcl ≤ ω ≤ ωch
0 otherwise

; BP
{
0 ωcl ≤ ω ≤ ωch
1 otherwise

; BS

(4)
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whereHi(ω) represents the ideal magnitude response; ωcl and ωch represent the lower
and upper cut-off frequency, respectively, of the BP and BS filters.

In this work, Type-I linear phase FIR filter has been designed using optimization
techniques. The FIR filter has a symmetrical impulse response, hence the number of
decision variables to be searched is halved and the remaining half-coefficients are
flipped to determine the complete impulse response. To design the FIR filter with
quality attributes, i.e. higher stop-band attenuation, lower stop-band and pass-band
ripples, control on the transition width, and the suitable objective function, needs to
be chosen. Parks and McClellan [25] have been proposed one of the most extensively
used error function and is given as:

E(ω) � G(ω)
[
Hd

(
e jω

)
− Hi

(
e jω

)]
(5)

where Hi(ejω), Hd(ejω) represent the ideal and desired magnitude response, respec-
tively;G(ω) represents the weighting factor to provide approximate errors in different
frequency ranges.

Saha et al. [28] have discussed various error functions and recommended a novel
error function as an objective function, which is given as:

E(ω) �
∑

abs
[
abs

∣∣(Hd (ω) − 1) − δp
∣∣ +

∑
abs(|Hd (ω) − 0| − δs)

]
(6)

where δp represent the pass-band ripples and δs represent the stop-band ripples.
Equation (6) considers absolute errors for entire frequency range. The first term

represents a frequency range of pass-band and second term incorporates the stop-band
frequency range. Higher stop-band attenuation and lesser stop-band ripples can be
provided by minimizing the total error between the ideal magnitude response and the
desired magnitude response over the entire frequency range. Further, the transition
width may also get reduces.

3 Overview of Optimization Techniques

In thiswork, FIRfilter design problem is solved by applying PSO, chaoticDE, artificial
bee colony, GWO, MFO and proposed optimization technique to prove the merit of
the proposed optimization technique. In this section, a brief discussion of the applied
algorithms is given and the detail descriptionof proposed techniquehas beendiscussed.

3.1 Particle SwarmOptimization

In particle swarm optimization technique, the search procedure is inspired by bird
flocking or fish swarm behaviour [11]. All through the exploration, each particle
updates its position through the guidance of global best position and local best posi-
tion. For a d dimension search space, the velocity vector and position vector of ith
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particle are represented by: Vi � (
v1i , v

2
i , . . . , v

d
i

)
and Pi � (

p1i , p
2
i , . . . , p

d
i

)
. The

particle velocity and position are updated according to Eqs. (7) and (8).

(7)

v
j
i ← wv

j
i +c1× rand()×

(
pl ji − x j

i

)
+c2× rand()×

(
pg j − x j

i

)
(i ∈ N P; j ∈ d)

w � wmax −
(
wmax − wmin

) × it

IT
(8)

x j
i ← x j

i + v
j
i (i ∈ N P; j ∈ d) (9)

where x j
i , v

j
i represent jth dimension position and velocity, respectively, for ith parti-

cle; pl ji is jth dimension local best position for ith particle; pgj is jth dimension global
best position; NP is number of particles; c1, c2 are acceleration coefficients; wmax is
the maximum inertia weight and wmin is the minimum inertia weight; rand() repre-
sents the random number, which is uniformly distributed over the range [0,1]. For PSO
technique, acceleration coefficients c1, c2 have been set to 1.5 and 2.5, respectively.
The values of maximum inertia weight and minimum inertia weight wmax, wmin have
been set to 0.95 and 0.35, respectively.

3.2 Chaotic Differential Evolution

In DE algorithm, the search evolves by mutation, recombination and selection oper-
ators to achieve an optimal solution. The mutation operator adds a vector difference
between two arbitrarily chosen population vectors to the parent population vector and
is given as [29]:

y j
i ← x j

i,r1 + fm
(
x j
i,r2 − x j

i,r3

)
(i ∈ N P; j ∈ d) (10)

where r1, r2, r3 are mutually different integers and these integers should also be
different from the population index i; f m represents the mutation scale factor.

The search approach of DE and chaotic optimization is contradictory in nature.
The DE technique is based on natural evolution and chaotic sequences display an
unpredictable, irregular behaviour. This characteristic of chaotic sequences is useful
to improve the search capability ofDEalgorithm.Hence, in thiswork, chaotic sequence
based on logistic map approach has been applied to modify the mutation scale factor
as:

y j
i ← x j

i,r1 + f1(t)
(
x j
i,r2 − x j

i,r3

)
(i ∈ N P; j ∈ d) (11)

f1(t) ← μ × f1(t − 1) × [1 − f1(t − 1)] (i ∈ N P; j ∈ d) (12)

f1(t) ∈ [0, 1]

where t represents the iteration count, f 1(t) represents the mutation scale factor, which
is based on logistic map, and μ is a control parameter; f1(t) /∈ {0, 0.25.0.50, 0.75, 1}.
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Following the mutation operation, crossover process is employed to produce a trial
vector z ji between targeted vector x j

i and intermediate vector y j
i as:

z ji �
{
x j
i rand() j > CR

y j
i otherwise

(i ∈ NP; j ∈ d) (13)

where CR represents a crossover probability factor from the range [0,1].
After the crossover operation, a greedy selection pattern is applied to select the

better individual as:

xi �
{
zi obj(zi ) < obj(xi )

xi otherwise
(i ∈ NP) (14)

where obj represents the objective function.
The Chaotic DE algorithm parameters, mutation scale factor f m is set to 0.5 and

the control parameter μ is set to 4.
The whole process continues till termination condition is met.

3.3 Artificial Bee Colony

In artificial bee colony algorithm, the bee population is divided into employed bees,
onlooker bees and scout bees. The initial population xij is evaluated based on nectar
amount and employed bees produce new solutions νij and given as [9]:

vi j � xi j + τi j (xi j − xk j ) (i ∈ EB; j ∈ d; k ∈ EB; i �� k) (15)

where τ ij represents a random number between [−1, 1]; k individual is randomly
selected and should be different from i; EB is the number of employed bees.

The new population has been evaluated and to update the solution, the greedy
selection process is used. Based on the objective function evaluation, the probability
has been computed as:

pi � obji
EB∑
l�1

objl

(16)

where obji represents the ith candidate objective function value.
The onlookers produce the new solution νij from the current solution, which is

selected based on probability value. The greedy selection process is implemented
between current onlooker and new onlooker to update the solution. During the search
process, if the nectar value is abandoned for a predetermined number of cycles, then
the food source i is replaced with a new food source by the scouts and is given as:

xi j � xmin
j + rand() ×

(
xmax
j − xmin

j

)
( j ∈ d) (17)
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The whole procedure is repeated till the satisfaction of termination criteria.

3.4 GreyWolf Optimization Technique

The grey wolves come under the category of top predators, who like to live and hunt
in a group. They follow a very unique and strict social ruling hierarchy. The first best
solution is known as alpha (α). Consequently, the second and third best solutions are
considered as beta (β) and delta (δ), respectively, and all the remaining solutions are
presumed as omega (ω). The α, β and δ surely participate in the hunt process and ω

may follow them. The grey wolves follow the few steps as follows [20]:

(i) (i) Tracking and chasing the prey: Grey wolves surround the prey during hunting.
The encircling behaviour by grey wolves is mathematically modelled as:

Z � |B × XP (it) − XGW(it)| (18)

XGW(it + 1) � XP (it) − A × Z (19)

The coefficient vectorsA and B are reckoned as:

A � 2 × z × R1 − z (20)

B � 2 × R2 (21)

z � 2 − 2 × it

ITmax
(it ∈ ITmax) (22)

(ii) Hunting of prey: The alpha as a leader guides the hunting process and it is
followed by beta and delta. The remaining wolves update their positions with
respect to the leader (alpha), beta and delta. The mathematical formulation of
the hunting process and updating the positions of grey wolves are expressed as:

Zα � |B1 × Xα(it) − XGW(it)| (23a)

X1(it) � Xα(it) − A1 × Zα (23b)

Zβ � ∣∣B2 × Xβ(it) − XGW(it)
∣∣ (24a)

X2(it) � Xβ(it) − A2 × Zβ (24b)

Zδ � |B3 × Xδ(it) − XGW(it)| (25a)

X3(it) � Xδ(it) − A3 × Zδ (25b)

whereXα ,Xβ andXδ are the positions of the three best representatives, i.e. alpha,
beta and delta, respectively; X1, X2 and X3 are the prey positions with respect
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to alpha, beta and delta. The position of the grey wolves is updated by using the
average position of alpha, beta and delta and is given as:

XGW(it + 1) � X1(it) + X2(it) + X3(it)

3
(26)

(iii) Conducting attack: Grey wolves finish their hunt when quarry stops. As the
wolves approach the prey, the value of z gradually goes towards zero and prey
is supposed to be attacked by grey wolves.

3.5 Moth Flame Optimization

Mirjalili [19] has proposed aMFO technique, which is based on navigationmechanism
ofMoths. TheMoth insects fly at night by keeping a certain angle with the moon. This
particular mechanism is called the transverse orientation. The transverse orientation is
very useful for the Moths to travel long distances; however, Moths gets distracted by
human-made artificial lights. They seek to hold the fixed angle to the light source, due
to which they may eventually converge to the artificial light source. The mathematical
model of MFO technique restrains all the properties. The mathematical model of an
optimizer has been discussed as under:

The set of Moths represent the candidate solutions. Initially, each Moth position is
randomly generated within inside the limited boundary. For each Moth, the objective
function has been evaluated. The flames represent the best position ofMoths at present
iteration. The Moth explores around the flame and position is updated accordingly.
In MFO algorithm, the logarithmic spiral mechanism has been utilized to update the
status of each Moth corresponding to a flame and is given as:

Mi � Di × ebt × cos(2π t) + Fj (i ∈ NP; j ∈ NP) (27)

whereMi represents the ith Moth; Fj represents the jth flame;Di gives the distance of
ith Moth from jth flame; b defines the shape of a spiral; t is a random number between
[−1, 1]; the value of t � −1 and t � +1 represent the closest and farthest positions to
the flame, respectively, for the logarithmic spiral; NP represent the number of Moths;
The random number r generates in the range of [r,1], where r linearly decreases from
−1 to −2 with iteration [13].

It is evident from Eq. (27), eachMoth is associated with a flame and updates its own
position corresponding to a particular flame. On the basis of objective function value,
the flames are sorted and the firstMoth updates its position using the best flame and last
Moth updates the position using the worst flame in the list. The exploitation capability
of the algorithm can be improved by decreasing the number of flames adaptively with
iterations. The adaptive mechanism is given as:

Nf � round

[(
Nfmax − it

) × (Nfmax − 1)

IT

]
(28)
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where Nf represents the number of flames; Nfmax represents the maximum number of
flames; it signifies the current iteration; IT signifies themaximumnumber of iterations.

3.6 Powell’s Conjugate DirectionMethod

The Powell’s conjugate direction method is proposed to search the optimal solution
[32]. The Powell’s method does not require derivative information of function; hence
it can be applied to non-differentiable and discontinuous function. For d dimension
decision variable, i.e., X � (x1, x2, …, xd), the d search vectors (say {s1, s2, …, sd})
are generated as:

skj �
{
1 j � k

0 else
( j ∈ d; k ∈ d) (29)

Each decision variable is modified along with respective search direction and is
given as:

x j ← x j + ς j s
k
j ( j ∈ d; k ∈ d) (30)

where ς j represents the step length for jth dimension and it is randomly generated
within the bounds.

In order to update each dimension of decision variable, the greedy selection
process has been applied. The updated decision variable is represented as: X

′ �
(x

′
1, x

′
2, ..., x

′
d ). For the succeeding cycle of optimization, the pattern search direction

is computed as:Z j ( j � 1, 2, . . . , d) � (x1−x
′
1, x2−x

′
2, . . . , xd−x

′
d ) and each pattern

search direction replaces its corresponding direct search direction. The up-gradation
process is repeated with pattern search direction. The search process continues till all
the direct search directions discarded.

3.7 Proposed Optimization Technique

In the proposed technique, the best solution obtained by the MFO algorithm (MFO
leader) is exploited by PPS technique in a phased manner. The detail explanation of
proposed technique is given as:

Step 1: Read the input data and algorithm parameters.
Step 2: Randomly initialize the decision variables as moth positions within the spec-

ified limits.
Step 3: Iteration start; it � 1.
Step 4: The objective function (Eq. (6)) is evaluated for each moth position.
Step 5: The moth position is updated (Eq. (27)) with respect to a particular flame.
Step 6: The number of flames decreases as given by Eq. (28).
Step 7: Check the performance of MFO leader for a certain life span (LS) as:

IF{F(it) − F(it + LS) < α × F(it)}
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Table 2 The best solutions of Benchmark functions

Function PSO Chaotic DE ABC GWO MFO Proposed technique

F1 (Ackley) 202 178 223 220 156 100

F2 (Griewank) 489 354 524 218 241 100

F3 (Rastrigin) 424 276 342 316 301 100

F4 (Schwefel 2.22) 455 265 423 153 265 100

F5 (Schwefel 2.26) 205 156 154 128 145 100

Table 3 Filter characteristics

Type of filter LP HP BP BS

Pass-band (normalized) edge frequency 0.45 0.55 – –

Stop-band (normalized) edge frequency 0.55 0.45 – –

Lower stop-band (normalized) edge frequency – – 0.25 0.35

Lower pass-band (normalized) edge frequency – – 0.35 0.25

Upper pass-band (normalized) edge frequency – – 0.65 0.85

Upper stop-band (normalized) edge frequency – – 0.75 0.75

Transition width 0.1 0.1 0.1 0.1

Pass-band ripple 0.1 0.1 0.1 0.1

Stop-band ripple 0.01 0.01 0.01 0.01

where F(it) represents the objective function value at it iteration by MFO
leader; α is set to 0.05.
The position of MFO leader is updated by Powell’s method and life span is
halved. Due to which, the frequency to update the MFO leader by Powell’s
method will be doubled.
ELSE
The life span of MFO leader is doubled and the frequency to update theMFO
leader by Powell’s method will be halved.
ENDIF

Step 8: Check the termination criteria, which is based on maximum number of iter-
ations as:
IF (it > itmax)
MFO leader position represents the global best solution.
ELSE
GO TO Step 4.
STOP



Circuits, Systems, and Signal Processing (2021) 40:2895–2925 2907

Table 4 The stop-band attenuation for FIR LP filter

Algorithm Stop-band attenuation (dB) Transition width
(normalized)

Average
execution time
(sec)Max Min Avg SD

PSO 34.5903 38.2728 36.57234 0.631557 0.1015 15.76

Chaotic DE 21.4278 29.24362 26.73065 1.806425 0.1250 15.32

ABC 18.4999 21.67092 20.4954 0.779655 0.0937 17.44

GWO 34.0667 40.72424 39.5065 1.122392 0.0937 15.33

MFO 34.4719 37.4579 36.34982 0.731962 0.1015 14.29

DE [5] – – – – >0.16 –

DE [5] – – – – >0.06 –

DE-PSO [16] <27 – – – – –

CSO [28] 33.99 – – – – –

Proposed 35.139 37.65457 36.98977 0.546765 0.0859 12.40

4 Results and Discussion

In this work, two experiments have been carried out and the MATLAB 8.1 version on
Intel Core i5-6440HQ processor, 2.3 GHz with 8 GB RAM has been used. In the first
experiment, the proposed technique has been tested on standard benchmark functions.
In the second experiment, LP, HssP, BP and BS FIR filters of the order of 20 have been
optimally designed. For each algorithm, the population size has been taken as 40 with
500 iterations. The algorithm parameters have been set after a number of trials. To
consider the effect of random initialization, thirty trails have been performed for each
applied algorithm and the best, worst and average values of objective function have
been computed. Further, standard deviation is also tabulated. The parametric statistical
t test (two samples, two tails) has been conducted to investigate the significance of the
proposed optimization technique.

4.1 Experiment 1: Benchmark Functions

The five unconstrained benchmark functions have been undertaken which are multi-
modal, continuous/discontinuous in nature. The details regarding these functions are
given in Table 1 [12]. The PSO, Chaotic DE, ABC, GWO, MFO and proposed
technique have been applied to the standard benchmark functions. The normalized
optimum results have been presented in Table 2 and the value in each row 100 rep-
resents the minimum value and the remaining values are scaled with respect to the
minimum value. The results disclose that the proposed optimization technique is capa-
ble of exploring the optimum results for all considered standard benchmark functions.
Further, it has also been observed that for Griewank, Schewefel (2.22) and Schewe-
fel (2.26) benchmark functions, GWO technique performs well as compared to PSO,
Chaotic DE, ABC and MFO techniques. However, for Ackley and Rastrigin bench-
mark functions, the MFO technique is able to attain moderate solutions. Hence, it
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Fig. 1 Magnitude (dB) plot for the FIR LP filter
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Fig. 2 Magnitude (normalized) plot for the FIR LP filter

is summarized that, the enclosure of PPS method with MFO technique improves the
quality of solution.

4.2 Experiment 2: Filter Design

In this research work, the optimum filter coefficients for 20th order LP, HP, BP and
BS FIR filters are searched by applying PSO, Chaotic DE, ABC, GWO, MFO and
proposed optimization technique. The upper and lower limits of filter coefficients are
set to +1 and−1, respectively. The FIR filter parameters have been referred from Saha
et al. [28] and are given in Table 3.
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Table 5 The stop-band ripple (normalized) for the FIR LP filter

Algorithm Stop-band ripple (normalized) t Test for
average of
stop-band
ripple

p value Outcome

Max Min Avg SD

PSO 0.0186 0.0122 0.014877 0.001104 2.675452 0.009683294 Reject

Chaotic DE 0.0848 0.0345 0.047097 0.010652 16.86597 4.93028E–24 Reject

ABC 0.1189 0.0825 0.09483 0.008711 50.42642 1.33132E–49 Reject

GWO 0.0198 0.0092 0.010687 0.001802 9.394889 2.97732E–13 Reject

MFO 0.0189 0.0134 0.015277 0.001327 3.733801 0.000432031 Reject

DE [5] >0.09 – – – NA NA NA

DE [5] >0.07 – – – NA NA NA

DE-PSO [16] 0.270 – – – NA NA NA

CSO [28] 0.02085 – – – NA NA NA

Proposed 0.0175 0.0131 0.01417 0.000936 – – –

Table 6 The pass-band ripple
(normalized) for the FIR LP
filter

Algorithm Pass-band ripple (normalized)

Max Min Avg SD

PSO 0.1174 0.0823 0.100713 0.007893

Chaotic DE 0.1942 0.0923 0.124717 0.03157

ABC 0.1662 0.0997 0.128087 0.02384

GWO 0.1544 0.1004 0.136963 0.01678

MFO 0.1517 0.1021 0.12583 0.019049

DE [5] >0.08 – – –

DE [5] 0.040 – – –

DE-PSO [16] 0.291 – – –

CSO [28] 0.164 – – –

Proposed 0.1163 0.0889 0.105157 0.005355

4.2.1 Low-pass Filter Design

The performance parameters, i.e., maximum stop-band attenuation, maximum stop-
band ripples and pass-band ripples, of the LP filter designed by the proposed
optimization technique have been compared with the results obtained by PSO, Chaotic
DE, ABC, GWO and MFO techniques. Further, these are compared with the reported
results of the literature,which is obtained byDE [10],DE-PSO [16] andCSO [28] tech-
niques. The maximum, minimum and average stop-band attenuation along with the
standard deviation (SD) for various optimization techniques are presented in Table 4.
The maximum value of stop-band attenuation obtained by proposed technique is supe-
rior by 1.56%, 39.01%, 47.35%, 3.05%, 1,89%, 23.16% and 3.26% for PSO, Chaotic
DE, ABC, GWO, MFO, DE-PSO [16] and CSO [28] techniques, respectively. From
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Fig. 3 Normalized pass-band ripple plot for the FIR LP filter
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Fig. 4 Normalized stop-band ripple plot for the FIR LP filter

Table 4, it can also be summarized that the proposed optimization technique outper-
forms its counterparts in terms ofmaximum,minimumand average values of stop-band
attenuation. Further, the standard deviation of the results obtained by proposed opti-
mization technique is minimal, that indicates the proposed optimization technique is
capable to achieve better results, repetitively. Figures 1 and 2 illustrate the magni-
tude response in dB and normalized magnitude response, respectively. The magnitude
response of a filter is restricted by normalized transition width, and after analysing the
results, it has been observed that proposed technique is able to restrict the transition
width within approved limit. However, the transition width reported for PSO, Chaotic
DE, MFO and DE [5] techniques violate the prescribed limits.
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Table 7 Optimized coefficients of the FIR LP filter (×10–02)

h(N) PSO Chaotic DE ABC GWO MFO Proposed technique

h(1) −1.51 0.65 −1.78 1.49 0.76 −1.48

h(2) −3.07 1.5 2.5 1.49 1.57 −3.06

h(3) 0.33 0.45 0.037394 −2.69 −1.06 0.34

h(4) 5.15 −2.09 −2.3 −4.63 −3.93 5.16

h(5) 1.99 −0.74 −1.22 1.00 0.59 2

h(6) −4.49 4.54 4.54 6.29 6.75 −4.5

h(7) 0.05 1.52 1 −0.05 0.55 0.05

h(8) 10.69 −9.32 −8.17 8.81 −10.84 10.72

h(9) 1.75 −1.44 −2.01 2.61 −1.96 1.75

h(10) −31.14 29.17 28.84 33.13 28.87 −31.15

h(11) −50 46.79 46.88 50.26 47.94 −50

Table 8 The stop-band attenuation for HP FIR filter

Algorithm Stop-band attenuation (dB) Transition width
(normalized)

Average execsution
time (sec)

Max Min Avg SD

PSO 31.1377 37.1397 36.40007 1.047207 0.0859 15.89

Chaotic DE 27.0528 38.78604 32.92297 3.564049 0.0937 15.77

ABC 28.9288 37.78821 35.55216 2.271728 0.109 17.43

GWO 32.8795 40.2645 36.62026 3.728704 0.0859 15.39

MFO 29.4230 38.93843 34.94033 3.079899 0.1015 14.82

CSO [28] 33.62 – – – 0.0941 –

Proposed 37.0621 40.72424 39.96202 0.652463 0.0937 11.82

Table 9 The stop-band ripple (normalized) for the FIR HP filter

Algorithm Stop-band ripple (normalized) t Test for
average of
stop-band
ripple

p value Outcome

Max Min Avg SD

PSO 0.0277 0.0139 0.015263 0.002419 11.09122 5.81512E–16 Reject

Chaotic DE 0.0444 0.0115 0.024383 0.009216 8.468985 1.00742E–11 Reject

ABC 0.0358 0.0129 0.01734 0.005677 6.934516 3.7755E–09 Reject

GWO 0.0227 0.0097 0.01628 0.008136 4.156145 0.000107921 Reject

MFO 0.0338 0.0113 0.0191 0.007410 6.629291 1.22595E–08 Reject

CSO [28] 0.02085 – – – NA NA NA

Proposed 0.0140 0.0092 0.010073 0.000847 – – –
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Fig. 5 Magnitude (dB) plot for the FIR HP filter
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Fig. 6 Magnitude (normalized) plot for the FIR HP filter

In order to compare the computational effort, the PSO, Chaotic DE, ABC, GWO
and MFO techniques have been executed thirty times and average execution time of
each algorithm has been computed and presented in Table 4. The average execution
time required by proposed technique is 12.40 s, whileMFO technique needs 14.29 s for
it. Hence, it is summarized that integration of MFO with Powell’s conjugate direction
method improves the exploitation capability of the proposed technique and reduces
the computational burden. The statistical values of other two performance parameters,
i.e. normalized stop-band ripples and pass-band ripples are presented in Tables 5
and 6, respectively. The maximum value of normalized stop-band ripple achieved by
proposed optimization technique is restricted to 0.0175, which is superior as compared
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Table 10 The pass-band ripple
(normalized) for the FIR HP
filter

Algorithm Pass-band ripple (normalized)

Max Min Avg SD

PSO 0.1376 0.1012 0.11147 0.009589

Chaotic DE 0.1227 0.0987 0.10932 0.007499

ABC 0.1199 0.1021 0.107676 0.004923

GWO 0.1242 0.0945 0.11098 0.007829

MFO 0.1350 0.1034 0.113547 0.008655

CSO [28] 0.1320 – – –

Proposed 0.1216 0.1045 0.11473 0.005187
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Fig. 7 Normalized pass-band ripple plot for the FIR HP filter

to results obtained by other state of art optimization techniques. In addition to that,
the other statistical values, i.e. average value, minimum value of stop-band ripple and
SD of proposed technique is better than its counterparts.

The maximum value of normalized pass-band ripple achieved by proposed opti-
mization technique is restricted to 0.1163, which is better than its counterparts except
the results reported for DE technique [5]. However, the results of DE [5] technique is
inferior as compared to results obtained by proposed technique. The statistical results
of pass-band ripple are also compared and it is summarized that performance of pro-
posed technique is better than other compared optimization techniques. Further, the
statistical t test has been performed on average value of stop-band ripples with a 95%
level of confidence.

It has been found from t test results that p value is less than 0.05, which shows that
the proposed technique is significantly better than other optimization techniques. The
normalized pass-band and stop-band ripples are presented inFigs. 3 and 4, respectively,
and it is demonstrated that proposed optimization technique is able to bottle up the
ripples as per the prescribed limits. The optimized LP filter coefficients obtained by
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Fig. 8 Normalized stop-band ripple plot for the FIR HP filter
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Fig. 9 Convergence characteristics of various optimization techniques for HP filter

PSO, Chaotic DE, ABC, GWO,MFO and proposed optimization technique have been
presented in Table 7.

4.2.2 High-Pass Filter Design

The statistical results of stop-band attenuation are given in Table 8 for HP filter. It
has been evident from Table 8 that the maximum stop-band attenuation obtained by
proposed optimization technique is 37.06 dB, which is considerably better than as
compared to PSO, chaotic DE, ABC, GWO, MFO and CSO [28] techniques. The
statistical results also confirm the better search ability of proposed optimization tech-
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Table 11 Optimized coefficients
of the FIR HP filter (×10–02)

h(N) PSO Chaotic
DE

ABC GWO MFO Proposed
tech-
nique

h(1) 2.78 0.78 −1.43 1.87 1.21 1.68

h(2) −3.16 −2.62 1.58 −2.35 −3.43 −2.31

h(3) −1.93 2.22 0.19 −1.41 0.98 −1.15

h(4) 5.04 2.28 −3.31 2.87 4.53 2.85

h(5) −0.14 −0.43 −0.95 2.80 −2.97 2.42

h(6) −4.84 −5.57 6.55 −7.47 −4.36 −7.44

h(7) −1.94 0.63 −0.74 0.022 1.18 0.73

h(8) 11.03 12.11 −10.03 9.69 10.79 9.67

h(9) 0.61 −2.94 2 1.01 −3.41 0.45

h(10) −30 −32.09 29.89 −29.97 −30 −30

h(11) 47.54 52.72 −48.31 46.80 52 47.5

Table 12 The stop-band attenuation for FIR BP filter

Algorithm Stop-band attenuation (dB) Transition width
(normalized)

Average execution
time (sec)

Max Min Avg SD

PSO 35.1701 40.72424 38.91029 1.410959 0.0859 0.0937 15.90

Chaotic DE 31.5647 39.01564 36.92573 1.424687 0.1015 0.117 15.28

ABC 23.4482 32.91783 28.3081 2.656215 0.1015 0.117 17.62

GWO 21.7981 37.0156 29.9971 4.72126 0.1015 0.117 15.77

MFO 32.8419 37.20242 35.21568 1.556039 0.0937 0.117 13.98

CSO [28] 34.470 – – – 0.1006 0.1006 –

Proposed 36.1814 39.828 37.61488 1.007784 0.0859 0.0859 12.55

nique as compared to other state of art optimization techniques. Another performance
parameter ‘transition width’ is well satisfied by all techniques. In order to judge the
computational performance, average computational timehas been compared and found
that, proposed technique needs less time to search better solution as compared to other
compared optimization techniques. The dB plot and normalized magnitude plot for
the HP filter realized by various optimization techniques are shown in Figs. 5 and 6,
respectively.

The statistical results of other two performance parameters, i.e. stop-band and pass-
band ripples are tabulated in Tables 9 and 10, respectively. It has been found from these
results that the proposedoptimization technique is able to purge the stop-band andpass-
band ripples at a better satisfactory level as compared to other compared techniques.
The t test results of Table 9, endorse the superiority of the proposed optimization
technique as compared to other techniques. The normalized pass-band and stop-band
ripples are presented in Figs. 7 and 8, respectively. The convergence characteristics
of PSO, Chaotic DE, ABC, GWO, MFO and proposed technique for HP filter are
depicted in Fig. 9. It is illustrated from convergence characteristics that proposed
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Table 13 The stop-band ripple (normalized) for the FIR BP filter

Algorithm Stop-band ripple (normalized) t Test for
average of
stop-band
ripple

p value Outcome

Max Min Avg SD

PSO 0.0174 0.0092 0.011337 0.001928 4.117378 0.00012293 Reject

Chaotic DE 0.0264 0.0112 0.014247 0.002746 1.911203 0.060924369 Accept

ABC 0.0672 0.0226 0.038423 0.011575 11.85893 3.85692E–17 Reject

GWO 0.0813 0.0141 0.031633 0.017105 5.893522 2.04064E–07 Reject

MFO 0.0228 0.0138 0.017347 0.003187 6.533471 1.77266E–08 Reject

CSO [28] 0.01891 – – – NA NA NA

Proposed 0.0155 0.0102 0.013160 0.001471 – – –

Table 14 The pass-band ripple
(normalized) for the FIR BP
filter

Algorithm Pass-band ripple (normalized)

Max Min Avg SD

PSO 0.1999 0.1224 0.15727 0.0249

Chaotic DE 0.1501 0.1123 0.13144 0.00869

ABC 0.1171 0.0226 0.038423 0.011575

GWO 0.2143 0.1021 0.14631 0.03219

MFO 0.1838 0.1427 0.1648 0.0119

CSO [28] 0.163 – – –

Proposed 0.1484 0.1256 0.13532 0.00598

Table 15 Optimized coefficients of the FIR BP filter (×10–02)

h(N) PSO Chaotic DE ABC GWO MFO Proposed technssique

h(1) −2.27 1.12 −0.29 −0.13 3.52 1.56

h(2) −1.7 −0.07625 0.21 1.09 −0.08 1.66

h(3) 5.12 −4.19 4.16 3.68 −6.75 −4.93

h(4) 2.68 −0.12 0.83 −2.63 0.12 −2.78

h(5) −2.56 2.38 −4.01 4.98 3.31 2.8

h(6) −1.48 0.17 0.019609 2.11 −0.05 1.51

h(7) −10.39 11.05 −8.92 6.86 10.78 9.61

h(8) −0.2 0.64 −0.88 −0.20 −0.08 0.39

h(9) 27.44 −30.77 31.79 −28.93 −28.78 −27.74

h(10) 0.64 −0.08998 0.52 −0.06 0.06 −0.71

h(11) −35.79 40.22 −42.72 40.61 37.11 36.38
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Fig. 10 Magnitude (dB) plot for the FIR BP filter
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Fig. 11 Magnitude (Normalized) plot for the FIR BP filter

technique needs less iteration as compared to other compared techniques to search the
global best solution. The optimized coefficients of HP filter, obtained by PSO, Chaotic
DE, ABC, GWO, MFO and proposed optimization technique are presented in Table
11.

4.2.3 Band-pass Filter Design

For band-pass filter design, the result of proposed technique is compared with PSO,
chaotic DE, ABC, GWO, MFO and CSO [28] techniques and are presented in Table
12. Themaximum stop-band attenuation obtained by proposed optimization technique
for BP filter is 36.18 dB, which is 2.79%, 12.75%, 35.19% 39.75%, 9.22% and 4.73%
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Fig. 12 Normalized pass-band ripple plot for the FIR BP filter
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Fig. 13 Normalized stop-band ripple plot for the FIR BP filter

better as compared to results obtained by PSO, Chaotic DE, ABC, GWO, MFO and
CSO [28] techniques, respectively. It has been observed from Table 12 that proposed
optimization technique is able to maintain the transition widths within the restricted
limits, while other optimization techniques violates the restricted limits by small mar-
gins. Further, the standard deviation of thirty trials is 1.007, which is minimum that
indicates the proposed optimization technique produces superior results, repetitively.
The proposed optimization technique needs 12.55 s to reach its global best solution,
which is better as compared to MFO and other optimization techniques. Hence, it
can be summarized that integration of MFO with PPS in a logical manner improves



Circuits, Systems, and Signal Processing (2021) 40:2895–2925 2919

the exploitation capability of the search algorithm. The dB and normalized plot for
the BP filter are illustrated in Figs. 10 and 11, respectively. The statistical values of
stop-band and pass-band ripple are presented in Tables 13 and 14, respectively. It has
been observed from these results that proposed technique is able to achieve superior
results in terms of maximum, minimum, average value and SD. The t test has been
performed at the 95% level of confidence on the average value of stop-band ripples
statistically. It has been found that proposed optimization technique is significantly
better than its counterparts. However, for stop-band ripples, the chaotic DE technique
performs at par with proposed technique. Figures 12 and 13 represent the normalized
pass-band and stop-band ripples of BP filter by various optimization techniques. The
optimal coefficients of BP filter are presented in Table 15.

4.2.4 Band-stop Filter Design

For band-stop filter, the results are compared with PSO, Chaotic DE, ABC, GWO,
MFO, CSO [28], PM [8], RGA [8], CLPSO [8] and CRPSO [8] techniques and are
presented in Table 16. Themaximum stop-band attenuation obtained by proposed opti-
mization technique is 35.0251 dB, which is better than other compared techniques.
The statistical results validate the dominance of proposed optimization technique as
compared to other techniques in terms of attenuation. The normalized transition width
and average execution time are also represented in Table 16. The average execution
time taken by PSO, Chaotic DE, ABC, GWO, MFO and proposed optimization tech-
nique on similar operational environment is 15.25 s, 14.98 s, 17.66 s, 15.81 s, 13.98 s,
12.04 s, respectively. From these results, it is evident that proposed optimization tech-
nique needs less computational efforts among all these techniques. Tables 17 and 18
represent the maximum, minimum and average values of pass-band and stop-band
ripples. It has been noticed that the proposed optimization technique is capable to
achieve all the desired attributes of band-pass filter consistently.

Further, the t test also verifies the credibility of the proposed optimization tech-
nique at 95% level of confidence. However, for stop-band ripples, the GWO technique
performs at par with proposed technique statistically. For band-stop filter, Figs. 14, 15,
16 and 17 show the magnitude response, pass-band and stop-band ripples using PSO,
Chaotic DE, ABC, GWO and MFO techniques. The optimal coefficients of band-stop
filter obtained by proposed optimization technique are presented in Table 19.

5 Conclusions

In this work, an optimal FIR filter has been designed using PSO, Chaotic DE, ABC,
GWO, MFO and proposed optimization techniques. The proposed optimization tech-
nique combines the excellent exploration capability ofMFO technique and the superior
exploitation property of the PPS method. During the search process, the adaptive life
span controls the switching ofMFO leader fromMFO technique to PPSmethod,which
helps to explore the search area with adequate computational efforts. The proposed
optimization technique has been tested on five benchmark functions and subsequently,
it is applied for an optimum design of LP, HP, BP and BS FIR filters. The results reveal
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Table 16 The stop-band attenuation for FIR BS filter

Algorithm Stop-band attenuation (dB) Transition width
(normalized)

Average execution
time (sec)

Max Min Avg SD

PSO 25.5562 39.09354 32.57363 3.789917 0.0937 0.1015 15.25

Chaotic DE 23.7110 38.2019 30.2562 3.602255 0.1015 0.117 14.98

ABC 25.0170 38.93843 31.85545 3.627802 0.109 0.0859 17.66

GWO 33.8074 38.2728 36.5077 1.33030 0.1015 0.0859 15.81

MFO 30.8326 38.2019 35.49902 1.912967 0.0937 0.0937 13.98

CSO [28] 32.11 – – – 0.1034 0.1034 –

PM [8] 14.18 – 14.18 0.0126 – – –

RGA [8] 14.92 – 15.61 0.9059 – – –

CLPSO [8] 16.51 – 16.55 0.0236 – – –

CRPSO [8] 17.57 – 18.03 0.5406 – – –

Proposed 35.0251 37.4579 36.62459 0.56547 0.1015 0.0937 12.04

Table 17 The stop-band ripple (normalized) for the FIR BS filter

Algorithm Stop-band ripple (normalized) t Test for
average of
stop-band
ripple

P value Outcome

Max Min Avg SD

PSO 0.0527 0.0111 0.02563 0.010314 5.735665 3.70204E–07 Reject

Chaotic DE 0.0652 0.0123 0.033143 0.012515 8.011743 5.85335E–11 Reject

ABC 0.0561 0.0113 0.02763 0.01069 6.556058 1.62516E–08 Reject

GWO 0.0128 0.0122 0.015127 0.002468 0.715036 0.477455052 Accept

MFO 0.0287 0.0123 0.017213 0.004157 3.11899 0.002825003 Reject

CSO [28] 0.02479 – – – NA NA NA

PM [8] 0.195 – – – NA NA NA

RGA [8] 0.179 – – – NA NA NA

CLPSO [8] 0.149 – – – NA NA NA

CRPSO [8] 0.132 – – – NA NA NA

Proposed 0.0177 0.0134 0.01478 0.000987 – – –

that it has been able to achieve the better solution as compared to results obtained by
PSO, Chaotic DE, ABC, GWO andMFO techniques for benchmark functions. For fil-
ter design problem, the proposed optimization technique is able to achieve maximum
stop-band attenuation, the lowest stop-band and pass-band ripples with adequate tran-
sition width. Further, the obtained results have been compared by results reported for
other state of art optimization techniques, i.e., DE, DE-PSO, CSO. From the reported
results, CSO shows better quality results. Hence, the results of proposed technique
are compared with CSO technique in a comprehensive manner. For LP filter, the
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Table 18 The pass-band ripple
(normalized) for the FIR BS
filter

Algorithm Pass-band ripple (normalized)

Max Min Avg SD

PSO 0.1626 0.1123 0.144693 0.015356

Chaotic DE 0.1444 0.1131 0.126263 0.010778

ABC 0.2036 0.1602 0.187727 0.009799

GWO 0.1211 0.0197 0.11100 0.017921

MFO 0.2309 0.1134 0.185913 0.042199

CSO [28] 0.144 – – –

PM [8] 0.196 – – –

RGA [8] 0.12 – – –

CLPSO [8] 0.07 – – –

CRPSO [8] 0.095 – – –

Proposed 0.1295 0.1121 0.12095 0.00545

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-50

-40

-30

-20

-10

0

10

Frequency [normalized]

M
ag

ni
tu

de
 [d

B
]

PSO
chaotic DE
ABC
MFO
GWO
Proposed Technique

Fig. 14 Magnitude (dB) plot for the FIR BS filter

maximum stop-band attenuation, maximum stop-band ripple, maximum pass-band
ripple and transition width reported for CSO technique are 33.99 dB, 0.01998, 0.164
and 0.0946, respectively, while, the proposed technique is able to achieve better corre-
sponding performance parameters for LP filter, i.e. 35.139, 0.0175, 0.1163 and 0.0857.
The proposed technique is able to improve the maximum stop-band attenuation for
HP, BP, BS filters by 10.23%, 4.96% and 9.07%, respectively, as compared to results
reported for CSO technique. The proposed technique shows its superiority in other
two performance parameters ‘maximum stop-band ripple’ and ‘maximum pass-band
ripple’ as compared to CSO technique results. The maximum stop-band ripple is
improved by 32.85%, 18.03%, 28.60%, and maximum pass-band ripple is improved
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Fig. 15 Magnitude (normalized) plot for the FIR BS filter
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Fig. 16 Normalized pass-band ripple plot for the FIR BS filter

by 7.87%, 8.95% 10.06% for HP, BP and BS filters, respectively. The proposed tech-
niquemaintains another performance parameter ‘transition width’ within the specified
limits. Further, the robustness of the proposed optimization technique is investigated
by applying statistical t test and performance is found satisfactory. Finally, it has been
concluded that the proposed optimization technique is more robust, computationally
efficient and a better global optimizer .
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Fig. 17 Normalized stop-band ripple plot for the FIR BS filter

Table 19 Optimized coefficients
of the FIR BS filter (×10–02)

h(N) PSO Chaotic
DE

ABC GWO MFO Proposed
technique

h(1) 0.75 −2.04 2.81 2.91 2.69 0.23

h(2) 3.67 −0.56 −0.42 −0.65 −0.14 3.99

h(3) −0.18 −4.46 5.07 4.99 5.26 −1.21

h(4) 1.94 2.22 −4.2 −4.12 −4.82 4.09

h(5) −5.5 3.28 −2.51 −2.27 −2.05 −6.83

h(6) −8.04 4.99 −5.61 −5.65 −6.09 −6.12

h(7) 0.69 10.73 −9.54 −9.40 −8.75 −1.46

h(8) −7.69 −13.21 13.12 13.42 13.36 −7.18

h(9) 29.72 1.04 −0.36 −0.27 −0.21 29.24

h(10) 5.61 −43.63 42.11 42.21 42.26 5.69

h(11) 48.99 −9.06 9.74 8.85 8.18 49.74
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