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Abstract
Images recognition and classification require an extraction technique of feature vectors
of these images. These vectors must be invariant to the three geometric transforma-
tions: rotation, translation and scaling. Several authors used the theory of orthogonal
moments to extract the feature vectors of images. Jacobi moments are orthogonal
moments, which have been widely applied in imaging and pattern recognition. How-
ever, the invariance to rotation of Cartesian Jacobi moments is very difficult to obtain.
In this paper, we obtain at first a set of transformed orthogonal Jacobi polynomials,
called “Adapted Jacobi polynomials”. Based on these polynomials, a set of orthogonal
moments is presented, named adapted Jacobi moments (AJMs). These moments are
orthogonal on the rectangle [0, N ]×[0, M], where N × M is the size of the described
image. We also provide a new series of feature vectors of images based on adapted
Jacobi orthogonal invariants moments, which are a linear combination of geomet-
ric moment invariants, where the latest ones are invariant under rotation, translation
and scaling of the described image. Based on k-NN algorithm, we apply a new 2D
image classification system. We introduce a set of experimental tests in pattern recog-
nition. The obtained results express the efficiency of our method. The performance of
these feature vectors is compared with someones extracted from Hu, Legendre and
Tchebichef invariant moments using three different 2D image databases: MPEG7-
CE shape database, Columbia Object Image Library (COIL-20) database and ORL
database. The results of the comparative study show the performance and superiority
of our orthogonal invariant moments.
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1 Introduction

Image classification is a computer vision system that allows an image to take a place
according to its visual content. This system has two main stages: the first step is
the feature extraction in which the descriptor vectors of the images are calculated
and stored in a database. The second step is the process of applying a classification
algorithm, like the artificial neural networks (ANN), C-means (CM), fuzzy C-means
“(FCM)”, k-nearest neighbours method “(k-NN)”, etc.

The extraction of descriptor vectors of the image is an operation that makes it pos-
sible to convert an image into a vector of real or complex values, which serves as the
signature of the processed image. That is to say, for an accurate system of classifica-
tion, the used descriptor vector must be invariant to the three image transformations
(translation, rotation and scale), which means that the descriptor vectors of the image
and the transformed image by translation, rotation or scale remain the same.

In the last several years, moments have been widely used in different applications
of pattern recognition [2, 11, 18, 23], image processing [1, 8, 16] and computer vision
[14, 21, 24, 25]. The feature vectors extracted from the non-orthogonal moments first
introduced by Hu in 1962 [11]. In 1980, Teague has used the orthogonal moments,
which are based on the orthogonal polynomials, in object recognition and image
analysis [18]. Teh and Chin [19, 20] confirmed that the orthogonal moments are used
to represent an image with the minimum of information redundancy.

The extraction of invariantmoments from the orthogonalmoments is a very difficult
task. In this context, many authors have used the technique of expressing the invariant
moments as a linear combination of geometric moment invariants, where the latter are
invariants under translation, scaling and rotation of the image they describe. It is used
byM.K. Hosny [9, 10] to extract the invariants of orthogonal Gegenbauer moment, by
Papakostas et al [16] to derive invariants of the Krawtchouk orthogonal moments,
by Zhu [26] to obtain the invariants of Tchebichef moments (TMI), Krawtchouk
(KMI) moments, Hahn moments (HMI), Tchebichef-Krawtchouk moments (TKMI),
Tchebichef-Hahn moments (THMIs) and Krawtchouk-Hahn moments (KHMI). It is
used also by Hmimid et al [8] to build the invariants of Meixner-Tchebichef moments
(MTMIs), Meixner-Krawtchouk moments (MKMIs) and Meixner-Hahn moments
(MHMIs), etc.

In this paper, we use this technique to construct a new set of invariants of adapted
Jacobi moments (AJMIs). This technique is based on the classic explicit form of poly-
nomials. On the other hand, the Jacobi polynomials, which are defined in Eq. (1), are

linear combinations of
( x−1

2

)i
. This obstructs the extraction of invariants from orthog-

onal moments. For this reason, we introduce in this paper a new series of orthogonal
polynomials based on the Jacobi polynomials. We call them “the orthogonal adapted
Jacobi polynomials (OAJP)”. This set of orthogonal polynomials is used to define a
new type of orthogonalmoments,which are called adapted orthogonal Jacobimoments
(AJMs). This helps to create a set of orthogonal moments (AJMIs) invariant to trans-
lation, rotation and scale. These invariant moments are written in terms of geometric
invariant moments presented by Hu [11]. We also apply a new 2D image classification
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technique using these invariant moments and the k-nearest neighbour algorithm (k-
NN) [12, 17].

The approach followed in this paper is tested using some experimental tests, includ-
ing the invariance of our orthogonal moments under translation, rotation and scale,
the reconstruction of images, the object recognition and the classification of image
databases. The performance of the proposed feature vectors is comparedwith the seven
invariantmoments ofHu [11], Legendre invariantmoments (LMIs) [4, 22], Tchebichef
invariant moments (TMIs) [14] using the three different image databases: theMPEG7-
CE shape [13], the COIL-20 image database [3] and the ORL-faces database [15].

After this short introduction, this essay is going to be structured as follows: we
begin with introducing the adapted Jacobi polynomials in Sects. 2. In Sect. 3, we
will use the mentioned polynomials to define a new set of orthogonal moments called
orthogonal adapted Jacobi moment (AJMs). In Sect. 4, we introduce a computation of
invariants of the adapted Jacobi moments (AJMIs). In Sect. 5, we present some tests in
the reconstruction of the images, the object recognition and the classification of image
databases. Finally, we end up our essay with conclusions and possible implications.

2 Orthogonal Adapted Jacobi Polynomials

The Jacobi polynomial of the nth order is defined as follows [6]:

⎧
⎨

⎩
Pα,β
n (x) � (α+n+1)

n!(α+β+n+1)

n∑

i�0

(
n
i

)
(α+β+n+i+1)

(α+i+1)

( x−1
2

)i

x ∈ [−1, 1]
(1)

where �(z) is the Gamma function and α, β ∈ (−1,+∞).
The set of Jacobi polynomials [5–7] satisfies the orthogonality condition:

1∫
−1

Pα,β
n (x)Pα,β

m (x)wα,β(x)dx � ρ(n, α, β)δnm (2)

where δnm is the Kronecker delta and wα,β is weight function defined by

wα,β(x) � (1 − x)α(1 + x)β (3)

And

ρ(n, α, β) � 2n+β+1

2n + α + β + 1

(n + α + 1)

(n + α + β + 1)n!
(4)

Figures 1, 2 present the graphs of the first six Jacobi polynomials withα � 3, β � 3
and the first polynomials with α � 1, β � 3.

For N ≥ 2, the adapted Jacobi polynomial Aα,β,N
n (t) of size N is obtained
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Fig. 1 The graphs of the first six Jacobi polynomials with α � 3, β � 3

Fig. 2 The graphs of the first six Jacobi polynomials with α � 1, β � 2

directly from the Jacobi polynomial Pα,β
n (x) by letting

Aα,β,N
n (t) � Pα,β

n

(
N − 2t

N

)
, 0 ≤ t ≤ N (5)

According to Eq. (1), the adapted Jacobi polynomial Aα,β,N
n (t) can be written as:

Aα,β,N
n (t) � Pα,β

n

(
N − 2t

N

)
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� �(α + n + 1)

n!�(α + β + n + 1)

n∑

i�0

(
n
i

)
�(α + β + n + i + 1)

�(α + i + 1)

(−t

N

)i

By letting

B(α, β, N , n, i) � �(α + n + 1)

n!�(α + β + n + 1)

(
n
i

)
�(α + β + n + i + 1)

�(α + i + 1)

(−1

N

)i

(6)

The polynomial Aα,β,N
n (t) can be written as

Aα,β,N
n (t) �

n∑

i�0

B(α, β, N , n, i)t i , for 0 ≤ t ≤ N (7)

Theorem 1 The adapted Jacobi polynomials are orthogonal over on the interval
[0, N ]with the weighting function.

vα,β,N (t) � tα(N − t)β (8)

and

N∫

0

Aα,β,N
n (t)Aα,β,N

m (t)vα,β,N (t)dt � C( n, N , α, β)δnm (9)

where C(n, N , α, β)is the constant normalization defined as :

C(n, N , α, β) �
(
N

2

)α+β+1

ρ(n, α, β)

Proof of Theorem 1. Generally, we say that a set of polynomials {Pi , i � 0, 1, . . .} is
orthogonal with the weighting function v(t) if

b∫

a

Pn(t)Pm(t)v(t)dt � αnδnm (10)

where αn is a real number and δnm is the Kronecker delta defined by:

δnm �
{
1 if n � m
0 if n �� m

(11)



2860 Circuits, Systems, and Signal Processing (2021) 40:2855–2882

We return to the proof of theorem. By substituting Aα,β,N
n (t) � Pα,β

n( N−2t
N

)
, vα,β,N (t) � tα(N − t)β and x � N−2t

N in Eq. (2), we get

(12)

N∫

0

Aα,β,N
n (t) Aα,β,N

m (t) vα,β,N (t) dt

�
N∫

0

Pα,β
n

(
N − 2t

N

)
Pα,β
m

(
N − 2t

N

)
tα (N − t)β dt

�
(
N

2

)α+β+1 1∫

−1

Pα,β
n (x) Pα,β

m (x) (1 − x)α (1 + x)β dx

Equations (12) and (2) give

N∫
0
Aα,β,N
n (t)Aα,β,N

m (t)vα,β,N (t)dt �
(
N

2

)α+β+1

ρ(n, α, β)δnm

� C(n, N , α, β)δnm

3 Orthogonal Adapted Jacobi Moments

According to the theoretical frameworkmentioned in the previous sections, the adapted
Jacobi polynomials Aα,β,M

m (x)Aα,β,N
N (y) and the grey-level images of size M × N

are defined on the same rectangle [0, M] × [0, N ]. With this advantage, we define in
Eq. (13) a new set of orthogonal moments, which they allow us to build a new series
of image descriptor vectors presented in Eq. (15).

The adapted Jacobi orthogonalmoments (AJMs) of a grey-level image f are defined
as follow:

AJnm � 1√
C(n, N , α, β)C(m, M, α, β)

× N∫
0

M∫
0
Aα,β,N
n (x)Aα,β,M

m (y) f (x, y)vα,β,N (x)vα,β,M (y)dxdy (13)

In this case, f : [0, N ] × [0, M] → R is a function defined over the rectangle
[0, N ] × [0, M]. Therefore Eq. (13) can be approximated by:

AJnm ∼� 1√
C(n, N , α, β)C(m, M, α, β)

×
N−1∑

x�0

M−1∑

y�0

Aα,β,N
n (x)Aα,β,M

m (y) f (x, y)vα,β,N (x)vα,β,M (y) (14)
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where ( f (x, y))x�0,...,M−1;y�0,...,N−1 is a matrix of size M × N .

The relation (14) makes it possible to construct a descriptor vector of an image f
(x, y) of size M×N in the form of a matrix V ( f ) � (

AJi j
)
for a given size (p + 1)×

(q + 1) as follows:

V ( f ) �

⎛

⎜⎜
⎜
⎝

AJ00 AJ01
AJ10 AJ11

. . . . AJ0q

. . . . AJ1q
...

...
AJp0 AJp1

...
...

. . . . AJpq

⎞

⎟⎟
⎟
⎠

� M1 × H × N1 (15)

where

M1 �

⎛

⎜⎜⎜
⎝

AM
0 (0) AM

0 (1)
AM
1 (0) AM

1 (1)
. . . . AM

0 (M − 1)
. . . . AM

1 (M − 1)
...

...
AM
P (0) AM

P (1)

...
...

. . . . AM
P (M − 1)

⎞

⎟⎟⎟
⎠

H �

⎛

⎜⎜⎜
⎝

h00 h01
h10 h11

. . . . h0,N−1

. . . . h1,N−1
...

...
hM−1,0 hM−1,1

...
...

. . . . hM−1,N−1

⎞

⎟⎟⎟
⎠

N1 �

⎛

⎜⎜⎜
⎝

AN
0 (0) AN

1 (0)
AN
0 (1) AN

1 (1)
. . . AM

q (0)
. . . AN

q (1)
...

...
AN
0 (N − 1) AN

1 (N − 1)

...
...

. . . AM
q (N − 1)

⎞

⎟⎟⎟
⎠

where p and q are user-defined integers.
AM
i ( j) � Aα,β,M

i ( j), AN
i ( j) � Aα,β,N

i ( j) and hi j � f ( j, i)vα,β,N ( j)vα,β,M (i).
Based on the orthogonality property of the adapted Jacobi polynomials, the image

function f (x, y) defined on the rectangle [0, N ] × [0, M] can be written as:

f (x, y) �
∞∑

n�0

∞∑

m�0

AJnm Aα,β,N
n (x)Aα,β,M

m (y) (16)

where the orthogonal adapted Jacobi moments,AJnm , are calculated over the rect-
angle [0, N ]× [0, M]. If only adapted Jacobi moments of order smaller than or equal
to Max are given, then the image function f (x, y) can be reconstructed as follows:

f̃ (x, y) ≈
Max∑

n�0

n∑

m�0

AJn−m,m Aα,β,N
n−m (x)Aα,β,M

m (y) (17)
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4 Computation of Adapted Jacobi Invariant Moments

To use the proposed moments (AJMs) in 2D image classification, we need to construct
descriptor vectors invariant under the three types of transformations: translation, rota-
tion and scale of the image. Therefore, to obtain the translation, scale and rotation
invariants of adapted Jacobi orthogonal moments (AJMIs), we follow the same strat-
egy used by Papakostas et al. for Krawtchouk moments [16].

4.1 Geometric Invariant Moments

Given a function image g(x, y) defined on the rectangle [0, N ]×[0, M], the geometric
moment of order (n + m) is defined as [11]:

GMnm(g) �
N−1∑

x�0

M−1∑

y�0

xn ymg(x, y) (18)

The set of geometric moments, which are invariant under rotation, scaling and
translation is defined as [8–10, 16]:

GMInm � GM−γ
00

N−1∑

x�0

M−1∑

y�0

[(x − x)cosθ + (y − y)sinθ ]n×

[(y − y)cosθ − (x − x)sinθ ]mg(x, y)

(19)

With

γ � n + m

2
+ 1 (20)

x � GM10

GM00
; y � GM01

GM00
(21)

And

θ � 1

2
tan−1

(
2μ11

μ20 − μ02

)
(22)

where μnm is the central geometric moment of order (n + m) defined as

μnm(g) �
N−1∑

x�0

M−1∑

y�0

(x − x)n(y − y)mg(x, y) (23)
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By using the binomial formula with Eq. (19), the set of geometric moments, which
are invariant to the three geometric transformation, is defined as follow:

GMInm � GM−γ
00

n∑

i�0

m∑

j�0

(
n
i

)(
m
j

)
(−1) j (sinθ)i+ j (cosθ)n+m−i− jμn−i+ j,m− j+i

(24)

4.2 Adapted Jacobi Invariant Moments

We substitute the formula (7) in (14), we get

AJnm � 1√
C(n, N , α, β)C(m, M, α, β)

n∑

i�0

m∑

j�0

B(α, β, N , n, i)B(α, β, M,m, j)

×
N−1∑

x�0

M−1∑

y�0

xi y j f (x, y)vα,β,N (x)vα,β,M (y) (25)

We consider the function h(x, y) defined as:

h(x, y) � f (x, y)vα,β,N (x)vα,β,M (y) (26)

By using Eqs. (18), (26) and (25), we get

AJnm � 1√
C(n, N , α, β)C(m, M, α, β)

×
n∑

i�0

m∑

j�0

B(α, β, N , n, i)B(α, β, M,m, j)GMi j (h) (27)

The adapted Jacobi invariant moments (AJMIs) can be expanded in terms of GMIs
as follows:

AJInm � 1√
C(n, N , α, β)C(m, M, α, β)

×
n∑

i�0

m∑

j�0

B(α, β, N , n, i)B(α, β, M,m, j)GMIi j (h)

(28)

Based on Eq. (28), we can construct a feature vector invariant to the three geometric
transformations defined as follows:

V � (
AJIij

)
, i � 0, . . . , p; j � 0, . . . , q (29)

To evaluate the performance of this descriptor vector, we will present an experi-
mental study in the next section.
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Fig. 3 The images of Lena and Barbara

5 Experimental Results

In this section, we focus on the experimental analysis taking into account the orthog-
onal moments (AJMs) and their invariants (AJMIs) discussed in previous sections.
Note that, all our numerical experiments are performed in Matlab 2018 on a PC
HP, Intel(R) Core(TM) I5-5200U CPU @ 2.20 GHz, 4 GB of RAM, O.S w.7. For
the images recognition by adapted orthogonal invariant moments (AJMIs), we have
worked on three image databases: the MPEG7-CE shape database [13], the Columbia
Object Image Library (COIL-20) database [3] and the ORL database [15] under five
different conditions: translation, scale, rotation, noise and normal.A comparative study
with well-known orthogonal moments is suggested to evaluate the effectiveness of our
approaches. The techniques which are used to test the performances of the proposed
moments are explained in three parts: at first, we test the invariance under translation,
scale and rotation (TSR) for the proposed orthogonal moments (AJMIs). Second, we
measure the ability of (AJMs) for the reconstruction of grey-scale images. In the third
part, we will present an evaluation on the accuracy of the proposed descriptor vector
for the recognition of object and the classification of image databases. The criterion
“recognition rate” presented in Eq. (37) is used to evaluate the recognition accuracy of
the proposed invariant moment with the existing invariant moments such as the seven
moments of Hu, the Legendre (LMIs) and the Tchebichef (TMIs) invariant moments.

5.1 TSR Invariance of (AJMIs)

The invariance to the three geometric transformations the translation, the scale and the
rotation (TSR) is necessary in pattern recognition and object classification because
most images databases contain in fact transformed objects. So, these objects must be
correctly recognized, whatever their geometric situation. In other words, the derived
invariants of (AJMs) must remain unchanged if the image is transformed. In this part,
we use the grey-level images of Lena and Barbara presented in Fig. 3 of size 128×128.
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These images are scaled by factors {λ(i), i � 0, . . . , 30}, rotated by angles
{θ(j), j � 0, . . . , 36} and translated by vectors {u(k), k � 0, . . . , 40}, such that

θ(i) � 10i, i � 0, . . . , 36 (30)

λ( j) � 0.5 + (0.5) j, j � 0, . . . , 30 (31)

u(k) � (−10 + 2k,−10 + 2k), k � 0, . . . , 40 (32)

To measure the degree of the invariability of (AJMIs), we use the relative error
between the two sets of invariant moments corresponding to the original image f
(x, y) and the transformed image f tr(x, y) as

E
(
f , f tr

) �
∥∥AJI( f ) − AJI

(
f tr

)∥∥

‖AJI( f )‖ (33)

where ‖.‖ is the Euclidean norm, AJI(f) is the adapted Jacobi orthogonal invariant
moments for the original image andAJI

(
f tr

)
is the adapted Jacobi orthogonal invariant

moment for the transformed image. We also present a comparative study of this error
of our moments (AJMIs) with other well-known invariant moments such as Hu [11],
Legendre invariant moment [5, 22], Tchebichef invariant moments [14]. Figures 4 and
5 show the relative error of the proposed adapted Jacobi invariant moments AJMIs,
Hu invariant moments, Legendre (LMIs) and Tchebichef (TMIs) invariant moments
relative to rotation. According to the results showed in these figures, we can say that
the invariant moments (AJMIs) have better performance than the other tested invariant
moments in all angles of rotation. Figures 6 and 7 show the graphs of the relative error
for the scaled images using the proposed adapted Jacobi invariant moments AJMIs,
Hu invariant moments, Legendre and Tchebichef invariant moments.

From the results presented in the previousfigures,we see that the orthogonal adapted
Jacobi invariant moments (AJMIs) are stable for the three image transformations.
Therefore, the proposed orthogonal invariant moments could be important tools in
pattern recognition that require the property of invariance under the translation, the
scale and the rotation the image.

We can also see that the relative error for the proposed moments is lower than the
error for the other invariant moments for all factors of scale. Figures 8 and 9 present
the graphs of the error for the translated images. The results of this figure show that
the error in our orthogonal invariant moments (AJMIs) is lower than the error in the
other invariant moments for all the vectors in translation vector. This error reduction
can play a very important role in pattern recognition field, the idea that we will explore
in details in the next section.

Tables 1, 2, and 3 present some values of the adapted Jacobi orthogonal invariant
moments (AJMIs) for transformed images of “image Lena” (Figs. 10, 11, 12). Accord-
ing to the results shown in these tables, we can see that the moments of the same order
are almost equal; this reveals the invariability of the proposed moments for the three
image transformations, the translation, the scaling and the rotation.
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Fig. 4 The error E
(
f , f r

)
for the rotated images f r using the adapted Jacobi invariant moments (AJMIs),

Hu, Legendre (LMIs) and Tchebichef (TMIs) invariant moments using “image Lena”

Fig. 5 The error E
(
f , f r

)
for the rotated images f r using the adapted Jacobi invariant moments (AJMIs),

Hu, Legendre (LMIs) and Tchebichef (TMIs) invariant moments using “image Barbara”

5.2 Image Reconstruction by Adapted Jacobi Orthogonal Moments

In this section, we will discuss the ability of the adapted Jacobi for the reconstruction
of 2D images using Eq. (17). The ability to reconstruct 2D images is measured by the
mean squared error (MSE) defined by Eq. (34) between the original image f (x, y) of



Circuits, Systems, and Signal Processing (2021) 40:2855–2882 2867

Fig. 6 The error E
(
f , f s

)
for the scaled images f s using the adapted Jacobi invariant moments (AJMIs),

Hu, Legendre (LMIs) and Tchebichef (TMIs) invariant moments using “image Lena”

Fig. 7 The error E
(
f , f s

)
for the scaled images f s using the adapted Jacobi invariant moments (AJMIs),

Hu, Legendre (LMIs) and Tchebichef (TMIs) invariant moments using “image Barbara”
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Fig. 8 The error E
(
f , f t

)
for the translated images f t using the adapted Jacobi invariant moments (AJMIs),

Hu, Legendre ( LMIs) and Tchebichef (TMIs) invariant moments using “image Lena”

Fig. 9 The error E
(
f , f t

)
for the translated images f t using the adapted Jacobi invariant moments (AJMIs),

Hu, Legendre ( LMIs) and Tchebichef (TMIs) invariant moments using “image Barbara”
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Table 1 Some values of the
adapted Jacobi orthogonal
invariant moments AJMIs for
the four translated images of
“image Lena”

image A(1) image A(2) image A(3) image A(4)

AJI00 4081.62 4081.63 4082.62 4085.13

AJI01 0312.51 0312.48 0312.42 0311.39

AJI02 − 7421.28 − 7422.31 − 7421.18 − 7423.14

AJI03 1381.27 1382.68 1381.13 1378.87

AJI10 0651.12 0651.10 0651.12 0653.02

AJI11 − 4602.23 − 4602.05 − 4601.92 − 4599.79

AJI12 0527.19 0527.23 0525.01 0530.05

AJI13 − 2554.25 − 2555.11 − 2554.78 − 2550.72

Table 2 Some values of the
adapted Jacobi orthogonal
invariant moments AJMIs for
the four rotated images of
“image Lena”

image B(1) image B(2) image B(3) image B(4)

AJI00 4081.62 4081.01 4082.17 4084.99

AJI01 0312.51 0312.04 0312.11 0311.41

AJI02 − 7421.28 − 7422.35 − 7420.86 − 7423.15

AJI03 1381.27 1382.15 1381.11 1379.01

AJI10 0651.12 0651.14 0651.03 0652.99

AJI11 − 4602.23 − 4602.10 − 4601.48 − 4599.83

AJI12 0527.19 0527.33 0525.05 0530.14

AJI13 − 2554.25 − 2555.12 − 2554.81 − 2550.73

Table 3 Some values of the
adapted Jacobi orthogonal
invariant moments AJMIs for
the four scaled images of “image
Lena”

image C(1) image C(2) image C(3) image C(4)

AJI00 4081.62 4081.61 4082.84 4085.16

AJI01 0312.51 0312.50 0312.36 0311.42

AJI02 − 7421.28 − 7422.30 − 7421.16 − 7423.15

AJI03 1381.27 1382.70 1381.15 1378.91

AJI10 0651.12 0651.09 0651.18 0653.00

AJI11 − 4602.23 − 4602.04 − 4601.95 − 4599.83

AJI12 0527.19 0527.24 0525.20 0530.01

AJI13 − 2554.25 − 2555.11 − 2554.88 − 2550.73

Fig.10 Original and three translated images of Lena
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Fig.11 Original and three rotated images of Lena

Fig.12 Original and three scaled images of Lena

size N × M and the reconstructed image f̂ (x, y) presented by Eq. (17), where AJi j
is the adapted Jacobi moments (AJMs) computed by Eq. (15).

MSE � 1

NM

N−1∑

x�0

M−1∑

y�0

[
f (x, y) − f̂ (x, y)

]2
(34)

A set of the images, plotted in Figs. 13 and 14, is used as the test images in this
study. In the first experiment, we perform visual tests for the reconstruction of the
two images Girl and Barbara presented in Fig. 13c and d and the two transformed
images Dog and House presented in Fig. 14 using three types of orthogonal moments.
The reconstructions of images based on the proposed orthogonal moments (AJMs),
Legendre orthogonal moment (LMs) and Techebichif orthogonal moments (TMs) of
order 50, 100, 150 are illustrated in Figs. 15, 16, 17, and 18. The analysis of the results
presented in these four figures shows the quality of the reconstruction of AJMs. They
also indicate that the reconstructed image is closer to the original when the order
of the maximum moment reaches a certain value. We observe that the reconstruction
results based on the proposed orthogonal moments (AJMs) are better than all the other
orthogonal moments that we have tested.

In the second experiment, we test the capacity of noisy image reconstruction using
the proposed orthogonal moments (AJMs). In this context, we use two images “Ba-
boon” and “Cameramen” (Fig. 13e and f). We add two types of noise: Gaussian noise
(mean 0, variance: 0.01) and salt-and-pepper noise (3%). The reconstructions of the
images are performed by three types of orthogonal moments: (AJMs), (LMs) and
(TMs) with the maximal order 200. We represent the results of this experiment in
Fig. 19. Other times, the results of this experiment show the priority of our orthogonal
moments (AJMs) in the reconstruction of noisy images.
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Fig. 13 Test images: a Dog, b House, c Girl, d Barbara, e Baboon and f Cameramen

Fig. 14 Transformed images of the image “Dog” and the image “House”

In the third experiment, we perform a reconstruction test of the two images Dog and
House presented in Fig. 13 and another test on their transformed images illustrated in
Fig. 14. Knowing that the maximum order of the orthogonal ranges from 0 to 200, the
MSE’s values of the proposed AJMs are compared with their corresponding values
of the geometric moments (GMs), the Legendre (LMs) and the Tchebichef (TMs)
moments, where these values are plotted and displayed in Figs. 20, 21, 22 and 23.

From these four graphs, we notice that the MSE values decrease and approach
zero as the order of the moment increases. The proposed adapted Jacobi orthogonal
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Max Order  
Method 50                                  100                                  150

Our 
moments 

AJMs

TMs

KMs

Fig. 15 Reconstructed images of image “Barbara” using our orthogonal moments (AJMs), Legendre
moments (LMs) and Tchebichef moments (TMs)

moment is highly accurate and stable for all moment orders compared with the other
tested orthogonal moments.

5.3 Image Classification

For a very precise image classification system, the used descriptor vector must be
invariant to the three image transformations (translation, rotation and scale), which
means that the descriptor vectors of the image and the transformed image by transla-
tion, rotation or scale must be equal. In the proposed classification system, we use the
proposed orthogonal adapted Jacobi invariant moments (AJMIs) shown in Eq. (28) to
extract the descriptor vectors of the images as follow:

V ( f ) � (
AJIi j

)
, i � 0, . . . , 5 and j � 0, . . . , 5 (35)

For the second phase, we use the k-nearest neighbour algorithm (k-NN) based on
the following distance:

d(V1, V2) �
√√√√

p∑

i�1

(v1i − v2i )
2 (36)
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Max Order  
Method 50                                  100                                  150

Our 
moments 

AJMs

TMs

KMs

Fig. 16 Reconstructed images of image “Girl” using our orthogonal moments (AJMs), Legendre moments
(LMs) and Tchebichef moments (TMs)

where V1 � (
v11, v12, . . . , v1p

)
and V2 � (

v21, v22, . . . , v2p
)
are two vectors of

R
p.

The training images are characterizedby the feature vectors extractedusingEq. (35).
They are stored in a multidimensional characteristic space, each with a membership
class label. The training phase of the algorithm consists only of storing the feature
vectors and class labels of the training samples. In the classification phase, k is a user-
defined constant, to classify a new image x, we seek among the training images the k
closest to this image. The image x is assigned to the most frequent class among these
k images.

Generally, the quality of the classification depends on the choice of the value k
and the size of the descriptor vector used. In this work, we tried different values of
k, we found that the classification of MPEG7-CE shape and COIL-20 databases gave
better results for k � 2. On the other hand, the classification of ORL database is more
efficient for k � 4.

Concerning the number of moments OAJIs, we have also found that the best
descriptor vector is the 6 × 6 matrix, which is composed of 36 invariant moments
AJIi j , i, j � 0, . . . , 5, as shown in Eq. (35).

To classify a database containing at least one class composed of a single element,
in this case, we can use the algorithm k-NN with k � 1, i.e. 1-NN.

To test our image classification, which is based on the proposed orthogonal invariant
moments and the k-nearest neighbour algorithm (k-NN) as illustrated in Fig. 24,we use
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Max Order  
Method 50 100 150

Our 
moments 

AJMs

TMs

KMs

Fig. 17 Reconstructed images of “transformed image of Dog” using our orthogonal moments (AJMs),
Legendre moments (LMs) and Tchebichef moments (TMs)

Max Order  
Method 50 100 150

Our 
moments 

AJMs

TMs

KMs

Fig. 18 Reconstructed images of “transformed image of House” using our orthogonal moments (AJMs),
Legendre moments (LMs) and Tchebichef moments (TMs)
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Gaussian noisy images (mean: 0, variance: 0.01)          Salt-and-pepper noisy images (3%)

Reconstructed images using our AJMs

Reconstructed images using LMs

Reconstructed images using TMs

(a) (b)    

Fig. 19 a is reconstructed images using Gaussian noise-contaminated images and b is reconstructed images
using salt-and-pepper noise-contaminated images. The maximum order used is 200 for each algorithm

the three very well-known image databases: the first database is MPEG7-CE Shape.
This database contains images of the objects geometrically deformed. The size of each
image in this database is 256 × 256.

In this experiment, we have considered ten classes of objects and each class contains
20 images. Figure 25 shows some images of MPEG7-CE shape database. The second
is the Columbia Object Image Library (COIL-20) database, which consists of 1440
images of size 128 × 128 distributed as 72 images for each object. Figure 26 shows
some images from this database. The third image database is the ORL database. This
database contains ten different images for the face of each person. The total number of
images is equal to 400. All images of this database have the size 92 × 112. Figure 27
shows a set of images of 40 faces.
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Fig. 20 Reconstruction error MSE of adapted Jacobi moments (AJMs), geometric moments (GMs), Legen-
dre LMs and Tchebichef moments (TMs) for image “House”

Fig. 21 Reconstruction error MSE of adapted Jacobi moments (AJMs), geometric moments (GMs), Legen-
dre moments (LMs) and Tchebichef moments (TMs) for image “Dog”

We tested the performance of the adapted Jacobi orthogonal invariant moments
(AJMIs), and we performed a comparative study with other well-known invariant
moments as Hu, Legendre (LMIs) and Tchebichef (TMIs) invariant moments. This
studywas done on the two previous databases by adding different densities of salt-and-
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Fig. 22 Reconstruction error MSE of adapted Jacobi moments (AJMs), geometric moments (GMs), Legen-
dre moments (LMs) and Tchebichef moments (TMs) for transformed image “House”

Fig. 23 Reconstruction error MSE of adapted Jacobi moments (AJMs), geometric moments (GMs), Legen-
dre moments (LMs) and Tchebichef moments (TMs) for transformed image “Dog”

pepper noise 1%, 2%, 3% and 4%. Figure 24 presents the flow chart of the algorithm
of our image classification system.

In the comparative study, we used a feature vector in the form of a 6× 6 matrix all
the invariant moments tested, as presented in Eq. (35).



2878 Circuits, Systems, and Signal Processing (2021) 40:2855–2882

Fig. 24 Flow chart of the algorithm of our classification system

Fig. 25 Some objects of MPEG7-CE shape database

We use the criteria defined in Eq. (37) to measure the performance of each image
classification system.

η � Number of correcty classified images

Number, of images used in the test
× 100% (37)

This coefficient is called “The recognition precision”. Tables 4, 5, and 6 show the
results of image classification for the three databases. From these results, we can
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Fig. 26 Some images of “COIL-20 database”

Fig. 27 Some images of ORL database
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Table 4 Classification results of
the “MPEG7-CE shape
database” with the
salt-and-pepper noise

Invariant
moments

Noise free 1% 2% 3% 4%

Hu 97.65% 92.49% 86.89% 76.73% 75.14%

LMI 98.71% 93.19% 90.11% 79.12% 75.22%

KMI 99.63% 94.07% 90.77% 81.08% 76.33%

TMI 99.81% 94.43% 91.85% 83.12% 78.42%

Our AJMI 100% 96.84% 94.73% 91.54% 89.11%

Table 5 Classification results of
the “COIL-20 database” with the
salt-and-pepper noise

Invariant
moments

Noise free 1% 2% 3% 4%

Hu 94.54% 89.38% 83.78% 73.62% 70.62%

LMI 95.60% 90.18% 87.00% 76.01% 69.93%

KMI 96.52% 90.85% 87.66% 79.21% 73.22%

TMI 96.70% 91.32% 88.74% 80.01% 75.31%

Our AJMI 99.65% 98.67% 94.62% 91.43% 89.02%

Table 6 Classification results of
the “ORL database” with the
salt-and-pepper noise

Invariant
moments

Noise free 1% 2% 3% 4%

Hu 93.45% 88.36% 81.48% 71.61% 69.89%

LMI 94.63% 91.11% 88.07% 77.12% 70.47%

KMI 95.55% 90.96% 86.61% 80.42% 75.12%

TMI 95.10% 92.23% 89.02% 77.11% 70.22%

Our AJMI 99.71% 98.72% 95.03% 90.98% 89.44%

deduce that our classification system based on orthogonal invariant moments (AJMIs)
and the k-nearest neighbours’ algorithm (k-NN) is better than the systems, which
are based on the other invariant moments though the accuracy of the recognition is
decreasing according to the density of noise. In addition to that, our proposed orthog-
onal invariant moments (AJMIs) are robust in the three geometric transformations
despite the noisy conditions and the accuracy recognition compared with the other
tested descriptors.

6 Conclusion

As it is known, a good image classification system requires the extraction of descriptor
vectors, which are invariant to geometric transformations and resistant to noise. For
this reason, we have proposed in this paper a set of orthogonal invariant moments
(AJMIs) based on orthogonal adapted Jacobi polynomials. These invariant moments
are derived algebraically from the geometric invariant moments, which are invari-
ant under three geometric transformations: translation, rotation and scale. We have
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applied also a new 2D image classification system using these invariant moments
(AJMIs) and the “k-nearest neighbours” algorithm (k-NN). The approach suggested
is examined through the use of some experimental tests, including the invariance of
our orthogonal moments under translation, scale and rotation, the reconstruction of
images, the object recognition and the classification of 2D image databases. The perfor-
mance of the suggested invariant moments is compared with well-known orthogonal
invariant moments such as Hu, Legendre invariant moments (LMIs) and Tchebichef
invariant moments (TMIs) using three different databases: the “MPEG7-CE shape
database”, the “Columbia Object Library (COIL-20) database” and the ORL database.
The experimental tests prove that both our orthogonal invariant moments (AJMIs) and
our suggested image classification system are efficient.
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