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Abstract
In this article, we propose a new source separation method in which the dual-tree com-
plexwavelet transform (DTCWT) and short-timeFourier transform (STFT) algorithms
are used sequentially as dual transforms and sparse nonnegative matrix factorization
(SNMF) is used to factorize the magnitude spectrum. STFT-based source separation
faces issues related to time and frequency resolution because it cannot exactly deter-
mine which frequencies exist at what time. Discrete wavelet transform (DWT)-based
source separation faces a time-variation-related problem (i.e., a small shift in the time-
domain signal causes significant variation in the energy of the wavelet coefficients). To
address these issues, we utilize the DTCWT, which comprises two-level trees with dif-
ferent sets of filters and provides additional information for analysis and approximate
shift invariance; these properties enable the perfect reconstruction of the time-domain
signal. Thus, the time-domain signal is transformed into a set of subband signals in
which low- and high-frequency components are isolated. Next, each subband is passed
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through the STFT and a complex spectrogram is constructed. Then, SNMF is applied
to decompose the magnitude part into a weighted linear combination of the trained
basis vectors for both sources. Finally, the estimated signals can be obtained through
a subband binary ratio mask by applying the inverse STFT (ISTFT) and the inverse
DTCWT (IDTCWT). The proposed method is examined on speech separation tasks
utilizing theGRID audiovisual andTIMIT corpora. The experimental findings indicate
that the proposed approach outperforms the existing methods.

Keywords Speech separation (SS) · Dual-tree complex wavelet transform
(DTCWT) · Sparse nonnegative matrix factorization (SNMF) · Short-time Fourier
transform (STFT)

1 Introduction

Source separation (SS) is a procedure for isolating a set of source signals from an
observed or mixed signal. Single-channel SS (SCSS) has become important in many
real-world applications, such as communication, multimedia, and the cocktail-party
problem. Although devices for SCSS have many obvious possible applications in
hearing aids or as preprocessors in speech recognition systems, existing devices still
show considerable room for improvement in performance. Research on SCSS for
speech signals began a few decades ago [14, 20, 36] and continues to be conducted
[21]. It is also a broadly examined issue in the machine learning community. Many
signal models that consider numerous parameters (e.g., phase, magnitude, amplitude,
frequency, energy, and the spectrogram of the speech signal) have been proposed.

S.T. Roweis suggested factorial hidden Markov models (HMMs), which have been
incredibly successful for a single speaker [28, 29]. Jang and Lee [13] used a maxi-
mum likelihood approach to separate the mixed source signal that is perceived in a
single channel. Pearlmutter and Olsson [24] exploited linear program differentiation
on overcomplete dictionaries for maximally sparse representations of a speech corpus.
Over the last several years, nonnegative matrix factorization (NMF) has become very
popular with researchers for the separation of single-channel source signals. NMF
was first introduced by Paatero and Tapper [3] and was proposed for use in SS by
Lee and Seung [23]. NMF refers to a group of methods for multivariate analysis in
which a matrix is decomposed into two other nonnegative matrices according to its
components and weights.

Sliding windows and various types of mask-related NMF methods [4] have been
used to decompose mixed signal magnitude spectra into weighted combinations of
basis vectors for both sources. NMF-based algorithms are used to iteratively optimize
a cost function [5]. Discriminative learning in NMF [41] is used to optimize all basis
vectors jointly to reconstruct both clean and mixed signals. The magnitude spectro-
gram of a speech signal is primarily a two-dimensional matrix, and speech signals are
typically sparse; thus, sparse NMF (SNMF) is applied to factorize them [9]. SCSS
using SNMF was proposed by Schmidt and Olsson [30]. SNMF can learn a sparse
representation of data [30] to solve the problem of separating multiple speech sources
from a single microphone recording. SNMF enforces sparsity in both the basis matrix
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and the coefficient matrix. For signal detection, however, sparsity is enforced in only
the coefficient matrix [40]. Wang et al. [40] showed that the performance is improved
with a suitable choice of basis vectors. Group sparse NMF with divergence and graph
regularization [25] has been utilized to separate source signals. Variable sparsity reg-
ularization factor-based SNMF [43] has also been used to separate monaural speech
signals.

Dictionary learning (DL)-based algorithms [1, 7, 33, 34, 42] are another effec-
tive class of methods for model-based SCSS. Sequential discriminative DL (SDDL)
was presented in [42], where both the distinctive and similar parts of varying speaker
signals were considered. The authors of [33] constructed a joint dictionary method
with a common subdictionary (CJD) in which a common subdictionary was built
using similar atoms between identity subdictionaries trained using source speech sig-
nals corresponding to each speaker, and these similar were then discarded from the
identity subdictionaries. In [34], the authors proposed a new optimization function
for preparing a joint dictionary with multiple identity subdictionaries and a common
subdictionary.

Recently, the wavelet transform (WT) algorithm has been utilized in many different
fields, for example, speech recognition [8], noise reduction [22, 26], and electrocardio-
graphy [32]. The authors of [37] proposed an improvedmodel for separating themixed
speech signals. In this model, the high-frequency components of the signal are rejected
to reduce the computation time, and the low-frequency components are separated by
using the WT. Specifically, the signal is decomposed by using the discrete wavelet
transform (DWT), and the signal coming from the highest 50% of the frequency band
is considered noise and is replaced with zero. The DWT does not yield a good estimate
of the critical subband decomposition because the high-frequency portion of the signal
is fully rejected; hence, the performance of the speech separation process is degraded.
The authors of [39] offered a speech enhancement (SE) approach that utilizes the
discrete wavelet packet transform (DWPT) and provides adequate information both
for analysis and synthesis of the original signal, with a remarkable reduction in com-
putation time. The authors of [11] presented an SE method based on the stationary
wavelet transform (SWT) and NMF that overcomes the time-variation-related prob-
lem. The authors of [12] offered another SE method with limited redundancy and
time-invariant properties, which outperforms conventional methods at low signal-to-
noise ratios (SNRs).

Short-time Fourier transform (STFT)-based SS faces problems in time and fre-
quency resolution because it cannot precisely determine which frequencies exist at
what time. DWT-based SS [37] faces time-variation-related issues that hamper its
separation performance. The DWPT suffers from the shift-variance problem; i.e.,
small shifts in the input signal can cause large variations in the distribution of energy
among coefficients at different levels, causing signal reproduction errors [39]. The
SWT introduces redundancy-related problems [11]. Our proposed method can solve
all of the above-mentioned issues to a certain extent.

In our work, we propose a dual-transform SS strategy in which the DTCWT is
applied to decompose the time-domain signal and produce a set of subband signals.
Then, the STFT is applied to each subband signal, to convert each subband signal
into the time–frequency domain, and a complex spectrogram is built for each subband
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signal. Finally, SNMF is applied to the magnitude spectrogram to obtain the weighted
basis vectors to be used in the testing phase to separate the speech signals.

The contributions of this paper are briefly listed below:

i. We first use the DTCWT to divide the input signal into small parts in order to
separate the low- and high-frequency components. Then, the STFT is applied
to each subband signal, which tends to be stationary and to provide a better
transformation than other transforms. The sequential use of the DTCWT and
STFT improves the separation capability of the model due to the approximate
shift invariance and perfect reconstruction capabilities of the DTCWT.

ii. SNMF is applied separately to the magnitude spectrogram of each subband signal
to produce theweighted basis vectors that are then used during the testing process.
The feature vectors can be more effectively extracted by applying SNMF to each
subband signal.

iii. Several WT- and STFT-based separation methods are compared, and our method
is found to outperform the previous strategies mentioned in this paper.

The rest of the paper is organized as follows. Section 2 presents a mathematical
description of the single-channel speech separation problem. Section 3 provides a
brief explanation of the WT and SNMF methods. Section 4 presents the existing
SS algorithms. Section 5 presents the details of the proposed algorithm. Section 6
describes the experimental setup and speech database and compares the experimental
results. Section 7 concludes the presented work and is followed by the references. The
nomenclature is provided in Table 1.

2 Problem Formulation

We consider two sources in our SS process, where the first source signal is x(t) �
[x(1); x(2); . . . ; x(T)], and the second source signal is y(t) � [

y(1); y(2); . . . ; y(T)
]
;

here, T and t denote the number of samples and the time instance, respectively. The
mixed signal z(t) is prepared by summing the two source signals. The expression for
the mixed signal is defined in Eq. (1).

z(t) � x(t) + y(t) (1)

Now, the DTCWT is applied to Eq. (1), as is shown in Eq. (2), to obtain the DTCWT
subbands as presented in Eq. (3).

DTCWT {z(t)} � DTCWT {x(t)} + DTCWT {y(t)} (2)

zJb,tl � xJb,tl + yJb,tl (3)

where zJb,tl, x
J
b,tl, and y

J
b,tl represent the mixed, first source, and second source subband

signals, respectively, and J, b, and tl denote the level of theDTCWT, the subband index,
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Table 1 Nomenclature

Symbols Abbreviations

x, X (lowercase and uppercase) Variables

x(lowercase bold) Vector

X(uppercase bold) Matrix

X (uppercase italic) Function

X(uppercase bold italic) Method
⊗ Elementwise multiplication√
. Elementwise square root operation

SE Speech enhancement

SS Source separation
STFT Short-time Fourier transform
ISTFT Inverse short-time Fourier transform
NMF Nonnegative matrix factorization
SNMF Sparse nonnegative matrix factorization
DWT Discrete wavelet transform
IDWT Inverse discrete wavelet transform
DWPT Discrete wavelet packet transform
IDWPT Inverse discrete wavelet packet transform
SWT Stationary wavelet transform
DTCWT Dual-tree complex wavelet transform
IDTCWT Inverse dual-tree complex wavelet transform
CJD Joint dictionary method with a common subdictionary
JDL Joint dictionary learning

SNR Signal-to-noise ratio

KL Kullback–Leibler

FB Filter bank

PM Proposed method
SBRMX Subband binary ratio mask of signal x
SBRMY Subband binary ratio mask of signal y
STFT − SNMF STFT- and SNMF-based SS method [41]
DTCWT − SNMF DTCWT- and SNMF-based SS method followed by

DTCWT − NMF [12]
DWT − STFT − SNMF DWT-, STFT-, and SNMF-based SS method [37]
DWPT − SNMF DWPT- and SNMF-based SS method followed by DWPT − NMF

[39]
SWT − SNMF SWT- and SNMF-based SS method followed by SWT − NMF [22]
DTCWT − STFT − SNMF DTCWT-, STFT-, and SNMF-based SS method [PM]

HASQI Hearing-Aid Speech Quality Index [16]
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Table 1 continued

Symbols Abbreviations

HASPI Hearing-Aid Speech Perception Index [15]

PESQ Perceptual evaluation of speech quality [27]

STOI Short-time objective intelligibility [35]

fwsegSNR Average frequency-weighted segmental SNR [38]

SDR Source distortion ratio [10]

SIR Signal-to-interference ratio [10]

and the tree level, respectively. The STFT of Eq. (3) is defined in Eq. (4) and yields
the complex matrices represented in Eq. (5).

ST FT
{
zJb,tl

}
� ST FT

{
xJb,tl

}
+ ST FT

{
yJb,tl

}
(4)

ZJ
b,tl(τ, f) � XJ

b,tl(τ, f) + YJ
b,tl(τ, f) (5)

where ZJ
b,tl(τ, f), X

J
b,tl(τ, f), and Y

J
b,tl(τ, f) are the STFT coefficients of zJb,tl, x

J
b,t, and

yJb,tl, respectively, and f and τ are the frequency and time bin indexes, respectively.

X̃J
b,tl(τ, f) and ỸJ

b,tl(τ, f) are the unknown complex coefficients for the sources and
must be estimated via SNMF, the subband binary ratio mask of signal x(SBRMX),
and the subband binary ratio mask of signal y (SBRMY) from Eq. (5) using only the
magnitude part. Finally, the estimated first and second source signals are calculated
via the following equations:

x̃Jb,tl � I ST FT
(
X̃J
b,tl(τ, f)

)
(6)

ỹJb,tl � I ST FT
(
ỸJ
b,tl(τ, f)

)
(7)

x̃(t) � I DTCWT
(
x̃Jb,tl

)
(8)

ỹ(t) � I DTCWT
(
ỹJb,tl

)
(9)

where x̃(t) and ỹ(t) are the estimated first and second source signals, respectively, and
ISTFT and IDTCWT denote the inverse STFT and inverse DTCWT, respectively.

3 Review of theWT and SNMF

The WT algorithm generates an assortment of time–frequency representations of a
signal with various resolutions. The WT utilizes a completely versatile adjusted win-
dow that is moved along the signal, and the spectrum is computed for every position.
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Fig. 1 Second-level block diagrams of (a) the DWT and (b) the IDWT

Fig. 2 Second-level block diagrams of (a) the DWPT and (b) the IDWPT

Recently, the DWT has been effectively adopted in many signal processing applica-
tions because of its ability to provide an efficient time–frequency analysis of a signal.
The DWT decomposes the time-domain signal x(n) using a pair of low-pass (h(n))
and high-pass (g(n)) filters, and the signal is then downsampled by a factor of two. The
output of the low-pass filter is known as an approximation coefficient (x11), where the
superscript and subscript of x denote the DWT level and subband index, respectively,
and represent the high-frequency part of the signal. The output of the high-pass filter is
called at the detail coefficient

(
x12

)
and represents the low-frequency part of the signal.

For the next level of decomposition, only x11 is passed through similar low-pass and
high-pass filters and is then downsampled to obtain x21 and x22, and so on. Figure 1
illustrates the filter bank (FB) implementations of the DWT and IDWT.

TheDWPT is a generalized variant of theDWT.At the first level, theDWPTdecom-
poses the time-domain signal x(n) using a pair of low-pass (h(n)) and high-pass (g(n))
filters and performs downsampling by a factor of two. In second-level decomposition,
both the approximation and detail coefficients are subjected to similar low-pass and
high-pass filters and downsampling to obtain the approximation and detail coefficients
at the next level, and so on. Figure 2 illustrates the FB implementations of the DWPT
and IDWPT. Although the DWT andDWPT have practical computational advantages,
they also have some drawbacks, such as shift variance, oscillation, aliasing, and a lack
of directionality.

In the SWT, the downsampling process after filtration at each level is removed,
and consequently, the coefficient length is the same as the length of the original time-
domain signal. In the SWT, the time-domain signal is passed through the high-pass
and low-pass filters at the first level to obtain the corresponding approximation and



Circuits, Systems, and Signal Processing (2021) 40:1868–1891 1875

Fig. 3 Second-level block diagrams of (a) the SWT and (b) the ISWT

Fig. 4 Second-level block diagrams of (a) the DTCWT and (b) the IDTCWT

detail coefficients. Then, at the second level, the low-pass and high-pass filters are
upsampled by adding a zero between each pair of the adjacent filter of components
from the previous level, and only the approximation coefficient is passed through
the newly updated low-pass and high-pass filters; a similar process is repeated at
each subsequent level. Thus, the SWT eliminates shift-invariance issues by disposing
of downsampling operators; however, it introduces redundancy. Figure 3 shows the
second-level block diagrams of the SWT and ISWT.

To mitigate the issues of shift variance and redundancy simultaneously, Kingsbury
[17] presented a computationally advantageous method called the DTCWT, which is
shift-invariant and has limited redundancy. In the first level, it decomposes the time-
domain signal into four subband signals corresponding to two trees, where the first tree
provides the real part of the transform, while the second tree provides the imaginary
part. The upper and lower trees each yield one approximation coefficient (x11,1) and
one detail coefficient (x12,1), where the superscript denotes the DTCWT level, and the
first and second subscripts represent the subband index and tree level, respectively.
Then, each subband signal is downsampled. In the second level of decomposition, only
the approximation coefficients are passed through the filters to produce second-level
subband signals, and so on. Figure 4 illustrates the FB implementation of the DTCWT
and IDTCWT.

NMF is an algorithm for analysis in which a matrix of nonnegative elements is
factorized into two nonnegative matrices according to its bases and weights. In the
factorization process, the matrix Z ∈ R

F×T is decomposed as a linear combination
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of bases W ∈ R
F×R and weights H ∈ R

R×T, where the inner dimension R is much
smaller than the product of F and T of the original matrix Z:

Z ≈ WH (10)

NMF has been a popular method for modeling speech signals, especially in single-
channel speech separation applications. Regardless of the size of the corpus, it will not
be possible to learn a substantial dictionary with more elements than the number of
time–frequency bins [18]. To address this issue, the authors of [31] presented sparsity
penalties on the activations H concerning audio. Additionally, cost functions based
on the Euclidean distance and Kullback–Leibler (KL) divergence were investigated in
[19], and it was shown that the KL cost function works outstandingly well for audio
SS. Therefore, we consider SNMF with the KL cost function in our study. The KL
divergence cost function is minimized as follows:

CKL � min D(Z||WH) + μ||H||1
�

∑

i,j

(Zi,jlog
Zi,j

(WH)i,j
− Zi,j +

(
WH)i,j

)
+ μ

∑

i,j

|Hi,j| (11)

where μ denotes the sparsity parameter. The matrices W and H are updated through
the following iterative principles:

W ← W ⊗
Z

WHHT +W ⊗ (
1v

(∑(
W ⊗ 1mHT

)))

1mHT +W ⊗
(
1v

(∑(
W ⊗

(
Z

WHHT
)))) (12)

H ← H ⊗ WT Z
WH

WT1m + μ
(13)

where 1m denotes a matrix of ones with the same dimensions as of Z, 1v denotes a
column vector of ones with a number of entries equal to the number of columns of W,
and all of the divisions’ operations elementwise division.

4 SS and SE Algorithms Based on NMF or SNMF

The STFT − SNMF-based SS algorithm [41] has a training stage and testing stage.
In the training stage, the STFT is applied to the clean speech signals x(t) and y(t)
to produce complex-valued spectrograms X(τ, f) and Y(τ, f), respectively, where τ is
the time index and f is the frequency index. From these complex spectrograms, only
the magnitude spectra |X(τ, f)| and |Y(τ, f)| are considered and are passed through
the SNMF module to obtain clean speech spectral bases WX and WY. Finally, these
spectral bases are concatenated to form WXY � [WXWY], which is used to prepare
the activation matrix HXY for the testing stage. In the testing stage, the STFT is
applied to the mixed speech signal z(t), to produce a complex-valued mixed speech
spectrogram Z(τ, f). Then, only the magnitude spectrum |Z(τ, f)| and the previously
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formed spectral basis WXY are passed to the SNMF module to update the activation
matrix HXY � [HXHY]. Finally, the primary estimated clean speech signal spectra∣
∣∣X̃(τ, f)

∣
∣∣ and

∣
∣∣Ỹ(τ, f)

∣
∣∣ are obtained using Eqs. (14) and (15).

∣∣∣X̃(τ, f)
∣∣∣ � WXHX (14)

∣∣∣Ỹ(τ, f)
∣∣∣ � WYHY (15)

TheDWT−STFT−SNMF-basedSSalgorithmwaspresented in [37]. In the training
stage, clean speech bases (dictionaries) are estimated from clean speech databases by
applying SNMF after the DWT and STFT. In the testing stage, the DWT is applied
to decompose the mixed speech signal z(t) into a set of coefficients consisting of one
approximation coefficient and J detail coefficients (where J is the final decomposition
level index). The STFT is used to decompose the approximation coefficient of the
mixed speech signal to produce a complex-valued mixed speech spectrogram Z(τ, f),
where τ and f are the time index and frequency bin indexes, respectively, and all of
the detail coefficients are replaced with zeros of the same length. Then, SNMF is
used to factorize only the magnitude part of the complex mixed speech spectrogram,
while the phase spectrogram is preserved for further processing. The clean speech
spectrograms X(τ, f) and Y(τ, f) are estimated by using the corresponding bases and
weights. Finally, the estimated clean time-domain speech signals x(t) and y(t) are
obtained by using the ISTFT and IDWT.

The DWPT − NMF-based SE algorithm was presented in [39]. In this algorithm,
the training stage is the same as in the previous method except that the DWPT is used
instead of the DWT (i.e., the bases Wb

X and Wb
N are estimated from the clean speech

signal x(t) and the noise n(t), and the basis matrixWb
XN � [

Wb
XW

b
N

]
is concatenated).

In the second phase, the DWPT and overlapping framing patterns are applied to the
noisy speech signal z(t), and a set of nonnegative matrices ZJ

b is obtained for the
noisy speech signal. Then, the weights Hb

X and Hb
N for the speech and noise signals,

respectively, are obtained by performingNMFon thematrixZJ
b using the fixed training

basis matrixWb
XN � [

Wb
XW

b
N

]
and the initial random weight matrix Hb

XN �
[
Hb

X
Hb

N

]
.

The gain sequence GJ
b and the estimated subband signal x̃Jb are obtained by using

Eqs. (16) and (17), as follows:

GJ
b �

√(
Wb

XH
b
X./

(
Wb

XH
b
X +Wb

NH
b
N

))
(16)

x̃Jb � xJb ⊗ gJb (17)

The estimated subband signal x̃Jb is generated by utilizing Eq. (18), where σb,c and
σb denote the root-mean-square values of the clean speech signal and x̃Jb, respectively.
Finally, the de-framing scheme and the IDWPT are applied to obtain the estimated
signal x̃(t).

x̃Jb � σb,c

σb
x̃Jb (18)
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The SWT − NMF SE method was presented in [11]. In the training stage, the
nonnegative matrices XJTrain

b and NJTrain
b are obtained from the clean speech signal x(t)

and the noise n(t) using the SWT, the overlapping framing scheme, the concatenated
framing process, and an autoregressivemoving average filter, where J denotes the SWT
level, and b denotes the subband index. Then, the basis matricesWb

X andWb
N that are

obtained after NMF are concatenated to prepare the basis matrix Wb
XN � [

Wb
XW

b
N

]
.

In the testing stage, rough estimates of the clean speech signal (X
J
b) and the noise

(
N
J
b

)

are calculated using Eqs. (19) and (20) after applying the SWT to the noisy speech
signal z(t) and performing NMF on ZJTest

b . Finally, the estimated time-domain signal
x̃(t) is obtained through the inverse concatenated framing process and the ISWT.

X
J
b � Wb

XH
b
X (19)

N
J
b � Wb

NH
b
N (20)

A recent study [12] proposed the DTCWT − NMF SE strategy, which utilizes the
DTCWT, NMFwith the KL cost function, and a proposed subband smooth ratio mask.
We implement the DWPT− SNMF, SWT− SNMF, and DTCWT− SNMF methods
for SS, analogously to the DWPT−NMF [11, 39] and DTCWT−NMF [12] methods
for SE, respectively, and compare the results with those of the proposed method.

5 Proposed SS Algorithm

This section describes the newly proposed SS method and the subtleties related to
this approach. Usually, speech signals have some high-frequency components and
some low-frequency components. The low-frequency components of a signal contain
a substantial amount of information, whereas the high-frequency components contain
a negligible amount of information. Nevertheless, the high-frequency information
impacts the basis vectors of the lower-frequency components. For this reason, SS using
only NMF cannot properly estimate the contents of mixed speech signals. Therefore,
theDTCWT is used to filter out the high- and low-frequency components of the signal.
In our proposed method, we use the first-level decomposition, in which the time-
domain signal is decomposed into four subband signals. For example, the DTCWT
decomposes the source signal x(t) into components, denoted by xJb,tl, where J denotes
the DTCWT level, b is the subband index, and tl represents tree level. For the first-level
decomposition, J� 1; b� 1, 2, 3, and 4; and tl� 1, and 2, where 1 is for the upper tree
and 2 is for the lower tree (i.e., the subbands are x11,1, x

1
2,1, x

1
3,2, and x

1
4,2, as explained

in the DTCWT part of Sect. 3).
Then, the STFT is applied to each subband signal to convert each subband signal into

the time–frequency domain and build a complex spectrogram for each subband sig-
nal. The STFT suffers from issues regarding time and frequency resolution because
it cannot exactly determine which frequencies exist at what time. In our proposed
method, we use the DTCWT and STFT sequentially to solve this problem of tra-
ditional STFT-based methods. First, we use the DTCWT to isolate the input signal
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Fig. 5 Block diagram of the proposed SS approach

into sufficiently small portions such that the low- and high-frequency components
are separated. The sequential use of the DTCWT and STFT makes the input signal
more stationary, thus resulting in a better transformation. Finally, SNMF is applied
to only the magnitude spectrogram in order to factorize the bases and weight vectors.
Figure 5 shows the overall block diagram of the SS algorithm proposed in this paper.
The proposed algorithm is divided into two stages: a training stage and a testing stage.

5.1 Training Stage

The two signals x(t) and y(t) are utilized as source signals. We obtain the subband
source signals x11,1, . . . , x

J
b,tl and y

1
1,1, . . . , y

J
b,tl from the signals x(t) and y(t) by utiliz-

ing the DTCWT, where J, b, and tl denote the DTCWT level, the subband index, and
the tree level, respectively. The complex spectrograms X1

1,1(τ, f), . . . ,X
J
b,tl(τ, f) and

Y1
1,1(τ, f), . . . ,Y

J
b,tl(τ, f) are calculated from the subband source signals via the STFT,

where τ and f are the time and frequency bin indexes, respectively. The magnitude
spectra XA1Train

1,1 , . . . ,XAJTrain
b,tl and YA1Train

1,1 , . . . ,YAJTrain
b,tl are obtained using Eqs. (21)

and (22) through SNMF.

XA1Train
1,1 , . . . ,XAJTrain

b,tl ≈ XW1
1,1XH

1
1,1 + μ

∣∣∣XH1
1,1

∣∣∣
1
, . . . ,XWJ

b,tlXH
J
b,tl + μ

∣∣∣XHJ
b,tl

∣∣∣
1

(21)
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YA1Train
1,1 , . . . ,YAJTrain

b,tl ≈ YW1
1,1YH

1
1,1 + μ

∣∣
∣YH1

1,1

∣∣
∣
1
, . . . ,YWJ

b,tlYH
J
b,tl + μ

∣∣
∣YHJ

b,tl

∣∣
∣
1

(22)

where XW1
1,1, . . . ,XW

J
b,tl and XH

1
1,1, . . . ,XH

J
b,tl denote the basis and weight matri-

ces for source signal one, YW1
1,1, . . . ,YW

J
b,tl and YH1

1,1, . . . ,YH
J
b,tl denote the

basis and weight matrices for source signal two, and μ is the sparsity constant.
The basis matrices XW1

1,1, . . . ,XW
J
b,tl can be generated by minimizing the distance

betweenXA1Train
1,1 , . . . ,XAJTrain

b,tl andXW1
1,1XH

1
1,1 +μ

∣∣XH1
1,1

∣∣
1
, . . . ,XWJ

b,tlXH
J
b,tl +μ∣∣XHJ

b,tl

∣∣
1
using Eq. (11), with the help of Eqs. (12) and (13). The basis matri-

ces YW1
1,1, . . . ,YW

J
b,tl are generated similarly and are then concatenated with

XW1
1,1, . . . ,XW

J
b,tl as follows: XYW1

1,1, . . . ,XYW
J
b,tl � [

XW1
1,1 YW

1
1,1

]
, . . . ,[

XWJ
b,tl YW

J
b,tl

]
.

5.2 Testing Stage

The mixed speech signal z(t) is decomposed by applying the DTCWT to generate a
set of subband signals z11,1,…,zJb,tl. The complex spectrum Z1

1,1(τ, f), . . . ,Z
J
b,tl(τ, f)

is obtained from the individual subband signals using the STFT. The magnitude
spectrum ZA1Test

1,1 , . . . ,ZAJTest
b,tl and phase spectrum ZP1

1,1, . . . ,ZP
J
b,tl are measured

from the complex spectrum Z1
1,1(τ, f), . . . ,Z

J
b,tl(τ, f) by taking the absolute value and

angle, respectively. The magnitude spectrum ZA1Test
1,1 , . . . ,ZAJTest

b,tl is decomposed via
the SNMF using Eq. (23):

ZA1Test
1,1 , . . . ,ZAJTest

b,tl ≈ XYW1
1,1XYH

1
1,1 + μ

∣
∣
∣XYH1

1,1

∣
∣
∣
1
, . . . ,XYWJ

b,tlXYH
J
b,tl + μ

∣
∣
∣XYHJ

b,tl

∣
∣
∣
1

�
[
XW1

1,1 YW1
1,1

][ XH1
1,1

YH1
1,1

]
+ μ

∣
∣
∣XH1

1,1 YH1
1,1]

∣
∣
∣
1
, . . . , [XWJ

b,tl YW
J
b,tl]

[
XHJ

b,tl
YHJ

b,tl

]
+ μ

∣
∣
∣
[
XHJ

b,tl YH
J
b,tl

]∣∣
∣
1

(23)

where XYH1
1,1, . . . ,XYH

J
b,tl, XH

1
1,1, . . . ,XH

J
b,tl, and YH1

1,1, . . . ,YH
J
b,tl denote the

weight matrices of the mixed signal, source signal one, and source signal two,
respectively. The weight matrices XYH1

1,1, . . . ,XYH
J
b,tl can be learned via SNMF

by minimizing the distances between ZA1Test
1,1 , . . . ,ZAJTest

b,tl and XYW1
1,1XYH

1
1,1 + μ∣∣XYH1

1,1

∣∣
1
, . . . ,XYWJ

b,tlXYH
J
b,tl + μ

∣∣XYHJ
b,tl

∣∣
1
using Eq. (11) with the help of

Eq. (13), where the initial values of XYH1
1,1, . . . ,XYH

J
b,tl are initialized as ran-

dom numbers, and the values of XYW1
1,1, . . . ,XYW

J
b,tl are fixed. The initially

estimated magnitudes for source signal one (X
1
1,1, . . . ,X

J
b,tl) and source signal two

(Y
1
1,1,…,Y

J
b,tl) are obtained using Eqs. (24) and (25).

X
1
1,1, . . . ,X

J
b,tl � XW1

1,1XH
1
1,1, . . . ,XW

J
b,tlXH

J
b,tl (24)

Y
1
1,1, . . . ,Y

J
b,tl � YW1

1,1YH
1
1,1, . . . ,YW

J
b,tlYH

J
b,tl (25)
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We observe that the sums of the initial estimatesX
1
1,1, . . . ,X

J
b,tl andY

1
1,1, . . . ,Y

J
b,tl

are not equal to the components of the mixed signal magnitude spectrum
ZA1Test

1,1 , . . . ,ZAJTest
b,tl . To eliminate errors, we calculate the subband ratio masks using

Eqs. (26) and (27).

SBRMX1
1,1, . . . , SBRMXJ

b,tl �
(
X
1
1,1

)2

(
X
1
1,1

)2
+

(
Y
1
1,1

)2 , . . . ,

(
X
J
b,tl

)2

(
X
J
b,tl

)2
+

(
Y
J
b,tl

)2

(26)

SBRMY1
1,1, . . . , SBRMY J

b,tl �
(
Y
1
1,1

)2

(
X
1
1,1

)2
+

(
Y
1
1,1

)2 , . . . ,

(
Y
J
b,tl

)2

(
X
J
b,tl

)2
+

(
Y
J
b,tl

)2

(27)

The estimated source signal magnitudes X̃1
1,1, . . . , X̃

J
b,tl and Ỹ1

1,1, . . . , Ỹ
J
b,tl are

obtained by using Eqs. (28) and (29).

X̃1
1,1, . . . , X̃

J
b,tl � ZA1Test

1,1 ⊗ SBRMX1
1,1, . . . ,ZA

JTest
b,tl ⊗ SBRMXJ

b,tl (28)

Ỹ1
1,1, . . . , Ỹ

J
b,tl � ZA1Test

1,1 ⊗ SBRMY1
1,1, . . . ,ZA

JTest
b,tl ⊗ SBRMY J

b,tl (29)

Now, we recombine the phase spectrum ZP1
1,1, . . . ,ZP

J
b,tl with the estimated

source signal magnitude spectra X̃1
1,1, . . . , X̃

J
b,tl and Ỹ

1
1,1, . . . , Ỹ

J
b,tl to obtain the mod-

ified complex spectra X̃1
1,1(τ, f), . . . , X̃

J
b,tl(τ, f) and Ỹ1

1,1(τ, f), . . . , Ỹ
J
b,tl(τ, f) using

Eqs. (30) and (31), respectively.

X̃1
1,1(τ, f), . . . , X̃

J
b,tl(τ, f) � X̃1

1,1e
iZP1

1,1 , . . . , X̃J
b,tle

iZPJ
b,tl (30)

Ỹ1
1,1(τ, f), . . . , Ỹ

J
b,tl(τ, f) � Ỹ1

1,1e
iZP1

1,1 , . . . , ỸJ
b,tle

iZPJ
b,tl (31)

The ISTFT is used to convert the modified complex source signal spectra X̃1
1,1

(τ, f), . . . , X̃J
b,tl(τ, f) and Ỹ

1
1,1(τ, f), . . . , Ỹ

J
b,tl(τ, f) into the modified subband signals

x̃11,1, . . . , x̃
J
b,tl and ỹ11,1, . . . , ỹ

J
b,tl. Finally, the estimated source signals x̃(t) and ỹ(t)

are obtained by applying the IDTCWT to the subband signals x̃11,1, . . . , x̃
J
b,tl and

ỹ11,1, . . . , ỹ
J
b,tl. The proposed algorithm for the training and testing stages is shown

in Table 2.

6 Evaluations and Results

To evaluate the effectiveness of the proposed algorithm,we compare itwith the STFT−
SNMF [11, 12, 33, 37, 39, 41] and JDL [34] models. In these simulations, we use
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Table 2 Proposed algorithms for the training and testing stages

Training Algorithm:

Input: Training sets x(t) and y(t), decomposition level J, subband index b, tree level tl, window length,
basis vector size, number of iterations, and sparsity constant μ

Output: XYW1
1,1, . . . ,XYW

J
b,tl

Step 1: Calculate the wavelet coefficients x11,1, . . . , x
J
b, tl and y

1
1,1, . . . , y

J
b,tl via the DTCWT

Step 2: Obtain the complex spectra X1
1,1(τ, f), . . . ,X

J
b, tl(τ, f) and Y

1
1,1(τ, f), . . . ,Y

J
b,tl(τ, f) by

applying the STFT

Step 3: Obtain the magnitude spectra XA1
1,1, . . . ,XA

J
b, tl and YA

1
1,1, . . . ,YA

J
b,tl by taking the

absolute values of the complex spectra

Step 4: Determine the basis matrices XW1
1,1, . . . ,XW

J
b,tl and YW

1
1,1, . . . ,YW

J
b,tl in accordance with

Eqs. (21) and (22)

Step 5: Concatenate these basis matrices as follows:XYW1
1,1, . . . ,XYW

J
b,tl �

[
XW1

1,1YW
1
1,1

]
, . . . ,

[
XWJ

b,tlYW
J
b,tl

]

Testing Algorithm:

Input: Mixed signal z(t), concatenated basis matrices XYW1
1,1, . . . ,XYW

J
b,tl learned in the training

stage, decomposition level J, subband index b, tree level tl, and the number of iterations

Output: Estimated separate signals x̃(t) and ỹ(t)

Step 1: Compute the wavelet coefficients z11,1, . . . , z
J
b, tl via the DTCWT

Step 2: Acquire the complex spectrum Z1
1,1(τ, f), . . . ,Z

J
b, tl(τ, f) by applying the STFT and obtain the

magnitude spectrum ZA1
1,1, . . . ,ZA

J
b, tl by taking the absolute values of the complex spectral

components

Step 3: Obtain the weight matrices XH1
1,1, . . . ,XH

J
b,tl and YH

1
1,1, . . . ,YH

J
b,tl in accordance with

Eq. (23)

Step 4: Calculate the initial magnitudes X
1
1,1, . . . ,X

J
b,tl and Y

1
1,1, . . . ,Y

J
b,tl for the source signals

using Eqs. (24) and (25)

Step 5: Calculate the subband binary ratio masks SBRMX1
1,1,…,SBRMXJ

b,tl and

SBRMY1
1,1,…,SBRMY J

b,tl in accordance with Eqs. (26) and (27)

Step 7: Estimate the magnitudes X̃1
1,1, . . . , X̃

J
b,tl and Ỹ

1
1,1, . . . , Ỹ

J
b,tl for the source signals using

Eqs. (28) and (29)

Step 8: Determine the estimated complex spectra X̃1
1,1(τ, f), . . . , X̃

J
b,tl(τ, f) and Ỹ

1
1,1(τ, f), . . . , Ỹ

J
b,tl

(τ, f) for the source signals using Eqs. (30) and (31)

Step 9: Compute the modified subband signals x̃11,1, . . . , x̃
J
b,tl and ỹ

1
1,1, . . . , ỹ

J
b,tl via the ISTFT

Step 10: Obtain the estimated source signals x̃(t) and ỹ(t) by applying the IDTCWT

speech signals from the GRID audiovisual corpus [2], as the training and testing data
(including different male and female speech samples). There are 34 speakers (18 male
and 16 female speakers), and each speaker speaks 1000 utterances. We concatenate
all the utterances together for each speaker. For each speaker, we randomly choose
500 utterances for training and 200 utterances for testing. In these simulations, we
use two types of speech signal combinations: one for same-gender (male–male or
female–female) speech separation, where the combined signals are denoted by M1
and M2 or by F1 and F2, and another for opposite-gender (male–female) speech
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separation, where the combined signals are denoted by M and F. For same-gender
signal separation, eight utterances from same-gender speakers’ are utilized to form
one experimental group, and eight different utterances from same-gender speakers’ are
used to form another experimental group. For opposite-gender speech separation, we
choose sixteen male speakers to compose one experimental group and sixteen female
speakers to compose another experimental group. The length of each training signal
is approximately 60 s, and the length of each testing signal is approximately 10 s. The
sampling rate for each speech signal is 8000 Hz, and the signal is transformed into the
time–frequency domain by using a 512-point STFT with 50% overlap.

The speech separation performance is evaluated in terms of the signal-to-
interference ratio (SIR) [10], source distortion ratio (SDR) [10], average frequency-
weighted segmental SNR (fwsegSNR) [38], short-time objective intelligibility (STOI)
[35], perceptual evaluation of speech quality (PESQ) [27], Hearing-Aid Speech Per-
ception Index (HASPI) [15], and Hearing-Aid Speech Quality Index (HASQI) [16].
The SDR value estimates the overall speech quality; it is defined as the ratio of the
power of the input signal to the power of the difference between the input and recon-
structed signals. Higher SDR scores indicate better performance. In addition to the
SDR, the SIR captures the error caused by failure to remove interfering signal infor-
mation during the SS procedure. A higher SIR indicates higher separation quality. The
STOI is defined as the correlation between the short-term temporal envelopes of the
clean and separated speech signals, and its value ranges from 0 to 1, with a higher
STOI score indicating better intelligibility. We choose the fwsegSNR as the objective
measure to evaluate the intelligibility of the captured speech signal; a higher value
represents better performance. For both hearing-impaired patients and people with
normal hearing, the HASQI and HASPI gauge sound quality and perception, respec-
tively. Similar to the STOI, the values range from 0 to 1, and higher scores indicate
better sound quality and intelligibility, respectively.

First, the separation results of the different strategies are shown in Fig. 6, where
the original female and male speech spectrograms are displayed in Fig. 6a and b,
respectively. The estimated male speech spectrograms are presented in Fig. 6c, e, and
g for the DWT − STFT − SNMF algorithm, the SWT − SNMF algorithms, and the
proposedmethod (PM), respectively, and the female speech spectrograms are similarly
presented in Fig. 6d, f, and h. From this figure, we can see that the SS quality of the
DWT−STFT−SNMFmethod is poor due to the total rejection of the high-frequency
component, where the SWT − SNMF method adds unwanted speech components to
the estimated male and female speech signals. By contrast, the PM recovers male and
female speech signals that are approximately similar to the original signals.

Second, in Fig. 7, we compare the PM with the existing models in terms of the
fwsegSNR. From this figure, it appears that the PMperforms verywell in all cases com-
pared to the other current methods. In the various SS scenarios, our method improves
the fwsegSNR scores by 20.33% for theM1 signal, 17.76% for theM2 signal, 24.93%
for the F1 signal, 32.17% for the F2 signal, 30.49% for the M signal, and 15.70% for
the F signal compared to the DTCWT − SNMF method.

Third, in Fig. 8, we show that in terms of the SDR and SIR, the PM considerably
outperforms the existing models, namely the STFT−SNMF, DWT−STFT−SNMF,
DWPT − SNMF, SWT − SNMF, DTCWT − SNMF, CJD, and JDL algorithms. For
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Fig. 6 Spectrograms of the original male and female speech signals, and the male and female speech signals,
recovered with the DWT–STFT–SNMF algorithm, the SWT–SNMF algorithm, and the PM, where the x-
axis corresponds to the time in seconds, and the y-axis corresponds to the frequency in kHz

Fig. 7 Comparison of the fwsegSNR values of the eight methods for the same- and opposite-gender cases

all cases of speech separation, the SDR values of the PM are higher than those of the
existing models. With the PM, the SDR is improved from 4.72 to 5.29 dB for the M1
signal, from 4.39 to 5.24 dB for the M2 signal, from 5.27 to 5.97 dB for the F1 signal,
from 4.61 to 5.85 dB for the F2 signal, from 7.65 to 9.01 dB for theM signal, and from
6.35 to 9.12 dB for the F signal compared to the DWT−STFT−SNMFmodel. From
this figure, we can also see that the SIR values of the estimated signals are better with
the PM than with the existing models. Moreover, we find that the separation result of
the opposite-gender signals is much better than those for the same-gender signals.

Fourth, Tables 3 and 4 present a comparative performance analysis of the PM
and the existing methods in terms of the STOI and PESQ. Compared to the existing
DWT − STFT − SNMF method, the PM improves the STOI scores by 13.24% and
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Fig. 8 Comparative performance evaluation of the existing models and the PM using: (a) the SDR and
(b) the SIR for the same- and opposite-gender cases

10.98% for the M1 and M2 signals, respectively; by 13.20% and 11.73% for the F1
and F2 signals, respectively; and by 24.96% and 10.26% for the M and F signals,
respectively. From Table 4, we can also see that the PESQ scores of the estimated
signals are better than with the existing models.

Fifth, Tables 5 and 6 present theHASQI andHASPI results of the differentmethods,
namely the STFT−SNMF, DWT−STFT−SNMF, DWPT−SNMF, SWT−SNMF,
DTCWT − SNMF, CJD, and JDL methods and the PM for the same- and opposite-
gender speech separation tasks. From Table 5, one can observe that the PM algorithm
yields better HASPI values than the other algorithms for all cases of separation. The
PM algorithm outperforms the other seven methods in terms of the HASQI results for
all cases of separation.

Sixth, we present the SS performance achieved on the TIMIT database [6] to fur-
ther confirm the superiority of the PM in mixed speech separation experiments. For
these experiments, 24 speakers (12 male and 12 female speakers) were selected from
the TIMIT database. Each speaker utters ten sentences, corresponding to a total of
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Table 3 Comparison of the STOI values achieved with the eight methods for the same- and opposite-gender
cases

Case M1 + M2 F1 + F2 M + F

Method M1 M2 F1 F2 M F

STFT–SNMF [41] 0.717 0.763 0.743 0.737 0.776 0.747

DWT–STFT–SNMF [37] 0.702 0.710 0.689 0.699 0.705 0.760

DWPT–SNMF [39] 0.719 0.724 0.674 0.744 0.745 0.702

SWT–SNMF [11] 0.723 0.727 0.710 0.754 0.769 0.714

DTCWT–SNMF [12] 0.725 0.730 0.730 0.764 0.779 0.744

CJD [33] 0.726 0.738 0.735 0.767 0.781 0.748

JDL [34] 0.746 0.768 0.785 0.787 0.793 0.778

DTCWT–STFT–SNMF [PM] 0.795 0.788 0.780 0.781 0.881 0.838

Bold values indicate best result

Table 4 Comparison of the PESQ values achieved with the eight methods for the same- and opposite-gender
cases

Case M1 + M2 F1 + F2 M + F

Method M1 M2 F1 F2 M F

STFT–SNMF [41] 2.001 2.101 2.012 2.006 2.217 2.212

DWT–STFT–SNMF [37] 2.116 2.128 2.086 2.069 2.386 2.263

DWPT–SNMF [39] 2.009 2.111 2.016 2.011 2.223 2.225

SWT–SNMF [11] 2.011 2.116 2.018 2.015 2.238 2.229

DTCWT–SNMF [12] 2.012 2.121 2.035 2.028 2.244 2.234

CJD [33] 2.023 2.037 2.045 2.039 2.254 2.253

JDL [34] 2.067 2.073 2.072 2.062 2.321 2.331

DTCWT–STFT–SNMF [PM] 2.117 2.154 2.131 2.144 2.464 2.374

Bold values indicate best result

Table 5 Comparison of theHASPI values achievedwith the eightmethods for the same- and opposite-gender
cases

Case M1+M2 F1+F2 M+F

Method M1 M2 F1 F2 M F

STFT–SNMF [41] 0.9942 0.9956 0.9954 0.9956 0.9982 0.9987

DWT–STFT–SNMF [37] 0.9724 0.9573 0.9761 0.9576 0.9951 0.9915

DWPT–SNMF [39] 0.9731 0.9891 0.9831 0.9770 0.9888 0.9850

SWT–SNMF [11] 0.9767 0.9900 0.9845 0.9854 0.9939 0.7514

DTCWT–SNMF [12] 0.9785 0.9911 0.9857 0.9817 0.9917 0.9894

CJD [33] 0.9793 0.9944 0.9863 0.9845 0.9943 0.9869

JDL [34] 0.9813 0.9947 0.9896 0.9885 0.9964 0.9878

DTCWT–STFT–SNMF [PM] 0.9961 0.9967 0.9971 0.9964 0.9995 0.9991

Bold values indicate best result



Circuits, Systems, and Signal Processing (2021) 40:1868–1891 1887

Table 6 Comparison of the HASQI values achieved with the eight methods for the same- and opposite-
gender cases

Case M1+M2 F1+F2 M+F

Method M1 M2 F1 F2 M F

STFT–SNMF [41] 0.412 0.405 0.407 0.414 0.555 0.503

DWT–STFT–SNMF [37] 0.269 0.246 0.271 0.257 0.485 0.445

DWPT–SNMF [39] 0.321 0.352 0.313 0.404 0.450 0.430

SWT–SNMF [11] 0.322 0.352 0.328 0.428 0.488 0.418

DTCWT–SNMF [12] 0.333 0.364 0.330 0.420 0.470 0.452

CJD [33] 0.346 0.373 0.349 0.421 0.483 0.461

JDL [34] 0.389 0.398 0.401 0.429 0.521 0.493

DTCWT–STFT–SNMF [PM] 0.439 0.437 0.443 0.447 0.609 0.569

Bold values indicate best result

Fig. 9 Comparative performance evaluation of the existing and the PM in terms of the SDR and SIR for the
opposite-gender case

240 sentences. Of the 10 sentences uttered by each distinct speaker, the first eight
sentences are selected for training, and the remaining two sentences are used for test-
ing. To investigate the performance of our proposed strategy, we consider the SDR,
SIR, STOI, and PESQ scores. From Fig. 9 and Table 5, one can clearly see that the
proposed strategy performs better in strengthening speech than the other seven tech-
niques (STFT − SNMF, DWT − STFT − SNMF, DWPT − SNMF, SWT − SNMF,
DTCWT − SNMF, CJD, and JDL) according to the SDR, SIR, STOI, and PESQ
scores for opposite-gender signal separation.

Finally, for a practical comparison of the computational load, we compare the
execution times required to generate an estimated signal during one iteration when
the analysis is implemented in MATLAB on a PC equipped with an Intel® Core™
i7-4790 CPU @ 3.60 GHz. As seen from the results in Table 8, the execution time of
the PM is shorter than that those of all other methods except the STFT − SNMF and
DWT − STFT − SNMF algorithms, while the other metrics of the PM (see Tables 3,
4, 5, 6, 7 and Figs. 7, 8, 9) are better than those of the other methods. The P/O ratios
(where P refers to the PM and O signifies another method considered for comparison)
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Table 7 Comparison of the
PESQ and STOI values achieved
with the eight methods for the
opposite-gender case

Method PESQ STOI

M F M F

STFT–SNMF [41] 2.204 1.097 0.757 0.439

DWT–STFT–SNMF [37] 2.376 2.170 0.708 0.673

DWPT–SNMF [39] 2.273 1.898 0.763 0.700

SWT–SNMF [11] 2.356 1.983 0.787 0.721

DTCWT–SNMF [12] 2.335 1.938 0.780 0.717

CJD [33] 2.324 2.012 0.789 0.719

JDL [34] 2.375 2.141 0.805 0.730

DTCWT–STFT–SNMF [PM] 2.509 2.192 0.835 0.770
Bold values indicate best result

Table 8 Comparison of the computational loads

Method Method Execution time Ratio (P/O)
(Seconds)

STFT–SNMF [41] 0.0795 2.3

DWT–STFT–SNMF [37] 0.148 1.24

DWPT–SNMF [39] 0.673 0.272

SWT–SNMF [11] 0.249 0.735

DTCWT–SNMF [12] 0.198 0.93

CJD [33] 0.798 0.229

JDL [34] 0.721 0.254

DTCWT–STFT–SNMF [PM] 0.183 –

in terms of the execution times are also listed in Table 8. The results confirm that the
proposedmethod can reduce the online computational load by factors of approximately
3.68, 1.36, 1.08, 4.36, and 3.94, relative to the conventional methods listed in the table
sequentially from top to bottom, respectively, except for the STFT − SNMF and
DWT − STFT − SNMF algorithms.

7 Conclusion

In this paper, we have proposed an improved speech separation model using the
DTCWTand the STFTwith SNMF. The development of this dual-transform (DTCWT
and STFT)-based speech separation model is the main focus of our research. First, we
apply the DTCWT and STFT successively to the input speech signal to provide a more
flexible basic framework for improved feature extraction. Second, the speech signal is
sparsely represented by applying SNMF to obtain the corresponding weight matrices
considering only the magnitude spectrograms used in the testing phase. Finally, the
estimated separated speech signals are generated by applying the ISTFT and IDTCWT
consecutively. The DTCWT separates the high- and low-frequency components of the
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time-domain signal by means of filters, and the STFT accurately characterizes the
time–frequency components. For this reason, the quality and intelligibility of the sep-
arated speech signals are improved compared with the results of existing methods. In
evaluations of the improvement in the separated speech signals using various evalua-
tion methods, the experimental outcomes demonstrate that the overall performance of
the proposed speech separation model is superior to that of the existing models. In the
future, we plan to investigate alternative training and testing algorithms using deep
neural networks.
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