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Abstract

Some stochastic gradient (SG) algorithms for Hammerstein systems with piecewise
linearity are developed in this paper. Due to the complexity of the nonlinear structure,
the key term separation is used to transfer the nonlinear model into a regression model,
and then, some SG algorithms are proposed for this model. Since the SG algorithm has
slow convergence rate, a forgetting factor SG algorithm and an Aitken SG algorithm are
provided. Compared with the forgetting factor SG algorithm, the Aitken SG algorithm
has smaller variance of estimation error, which means the Aitken SG algorithm is
more effective. Two simulation examples are provided to show the effectiveness of
the proposed algorithms.

Keywords Piecewise linearity - Parameter estimation - Aitken method - Gradient
search - Forgetting factor

1 Introduction

Parameter estimation plays an important role in controller design [13,14] because the
controller design of dynamic system is usually established on the premise that the
parameters of dynamic systems are known [19,28]. Compared with the linear sys-
tems, nonlinear systems are more extensive in engineering practice [6,10], and they
can be roughly divided into four categories: Hammerstein systems [36], Wiener sys-
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tems [18], Hammerstein—Wiener systems and Wiener—Hammerstein systems [2,35].
Recently, many identification algorithms have been developed for these nonlinear
systems, such as the stochastic gradient (SG) algorithms [39], the expectation max-
imization algorithms and the iterative algorithms [4]. The SG algorithm updates the
parameter estimates only through the latest input—output data at each sampling instant,
and it does not need to compute the inverse matrix; thus, it has less computational loads.
Its variants include the multi-innovation stochastic gradient algorithms [16,42] and the
gradient-based iterative algorithms [12].

The idea of the gradient-based identification algorithms is first to determine the
search direction and then to calculate the step size for each sampling instant. Although
the computational effort of the SG algorithm is small, its convergence rate is slow
because of its zigzag search directions. In general, there are two methods to improve
the convergence rates. One is to obtain the optimal direction at each sampling instant.
For example, for control problems with undetermined final time, Hussu provided a
conjugate-gradient method [20]. The other method is to compute a suitable step size
at each sampling instant. For instance, Chen and Ding introduced a convergence index
into a modified stochastic gradient(M-SG) algorithm to improve the convergence rate
[7]. Ma et al. [30] studied a forgetting factor stochastic gradient (FF-SG) algorithm for
Hammerstein systems with saturation and preload nonlinearities. Although the M-SG
and FF-SG algorithms can improve the convergence rates, they also bring some issues,
such as severe oscillation when the estimates of the parameters approach to the true
values [24].

One may ask whether it is feasible to develop a modified SG algorithm, which
can not only quickly estimate the parameters, but also decrease the variances of the
estimation errors. For this sake, the Aitken method is introduced in this paper. The
Aitken method is a sequence acceleration method, used for accelerating the con-
vergence rate of sequences. It is efficient for accelerating the convergence rate of
a sequence which is converging linearly. For example, Pavaloiu et al. [34] studied
an Aitken—Newton iterative method for nonlinear equations, which is more competi-
tive than some optimization methods with the same convergence order. Bumbariu [5]
developed an improved Aitken acceleration method for solving nonlinear equations
which computes the solutions of the nonlinear equations with fast convergence rates.
The proposed approaches of this paper have some interesting features.

1. Using the key term separation method, which can transform a complex Hammer-
stein systems with piecewise linearity into a simplify regression model.

2. Studying an FF-SG algorithm for this nonlinear system, which can improve the
convergence rate.

3. Developing an Aitken-based SG algorithm, which has quick convergence rates and
small estimation error variances.

4. Extending the proposed methods to identify the Hammerstein systems with colored
noise.

In summary, this paper is listed as follows. Section 2 introduces the Hammerstein

model. Section 3 presents some SG algorithms. Section 4 studies the Aitken-based SG
algorithm for the piecewise linear system with colored noise. In Sect. 5, two illustrative
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Fig.1 The piecewise linearity

examples are provided. Section 6 gives the conclusions of this paper and the directions
of future research.

2 The Hammerstein System with Piecewise Linearity

The piecewise linear system is a special kind of switching systems, which widely exists
in engineering practice [27,37]. Such a system can be used to model or approximately
describe the processes with different gains in different input intervals, e.g., the systems
of flight control, circuits and biology [26,31].

Consider the Hammerstein system with piecewise linearity as follows:

AQ)y(r) = B(£) f(q(1)) 4 v(2), D

where ¢ (7) is the input which is taken as a persistent excitation signal sequence with
zero mean and unit variance, y(t) is the output, v(t) is a white noise with zero mean
and variance o2, and a piecewise linearity f (g (7)) is shown in Fig. 1, which can be
written as

_ Jmiq(@), q() =0,
f(CI(T)) - {mzq(_[)), q(T) < O, (2)

where the corresponding segment slopes are m | and m>.
The polynomials A(¢) and B(¢) are expressed as

AQ) =14+aii a2+ +ac™,
B@)=bo+bic '+ b, g

Since the piecewise linearity is expressed by two equations, the Hammerstein system
may be illustrated by two models [3]. Then, the considered Hammerstein model is
equivalent to a switching model [1]. Itis well known that the identification for switching
models is more challenging. In order to simplify the identification process, the key
term separation method is introduced [8,9].
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Define a switching function,

0, ¢()>0,

s(t) :=slg(r)] = { 1, ¢q(r)<0O.

Then, the nonlinear part f (g (7)) of input is written as

f(q()) = mis(—q(1))q(t) +m2s(q(7))q (7). 3)

The nonlinear model can be written as

A(Q)y(t) = B(¢)m1s(=q(1))q(t) + B({)mas(q(1))q(r) + v(7). “)

Define the information vector x (t) and the parameter vector £ as

x@ =[-yz—-1,—y@E—=2),..., =y —n),s(—q()q(7),s(=q(r — D)g(z = 1), ...,
s(=q(t —n+ 1D)q(t —n+1),s(q(r)q(r),s(g(x — D)gt = 1),...,
s(q(t —n+1)g(r —n+ D" e R, (6))
E=lar,a,..., an, bomy, bymy, ..., by_ymy, boma, bymy, .. ., by—1ma]" € R (6)

Then, the nonlinear model can be simplified as a regression model:

y(@) = xT(0)E + v(1). (7)

The proposed algorithms in this paper are based on this identification model. Many
identification methods are derived based on the identification models of dynamical
systems [29,32,33], which can be used to estimate the parameters of bilinear systems
[23,38,47,48] , and can be applied to fields such as chemical process control systems.
From Eq. (7), it can be seen that the parameters can be estimated by all the traditional
identification algorithms in the cost of heavy computational demands [17].

Remark 1 Inthis paper, by is assumed to be equal to 1; otherwise, b; cannot be separated
from b;my. Assume the parameter estimates are

2 PO A A P oA A A oA P A A ~ T
E=lai,a,....ay, my, bimy, ..., by_1my, Mo, by, ..., by_1ms]

Once the parameter estimates have been obtained, we can get i and 7, first, and

then, based on 71| and 715, we can get b; = b"?Terl =1,....,.n—1,k=1,2.

3 Some Stochastic Gradient Algorithms

The SG algorithm can be realized online, which updates parameters according to the
latestinput—output data [11]. Therefore, it has less computational efforts. However, this
algorithm has slow convergence rates. In this section, some modified SG algorithms
will be investigated.
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3.1 The Traditional Stochastic Gradient Algorithm
Define the cost function
J&) =[y() — x (0P

Assume that the parameter estimates at time t are é (r —1), the key of the SG algorithm
is to get a better estimate & (7) which satisfies

JE@D) =ly@m = x"@EOP = JET - 1) =[y(@) — X" (0T — DI*. (8)

£(1) is obtained based on &(t — 1) and is written by
Er) =& — D+ a@x@y@) — x " ©f - DI. ©)

In order to keep (8) holding, substituting (9) into (8) gets

JE@) = [y@ - x"@E@ - D+ 2O x @) - x"@E - DD},
Keep &(t — 1) fixing and define J (A(7)) as

J) = [y@) = x"@ET - D+ 2O x @Oy — xT@E&@ - DD}
Let

2J0(0) 3y — x"@ET — D) + 2 @0x @) — X" — D))
() Ir(T) '

Setting the above derivative equal to zero obtains

1

PYC P p—
® = Tox®

Then, we can get the steepest descent algorithm

X (@)

m(m) —xT(@éE — ). (10)

E)y=E@ -1+

However, when x T (1) x () is small, the correction items for()T;(r) (y(r)— xT(D)é(r—

1)) would be large, which leads to the steepest descent algorithm be divergent. With
this in mind, we define

MT)=p+ x"(@x((),p>0
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Then, we get the projection algorithm

X

A Ty NE
o+ XT(T)X(T) (y(r) X (T)g(f 1)) (11

E)=Ex -1+

Since p is a constant, the unchanged step size will make the estimate of the algorithm
oscillate seriously when the estimates are closing to the true values. In order to solve
this problem, we replace p by A(r — 1). Then, the SG algorithm to estimate the
parameter & is listed as follows,

()

E) =k -1+ W(y(” —xTkr - 1), (12)
x@ =[-yE—-1),-y(—2),...,—y( —n),s(—=q(1))q (1), s(=q(t — D)gq(r = 1),...,
s(=q(t —n+D)g(r —n+ 1), s(q(1)q (), s(q(r — gt = 1), ...,
s(g(r —n+ D)g(x —n+ DI (13)
AT = AT — D+ X, 1(0) = 1. (14)

Remark 2 Although the traditional SG algorithm has less computational efforts, it also
brings some challenging issues, e.g., slow convergence rates, especially for systems
with large number of unknown parameters.

3.2 Two Modified Stochastic Gradient Algorithms

In order to increase the convergence rates, two modified SG algorithms for the Ham-
merstein system are developed in this subsection. A forgetting factor SG (FF-SG)
algorithm is first introduced,

E) =k -+ %(y(r) KTk - 1), (15)
X(@) = [y = 1), =yt = 2), ..., —y(t —n), s(—q(1)q (1), s(—=gq(r — D)g(r = 1), ...,
s(=q(r —n+1D)g(t —n+ 1), s(q(1)q (), s(q(x — gt = 1), ...,
s(g(t —n+ D)g(x —n+ DI (16)
AT =T =D+ IR@1% M0) =1, 08 <r < 1. (17)

Remark 3 The FF-SG algorithm introduces a forgetting factor r in the step size [15,
43,46], which will make the step size larger at each sampling instant. Therefore, the
FF-SG algorithm has quicker convergence rates compared with the traditional SG
algorithm.

Remark 4 Although the FF-SG algorithm can increase the convergence rates, it brings
some challengings, such as large estimation error variances.

To make the variance of the estimation error smaller, another modified SG algorithm
will be studied in the following, which is termed as the Aitken-based SG (A-SG)
algorithm. Assume that the parameter estimate &(t) converges to the true value &,
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which means that

lim [£(r) — &1 = lim [£(r — 1) — £]. (18)
T—>00 T—>00
It is equivalent to
lim e =% _ (19)
TooE (-1 —&
where &, is the oth element in the parameter vector §, 0 = 1,2,...,3n. When 7 is
large enough, the equivalent expression of (19) can be written as
EQ(T) - gg _ SQ(I -1 - Sg (20)

Ear—1—& Er—2)—¢
From (19) and (20), it follows that
€0 (1) +&o(T —2) — 26,(t — D]y = §,(Dé,(r —2) —E3x — ). (21)

Then, the Aitken accelerated iteration formula for &, can be written as

(Eo(r — 1) —Ey(r —2))°
Eo(1) +Ep(r —2) —28,(t — 1)

Eo=Ep(t —2) — (22)

However, the parameter & cannot be computed by Eq. (18) because it is not a scalar,
but a vector. In order to get the vector, the parameter & is rewritten as

E=laaz....an.mi,bimy, ... by_ymi,my, bima, ... by_ima]"
Then, Eq. (21) is equivalent to the 3n equations as follows,

[ (7) + @i (x = 2) = 24;(r — Dla; = a;(0)ai(x —2) —a>(x — 1), i=1,...,n,
[t (7)) + r (T — 2) — ik (t — Dlmg = iy (D) (t —2) —mp(t — 1), k=12,
[b; ()i (v) + b (tr — 2 (v — 2) — 2bj (v — Dyig(z — 1)bjmy

= bty (0)bj(t = i (t = 2) = b5 (xr — Diwj(x = 1), j=1,....n— 1L

Then, we have

@it — 1) —a;j(t — 2))?

a;(t) +a;(t —2) = 2a;(t — 1)’
(i (t — 1) — g (T — 2))?
() + mg(t —2) =2/t — 1)

bimg = bj(r — 2y (t —2)

ai = a;(t —2) —

mi ZI;Z]((T—Z)—
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_ (l;j(r_Dmk(f_1)_I;j(f—2)r;1k(r—2))2
b ()i (t) + b (t — 2y (t — 2) — 2b; (¢ — Dyiing(z — 1)

Define

(@i (t — 1) — a;(t — 2))?
ai(t) + ai(t —2) — 2a4;(t — 1)’
(i (r — 1) — i (t — 2))2
M (t) + mg(t —2) = 2m(r — 1)’
bj()mi(v) = bj(t — (- 2)
(bj(t — Dy (t — 1) = bj(x — g (v — 2))>
_Bj(r)mk(r) +bj(t — 2yt (r = 2) — 2b;(x — Dig(z — 1)

ai(v) = ai(t —2) -

m(t) = ng(t —2) —

The Aitken-based SG algorithm is obtained as follows,

(ai(r — 1) — a;(r — 2))?

GO =4 ) Y a =D —2a = 1) 23
. it — 1) — i (t — 2))2
() = (T =2) = rfzk<(r>k-:nak(r)— 2)k—(2n%k()r)— 0k @4)
bj(T)i(t) = bj(t — 2 (t —2)
(bj(r — Vi (t — 1) = bj(z — 2riy (r — 2))?
_éj(z)n%k(z) +bj(t = 2yt —2) = 2bj (v — Dyig(x — 1)
(25)
. . (1)
Eny=éc-D+ %em, (26)
e(r) = y(1) — x"(E(x - 1), (27)
x@) =[-y@ -1, -y -2),..., —y(r —n), s(—q(1))q(7),
s(—q(r —)g(r — 1), ...,
s(—=q(t —n+1)g(x —n+1),s(g()q(z),s(q(r — D)g(x — 1), ...,
s(qg(t —n+ 1)g(t —n+ DI, (28)
AT =ar =D+ xT(@x (D). (29)

The A-SG algorithm starts the iterations as follows.

. To initialize: Let T = 1, £(0) = 13,/po, po = 10° and 1 (0) = 1.

. Let y(r) =0,¢9(r) =0, 7 <0, and give an error tolerance number ¢.

. Collect the input—output data {g(7), y(7)}.

. Form x (7) by (28).

. Compute e(t) and A(t) by (27) and (29), respectively.

. Update the estimation vector é(r) by (26).

. Compute each estimate a;(t),i = 1,...,n,mi(t),k = 1,2 and Ej(r)nik(r), j=
1,...,n —1by (23)—(25), and then form E(t).

8. Compare E(r) and E(t — 1):if ||§(t) — é(r — 1)|| < e, then obtain the E(t) and

go to the next step; otherwise, increase 7 by 1 and go to step 3.

~N N DR W=

0%

0 Birkhduser
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bi (@ (D)

9. Compute my () first, and then calculate b; (r) = RG]

Remark 5 The A-SG algorithm utilizes three connected parameter estimates to obtain
an optimal parameter estimate, which does not use a large step size to speed up the
convergence. Therefore, the A-SG algorithm has quicker convergence rates but smaller
estimation error variances.

4 The Identification for the Hammerstein Piecewise Linearity System
with Colored Noise

In this part, the SG algorithms are developed to identify the Hammerstein system with
colored noise, which contains unmeasurable noise variables in the information vector.

4.1 Problem Description and Identification Model

Consider the Hammerstein piecewise linearity system with colored noise as follows,

B . D(%)
30
y(@) = AQ) ()+A(§) (1), (30)

where D(¢) := 1+ di¢7 " +drc %>+ -+ 4+ d,c ", the definitions of A(¢), B(¢)
and the piecewise linearity part are the same as those in Section 2.
By utilizing the key term separation technique, the system can be transformed into

A(Q)y(t) = B({)m1s(—q(1))q(t) + B(H)mas(g(r))u(r) + D(E)v(r). (31)

Then, the system is written by

n—1

y(1) = Za,y(r—z>+m1s< q(m)q(r) + Y mibis(—q(r — )g(z — i)

i=1 i=1

n—1 nq

+mas(q(r)g(r) + Y mabis(q(t — ))q(x —i) = Y div(t — i) + v(7).
i=1 i=1

(32)

Define the information vector ¥ (t) and the parameter vector ¥ as

Y()=[-y@E -1, -y =2),..., =y —n),s(—q(r)q(7),
s(=q(t = D)g(t—=1),....,5(=q(r —n+1)q(r —n+1),s(q(r))u(r),
s(gz —D)g(r—1),...,5(q(r —n+1D)g(t —n+1),

vt — D, vt —2),...,v(t —ng), 1T e R+ (33)
V= lay,a,...,ay,my,bymy, ..., by_ymy,my,bymy, ..., b,_1ma,
dy,da, ..., dy, " e R, (34)
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Then, the nonlinear system can be expressed as a simple form,
Y@ =¥ (@P + (D). (35)
4.2 The Aitken Stochastic Gradient Algorithm

Since the information vector in the Hammerstein piecewise linearity system with
colored noise contains the unmeasured noise variables v(t — i), we denote 0(7) and
w(r) as the estimates of the v(t) and ¥ (7) at time 7, respectively. Let 17(1) be the
estimate of # at time t and define the innovation e(t) at time t as follows,

e(r) = y(1) — ¥ (P (z — 1), (36)

where

V(@O =[5 — 1), —H( —2), ..., =9 —n), §(—q(x)§(v),
S(=q(r = D)g(r = 1),....5(=q(t —n+1)§(rt —n+1),5(q(r)q(r),
§@(z —1)g(r — 1), ... 5@ —n+ 1§ —n+1),
e(t—1),e(t=2),...,e(t —ng)|T € R, (37)

Remark 6 Since the information vector ¥ (t) contains the unmeasurable variables
v(t —1i), their estimates e(t — i) can be used to replace these unknown noise variables
v(t — i) in the information vector.

By using the Aitken accelerated iteration technique, the Aitken SG (A-SG) algo-
rithm for the Hammerstein system with colored noise is developed as follows,

_ A (@i(r — 1) —ai(r —2))*
G =T =2 e a G —2) —2a 1) 58
o (i (t — 1) — iy (x — 2))*
T = =2 = ) (e —2) — 2 (r = 1) e
b;(tym(t) = b;(t — 2y (t — 2)
~ (b)(t = iy (r = 1) = bj(x = 2ix(x — 2))>
b (T (t) + bj(t — 2mp(t —2) — 2b;(x — Vg (z — 1)
J(t — 1) — d: (1 — 2
J(0) = di(r —2) — — (dz(tA 1) —di(r A2)) ’ @l
di(v) 4+ di(t —2) = 2d;i(x — 1)

B (1) = [a1(r), a(x), ..., an(v), m1(x), b (V)1 (), ..., by_1 (T (7),

. (40)

(), b (D)ma (1), ..., ba_1 (D)2 (D], (42)
Ao A ¥ (o)
dr) =P -D+ ) e(7), (43)
e(t) = y(0) — ¥ (O - D), (44)

Birkhauser
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Y(0) =[5 — D), =51 = 2),....—H( —n), §(=q(1)§ (1),
S(—g(z —1)g(x —1),...,8(—q(xr —n+ 1))g(r —n+1),
S(q(m)q(r),S(g(r = 1)g(r = 1), ...,
S(@r—n+1))g(x —n+1,e(r—1),e(r —2),...,e(t —n)]",
(45)

WT) = — D+ (OF ). (46)

The flowchart of the A-SG algorithm is presented in Fig. 2. The proposed methods
in this paper can combine other identification methods [40,41] to study the parameter
estimation problems of different systems with colored noises such as nonlinear systems
[21,22] and can be applied to other studies such as signal modeling and communication
networked systems.

5 Numerical Examples
Example 1 Consider the following Hammerstein model,

A@)y(r) = B() flg(1)) +v(7),
(@) = —ary(t = 1) —aay(t = 2) + f(q(r)) + b1 f(g(r — D)) + v(7)
= —0.15y(r — 1) = 0.46y(t —2) + f(q(r)) +0.9f(q(r — 1)) + v(7),

[03¢(2), 0 < q(0),
Fla@) = {0.2q(r>, 4(v) <0,

£ = [a1,ar, mi, bymy, ma, byma]T =[0.15, 0.46,0.3,0.27, 0.2, 0.18]",
X(@) = [y =1, =y —2),5(=q(1))gq(7), s(—q(t — D)q(r — 1), s(q(r))q(7),
s(g(r — 1)g(x — DI,

where {v(7)} is taken as a white noise sequence with zero mean and variance o2 =

0.10%, and {g(7)} is an input sequence with zero mean and unit variance.

The SG, the FF-SG and the A-SG algorithms are applied to estimate the parameters
of the piecewise linear system. The estimation errors § := ||é — &E|l/1I&] or 8 :=
||§ — &||/1& || versus 7 are shown in Fig. 3 and Tables 1, 2, 3. The means and variances
of these three algorithms are given in Table 4.

Example 2 Consider the following Hammerstein model with colored noise,

_ B(©)_ D(¢)
y() = mx(f) + T{)v(f),

y(@) = —aiy(t — 1) —axy(r = 2) + f(q(7))
+b1f(q(r — 1) +v(r) +div( — 1)
= —021y(t — 1) — 0.10y(r — 2) + f(g(1))
+0.5f(g(r — 1)) +v(r) — 0.38v(r — 1),

Birkhauser
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< Start: set the data length N >

Initialize: 7 =1

I

Collect(q(7),y(t) T=1,2,--- ,N)

|

Compute 9 ()

!

Compute e(7) and A(T)

I

Updata 9(7)

|

Compute @;(7),m(7), d;i(T) and B]- (7)mg(T)

I

Form 9(7)

T:=7+1

No

[9(r) =9(r =) <e

Obtain the estimation vector 9(7)
C End )

Fig.2 The flowchart of the A-SG algorithm for computing # (t)

2.0g(t), 0<gq(r),
fa@) = {1451]8, q(t)qs( ()),
¥ = la1, az, my, bymy, ma, byma, di]" =[0.21,0.1,2.1, 1.0, 1.4, 0.7, —0.38] T,
Y (o) =[—y(@—1), =y —2),5(=q(1))q(),s(=q(x — D)g(r — 1),
s(q(t)q (1), s(g(r — 1))g(x — 1), v(x — DI,
2

where {v(7)} is taken as a white noise sequence with zero mean and variance 0~ =
0.10%, and {g(7)} is an input sequence with zero mean and unit variance.

The SG, the FF-SG and the A-SG algorithms are applied to estimate the parameters
ofA the piecewise linear system with colored noise, and the estimation errors § :=
[ — d||/||#| or 6 := ||[# — &#||/||?] versus T are shown in Fig. 4.
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Table 1 The SG algorithm estimates and errors
T ap a) mi bom my bimy § (%)
200 0.04083 0.16651 0.26437 0.17274 0.00366 0.00348 61.66538
300 0.04830 0.20358 0.26153 0.18991 0.00494 0.00702 56.89736
1000 0.10378 0.41049 0.29093 0.24533 0.01641 0.01982 37.10998
2000 0.12327 0.46443 0.30027 0.26422 0.02391 0.02621 34.36189
3000 0.13360 0.47360 0.30331 0.26445 0.02896 0.03104 33.26419
4000 0.13824 0.46949 0.30147 0.26559 0.03473 0.03676 32.00474
True values 0.15000 0.46000 0.30000 0.27000 0.20000 0.18000
Table 2 The FF-SG algorithm estimates and errors
T aj an my bom1 mo bimy 8 (%)
200 0.13891 0.46556 0.29009 0.26591 0.02386 0.02229 34.59102
300 0.15193 0.48521 0.30785 0.27068 0.03740 0.03271 32.25484
1000 0.13960 0.47354 0.30659 0.27659 0.11953 0.12364 14.61765
2000 0.13406 0.47258 0.29529 0.26013 0.16786 0.18061 5.77445
3000 0.15447 0.46863 0.30856 0.26935 0.17421 0.19053 4.48426
4000 0.14725 0.45795 0.30604 0.26156 0.19427 0.20173 3.64792
True values 0.15000 0.46000 0.30000 0.27000 0.20000 0.18000
Table 3 The A-SG algorithm estimates and errors
T ay ap mi bomy my bimy 8 (%)
200 0.11453 0.40492 0.28738 0.24380 0.01903 0.01315 37.41977
300 0.12956 0.44890 0.30304 0.25569 0.02803 0.02165 34.35594
1000 0.13892 0.48233 0.30700 0.26897 0.09372 0.07633 21.99768
2000 0.13399 0.47318 0.29746 0.26644 0.14094 0.11049 13.66729
3000 0.14170 0.47315 0.30640 0.26826 0.16830 0.13107 8.85996
4000 0.14612 0.46246 0.30048 0.26475 0.20241 0.15626 3.62995
True values 0.15000 0.46000 0.30000 0.27000 0.20000 0.18000
Taple 4 The means and Algorithms Means Variances
variances of the parameter
estimation errors SG 0.22881 0.21693
FF-SG 0.11682 0.44864
A-SG 0.10235 0.14723

Birkhauser



1648 Circuits, Systems, and Signal Processing (2021) 40:1635-1651
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Fig.3 The SG, FF-SG and A-SG estimation errors § versus T of Example 1
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Fig.4 The SG, FF-SG and A-SG estimation errors § versus t of Example 2

From these two examples, we can get the following finds.

1. Tables 1, 2, 3 show that the FF-SG algorithm and the A-SG algorithm are better
than the SG algorithm.

2. Figures 3 and 4 show that the estimation error curve of the FF-SG algorithm oscil-
lates seriously when the errors converge to zero, but the estimation error curve of
the A-SG algorithm is relatively smooth.

3. Table 4 shows that the A-SG algorithm is the most effective algorithm among these
three algorithms.

4. The algorithms proposed in this paper can not only identify the Hammerstein system
with white noise, but also the Hammerstein system with colored noise.

0%

0 Birkhduser



Circuits, Systems, and Signal Processing (2021) 40:1635-1651 1649

6 Conclusions

In this paper, some SG algorithms are proposed for Hammerstein systems with piece-
wise linearity. The key term separation method is used to transform the nonlinear
model into a regression model. In order to accelerate the convergence rate of the SG
algorithm, an FF-SG algorithm and an A-SG algorithm are studied. Compared with
the FF-SG algorithm, the A-SG algorithm has almost the same estimation error mean
but smaller estimation error variance. Therefore, the A-SG algorithm has a wider
application prospect in system identification.

The purpose of this paper is to develop two accelerated SG algorithms for nonlinear
systems. These methods can combine other identification algorithms, e.g., recursive
least squares algorithm, expectation—maximization algorithm, to study the parame-
ter estimation issues of time-delay systems, switching systems and neural network
learning systems [25,44,45].
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