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Abstract
The primary purpose of this work was to address the problem of finite-time fault
detection filtering for a class of discrete-time Takagi–Sugeno (T–S) fuzzy Markovian
jump systems subject to randomly occurring uncertainties, time-varying delay, miss-
ing measurements and partly unknown transition probability matrices. Precisely the
missing measurement phenomenon in the network environment satisfies the Bernoulli
distributed white noise sequences. Firstly a fuzzy rule-dependent filter is constructed
for estimating the unmeasured states of the system and the corresponding fault detec-
tion problem. Further, based on the filtering problem, the error between residual and
fault is minimized with the prescribed strict (Q, S, R)-γ dissipativity performance.
Secondly, the sufficient criteria are derived to ensure the filtering error system to be
finite-time stochastic bounded. Finally, the applicability and usefulness of the proposed
filter design through two numerical examples are verified.
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1 Introduction

Markovian jump systems (MJSs) are a special kind of hybrid and stochastic systems
which describe many practical systems such as networked control systems, aerospace
systems, communication systems, electrical systems [16,21,39,40,42]. Precisely,MJSs
form a class of multi-model systems, and the Markov process governs the transition
probability among the modes. In general, the transition probability of MJSs can be
described by time-dependent polytope set when the transition rates are not exactly
known. Many beneficial works on control and filtering for MJSs are available in the
recent literature [3,17,19,24,29,31]. In [24], the authors investigated the asynchronous
sliding mode control problem for a class of discrete-time MJSs with time-varying
delays based on partly accessible mode detection probabilities. In many practical
applications, the system of state variables is not always accessible by direct measure-
ments, so it is necessary to estimate the states of a dynamical system through available
measurements. For instance, the class of discrete time-varying systems addresses the
effects of missing measurements, signal quantization and non-Gaussian disturbances
in [29]. Recently, numerous results for the filtering problem ofMJSs have been investi-
gated, for example, [1,2,8,12,15,20,33–36,44]. In [8], themode-dependent filtering has
been studied for a class of nonhomogeneous MJSs with dual-layer operation modes.

In another research direction, a T–S fuzzy model is a useful tool for describing
nonlinear dynamical systems having any degree of accuracy. Significantly, the T–S
fuzzy-based model estimates a nonlinear system wherein IF-THEN rules denote the
input–output relationship of the system. As a result, most of the literature illustrates
the importance of T–S fuzzy systems [4,5,14,22,28,30,38,43]. The authors in [38]
obtained sufficient conditions in terms of linear matrix inequalities (LMIs) to ensure
the exponential stability of the discrete-time T–S fuzzy switched systems with time-
varying delay and packet dropouts. In [43], for a class of switched T–S fuzzy systems,
the mixed H∞ and passivity-based filtering problem has been studied with average
dwell time approach. Although T–S fuzzy systems with Markovian jumping param-
eters have great potential applications in a variety of areas, there has been almost no
existing literature on the fault-detection filtering problem for T–S fuzzy MJSs with
missing measurements, and the purpose of this paper is to fill the gap.

On the other hand, in many real-time systems, faults may occur due to param-
eter shifting, component failures, sudden environmental changes, etc. The presence
of faults may often lead to poor performance degradation or even loss of stability.
To ensure higher performance and reliability of systems and maintain higher safety,
the faults need to be detected and identified as quickly as possible. Based on this
circumstance, many significant results have been reported regarding fault detection
filter design problem [7,9,13,27,32,41]. In [7], for nonhomogeneous MJSs, the fault
detection filtering problem is addressed via T–S fuzzy techniques. However, most
of the works mentioned above regarding the fault detection filtering problem of T–S
fuzzy MJSs have focused only on the behavior over an infinite time interval. Based
on this phenomenon, for various discrete-time systems, a huge number of results
on finite-time fault detection filtering problem have been proposed; for instance; see
[6,10,11,18,23,25,26,37,45]. In [10], for discrete-time interconnected systems, the
finite-time fault detection filter design with average dwell time is investigated. To the
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best of our observation, however, the finite-time fault detection filtering problem for
a class of discrete-time T–S fuzzy-based MJSs is not yet completely examined.

Inspired by the above discussion, in this paper, we focus on the finite-time fault
detection filtering problem for a class of discrete-time T–S fuzzy MJSs subject to
missing measurements, time-varying delay and randomly occurring uncertainties. By
constructing Lyapunov–Krasovskii functional and Jensen’s inequality, some sufficient
conditions are developed to obtain the finite-time fault detection filter design for the
above-mentioned T–S fuzzy MJSs. The main contributions of this paper are presented
as follows:

1. The problem of finite-time fault detection filter design for T–S fuzzy MJSs with
randomly occurring uncertainties, time-varying delay and missing measurements
is considered.

2. The proposed fuzzy rule-dependent non-fragile filter design is easy to implement
since it has a significant amount of parameters that can be easily tuned via a simple
algebraic structure.

3. The fault detection filtering problem is solved by using a residual signal approach.
By comparing the outputs of the filter and fault signal, a residual is generated from
which the fault is detected when the obtained residual signal exceeds the threshold
value.

Finally, two numerical examples including mass–spring damper model are given to
validate the usefulness of the proposed filter design technique.

NotationsThroughout this paper, the following notations are used: The subscripts T
and (−1) represent the matrix transpose and matrix inverse, respectively. Rn denotes
the n- dimensional Euclidean space. I and 0 stand for the identity and zero matrices
respectively. A block-diagonal matrix is notated as diag{· · · }. In symmetric block
matrix expressions, we use asterisk (∗) to specify the terms that are induced by sym-
metry. Further, E{�} expresses the mathematical expectation.

2 Problem Formulation and Preliminaries

Let {r(k), k ∈ Z +} be a Markov chain taking the value in a state-space S =
{1, 2, . . . ,M } with transition probabilities defined by �(k) = φmn(k), m, n ∈ S ,
where Pr{r(k + 1) = n|r(k) = m} = φmn is the transition probabilities from mode m
to n at time k and k + 1 respectively and φmn(k) ≥ 0,

∑M
n=1 φmn(k) = 1 should be

satisfied.
Consider a class of discrete-time T–S fuzzy MJSs with randomly occurring

uncertainties, time-varying transition probabilities and missing measurements over
a probability space (�,F ,Pr) and its dynamics are given as follows:

Plant Rule υ: IF �1(k) is Mυ1, �2(k) is Mυ2, . . ., and �p(k) is Mυ p, Then

x(k + 1) = A υ
r(k)x(k) + A υ

dr(k)x(k − d(k)) + Bυ
r(k)u(k) + E υ

r(k)w(k) + F υ
r(k) f (k),

y(k) = ρ(k)C υ
r(k)x(k) + C υ

dr(k)x(k − d(k)) + Dυ
r(k)u(k) + G υ

r(k)w(k) + H υ
r(k) f (k),

(1)
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where υ = 1, 2, . . . , t , A υ
r(k) = Aυ

r(k) + λ1(k)
Aυ
r(k); A υ

dr(k) = Aυ
dr(k) +

λ2(k)
Aυ
dr(k)(k); x(k) ∈ Rn is a state vector; u(k) ∈ Rm is the control input;

w(k) ∈ Rq denotes the disturbance input which belongs to �2[0,∞); y(k) ∈ Rp

is the measured output; f (k) ∈ Rl is a fault to be detected; d(k) is the time-varying
function satisfying 1 ≤ d1 ≤ d(k) ≤ d2, where d1 and d2 are the lower and upper
bounds of time-varying delay, respectively. Aυ

r(k), A
υ
dr(k), B

υ
r(k), E

υ
r(k), F

υ
r(k), C

υ
r(k),

Dυ
r(k), G

υ
r(k) andH

υ
r(k) are known constant matrices with appropriate dimensions. The

uncertainties 
Aυ
r(k)(k) and 
Aυ

dr(k)(k) are defined as [
Aυ
r(k)(k) 
Aυ

dr(k)(k)] =
Mr(k)Fr(k)(k)[Nr(k) Ndr(k)], where Mr(k), Nr(k) and Ndr(k) are the known appropriate
dimensionalmatrices; Fr(k)(k) is the unknown time-varyingmatrix function satisfying
FT
r(k)(k)Fr(k)(k) ≤ I . The stochastic variables ρ(k) and λz(k) (z = 1, 2) are Bernoulli

distributed white noise sequences with Pr{ρ(k) = 1} = ρ̄ and Pr{λz(k) = 1} = λ̄z ,
where ρ̄, λ̄1, λ̄2 ∈ [0, 1] are known constants. For the sake of convenience, we denote
r(k) = m.

The stochastic variable ρ(k) is used to represent the phenomena of missing mea-
surements, when ρ(k) = 1, there is no packet dropout. If ρ(k) = 0, then the
loss of packet dropout may have occurred and it is taken as E{ρ(k) − ρ̄} = 0,
E{|ρ(k) − ρ̄|2} = ρ̄(1 − ρ̄). Let Mυρ be the fuzzy sets with t number of IF–THEN
rules. The premise variable vector is �(k) = [�1(k),�2(k), . . . , �p(k)]. The given
βυ(�(k)) =

∏p
ρ=1 Mυρ(�υ(k))

∑t
υ=1

∏p
ρ=1 Mυρ(�υ(k))

≥ 0 is the fuzzy basis functions with Mυρ(�υ(k))

representing the grade of membership of �υ(k) in Mυρ (υ = 1, 2, . . . , t; ρ =
1, 2, . . . , p). Moreover we have βυ(�(k)) ≥ 0 and

t∑

υ=1
βυ(�(k)) = 1 for all k.

The T–S fuzzy MJSs with missing measurement (1) are formulated as

x(k + 1) =
t∑

υ=1

βυ(�(k))

[

A υ
m x(k) + A υ

dmx(k − d(k)) + Bυ
mu(k) + E υ

mw(k) + Fυ
m f (k)

]

,

y(k) =
t∑

υ=1

βυ(�(k))

[

ρ(k)C υ
m x(k) + C υ

dmx(k − d(k)) + Dυ
mu(k) + G υ

mw(k) + H υ
m f (k)

]

. (2)

Further for the T–S fuzzy MJSs (2), we design a fuzzy-rule-dependent non-fragile
filter as given below:

Rule ρ: IF �1(k) is Mρ1, �2(k) is Mρ2, . . . and �p(k) is Mρ p, THEN

x f (k + 1) =
p∑

ρ=1

βρ(�(k))
[
A ρ

f mx f (k) + Bρ
f m y(k)

]
,

μ(k) =
p∑

ρ=1

βρ(�(k))
[
C ρ

f mx f (k)
]
, (3)

whereA ρ
f m = Aρ

f m + 
Aρ
f m(k);Bρ

f m = Bρ
f m + 
Bρ

f m(k); x f (k) ∈ Rs denotes the

state vector of the filter; μ(k) ∈ Rl is the residual signal; Aρ
f m, Bρ

f m and C ρ
f m are the

filter parameters to be designed; The matrices 
Aρ
f m(k) and 
Bρ

f m(k) are the non-
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fragile terms in the filter gain matrices and they are taken as [
Aρ
f m(k) 
Bρ

f m(k)] =
M1mFm(k)[Nam Nbm], where M1m, Nam and Nbm are the known matrices; Fm(k) is
the unknown time-varying matrix function satisfying Fm(k)T Fm(k) ≤ I .

Now a weighting matrix functional is considered, which is combined with the fault
f (k). The main purpose of introducing the weighting matrix functional is to increase
the performances of the fault detection system, that is, fw(z) = W (z) f (z) can be
interpreted into the state-space model as follows:

xw(k + 1) = Awxw(k) + Bw f (k),

fw(k) = Cwxw(k), (4)

where xw(k) ∈ Rk is the state vector; Aw, Bw, and Cw are known matrices with
appropriate dimensions. Let e(k) = μ(k) − fw(k) be the estimation error and it can
be represented by the augmented filtering error system by

η(k + 1) =
t∑

υ=1

p∑

ρ=1

[

(Āυρ
m + ρ̄Ã

υρ
m )η(k) + Ā

υρ
dmη(k − d(k)) + B̄

υρ
m ϑ(k)

]

,

e(k) =
t∑

υ=1

p∑

ρ=1

C̄
υρ
m η(k), (5)

where

η(k) =
[
xT (k) xTf (k) xTw(k)

]T
, ϑ(k) = [

uT (k) wT (k) f T (k)
]T

,

Ā
υρ
m =

⎡

⎣
A υ

m 0 0
ρ̄Bρ

f mC
υ
m A ρ

f m 0
0 0 Aw

⎤

⎦ , Ã
υρ
m =

⎡

⎣
0 0 0

Bρ
f mC

υ
m 0 0

0 0 0

⎤

⎦ ,

Ā
υρ
dm =

⎡

⎣
A υ

dm 0 0
Bρ

f mC
υ
dm 0 0

0 0 0

⎤

⎦ ,

B̄
υρ
m =

⎡

⎣
Bυ

m E υ
m F υ

m
Bρ

f mD
υ
m Bρ

f mG
υ
m Bρ

f mH
υ
m

0 0 Bw

⎤

⎦ , C̄
υρ
m =

⎡

⎣
0

C ρ
f m

−Cw

⎤

⎦

T

.

Remark 1 While taking the transition probability matrix �(k), two important things
are noted for the MJSs; (i) A comparable T–S fuzzy MJSs (1) obeys the homogeneous
Markov chain, when �(k) is a constant matrix. (ii) If the matrix �(k) is time-variant,
then the system (1) follows the non-homogeneous Markov chain. More precisely the
time-varying transition probability matrix is studied throughout this paper. Specifi-
cally, the difference of transition probability can be expressed in a polytope which is
given as
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�(k) =
L∑

s=1

αs(k)�
s,

where �s = {φs
mn}, s = 1, 2, . . . , L, are the matrices denoting the vertices in the

polytope αs(k). Further αs(k) ∈ [0 1] and also satisfies
∑

L

s=1 αs(k) = 1.

Throughout this paper, the fault detection is measured by choosing the residual eval-
uation which includes an evaluation function Jμ(k) and a threshold Jth denoted in the

form Jμ(k) =
√

k0+L∑

k=k0

μT (k)μ(k), and Jth = sup
w �=0, u �=0, f =0

Jμ(k) respectively, where L

denotes the finite evaluation time length. Thus the fault can be detected by comparing
an evaluation function and threshold according to the following rule:

Jμ(k) > Jth �⇒ with-fault,

Jμ(k) ≤ Jth �⇒ without-fault.

The following assumption and definitions will be useful in providing our main results
in Sect. 3.

Assumption 1 The disturbance input vector ϑ(k) is time-varying and satisfies∑
H

k=0 ϑT (k)ϑ(k) ≤ δ̃, where δ̃ > 0.

Definition 1 [18] LetFm (m ∈ S ) be symmetric positivematrices and 0 < �1 < �2.
Then the augmented filtering error system (5) is finite-time stochastic bounded with
respect to (�1, �2,Fm, H, δ̃), if

E{ηT (k1)Fmη(k1)} ≤ �1 �⇒ E{ηT (k)Fmη(k)} < �2,

∀k1 ∈ {−d2, d2 + 1, . . . , 0} and k ∈ {0, 1, 2, . . . , H} holds for any nonzero ϑ(k)
satisfying Assumption (1).

Definition 2 [26] The augmented filtering error system (5) is finite-time stochastic
bounded with strictly (Q, S, R)-γ dissipative subject to (�1, �2,Fm, H, δ̃, γ ), where
Fm is a positive definite matrix, 0 < �1 < �2, if the system is finite-time stochastic
bounded with respect to (�1, �2,Fm, H, δ̃) and under zero initial condition, the
estimation error e(k) satisfies

E

{ H∑

k=0

[eT (k)Qe(k) + 2eT (k)Sϑ(k) + ϑT (k)Rϑ(k)]
}

≥ γ E

{ H∑

k=0

ϑT (k)ϑ(k)

}

,

for any nonzero ϑ(k) satisfying Assumption (1), where Q, S and R are real constant
matrices with symmetric Q and R.
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3 Main Results

In this section, our main attention is to derive sufficient conditions for the finite-time
stochastic boundedness and strictly (Q, S, R)-γ dissipativity of the augmented filtering
error system (5) with missing measurement and randomly occurring uncertainties. For
this purpose, first we prove the finite-time stochastic boundedness with known filter
gain matrices for the augmented filtering error system (5). Secondly, the finite-time
stochastic bounded strictly (Q, S, R)-γ dissipative performance of the filtering system
(5) is investigated. Finally, by considering the parameter uncertainties and filter gain
fluctuations, we get the proposed finite-time fault detection filter for the augmented
filtering error system (5). Further a corollary deals with the consideredmodel (5) in the
absence of Markovian jump process to ensure the finite-time stochastic boundedness
with strictly (Q, S, R)-γ dissipativity subject to (�1, �2,Fm, H, δ̃, γ ).

Theorem 1 Consider the augmented filtering error system (5) with Assumption 1. For
given positive scalars d1, d2, μ̃, μ̃−k , �1, H, δ̃, ρ̄, λ̄1, λ̄2 and let Fm (m ∈ S ) be
positive definite matrices, the augmented filtering error system (5) with 
Aυ

m = 0,

Aυ

dm = 0 is finite-time stochastic boundedwith respect to (�1, �2,Fm, H, δ̃) if there
exist �2 > 0 and positive definite matrices Ps

m, Ps
m (m ∈ S , s = 1, 2, . . . ,M ),

Qa (a = 1, 2, 3) such that the following inequalities hold for all υ, ρ = 1, 2, . . . , t:

[�υυ
m ] < 0, υ = ρ, (6)

[�υρ
m ] + [�ρυ

m ] < 0, υ < ρ, (7)

ψ̃�1 + θ̃W δ̃ < θ̃P̂s
m
�2μ̃

−k, (8)

θ̃ P̂s
m ≤ Ps

m ≤ θ̃P̂ S
m
, 0 < Q1 < θ̃Q̂1

, 0 < Q2 < θ̃Q̂2
, 0 < Q3 < θ̃Q̂3

, (9)

where

�υρ
m =

[[�̂υρ
m ]5×5 �̃

υρT
m P l

ms
∗ −P l

ms

]

, [�̂υρ
m ]1,1 = −μ̃Ps

m + (1 + dM )Q1 + Q2 + Q3,

[�̂υρ
m ]2,2 = −Q2, [�̂υρ

m ]3,3 = −Q1, [�̂υρ
m ]4,4 = −Q3, [�̂υρ

m ]5,5 = −W ,

�̃υρ
m = [

P lT
ms(Ā

υ
m + ρ̄Ã

υ
m) 0 P lT

msB̄
υ
m 0 P lT

msĀdm
]T

,

βl(k) = αs(k + 1), P l
ms =

L∑

n=1

L∑

s=1

L∑

l=1

αs(k)βl(k)φ
s
mn P

l
n, Ps

m =
L∑

s=1

αs(k)P
s
m,

ψ̃ = θ̃P̂s
m

+ d1θ̃Q̂2
+ d2θ̃Q̂3

+ d2θ̃Q̂1
+ θ̃Q̂1

(d2 − d1)(d2 + d1 − 1)

2
.

Proof The Lyapunov–Krasovskii functional is considered for the augmented filtering
error system (5) in the following form

V (k) = V1(k) + V2(k) + V3(k), (10)
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where

V1(k) = ηT (k)

(
L∑

s=1

αs(k)P
s
m

)

η(k),

V2(k) =
k−1∑

g=k−d(k)

ηT (g)Q1η(g) +
k−1∑

g=k−d1

ηT (g)Q2η(g) +
k−1∑

g=k−d2

ηT (g)Q3η(g),

V3(k) =
−d1∑

i=−d2+1

k−1∑

g=k+i

ηT (g)Q1η(g).

By considering the forward difference of V (k) together with the trajectories of pro-
posed augmented system (5) and taking the mathematical expectation, we obtain

E{
V1(k)} = E

{

ηT (k + 1)

( L∑

s=1

αs(k)α(k + 1)
L∑

n=1

�mn P
s
n

)

η(k + 1)

− ηT (k)

( L∑

s=1

αs(k)P
s
m

)

η(k)

}

,

= E

{

ηT (k + 1)

[ L∑

s=1

L∑

n=1

L∑

l=1

αs(k)βl(k)�mn P
l
n

]

η(k + 1)

− ηT (k)

( L∑

s=1

αs(k)P
s
m

)

η(k)

}

,

= E

{
[(

Ā
υρ
m + ρ̄Ã

υρ
m

)
η(k)

]T
P l

ms

[(
Ā

υρ
m + ρ̄Ã

υρ
m

)
η(k)

]

+ [Āυρ
dmη(k − d(k))]TP l

ms

[Āυρ
dmη(k − d(k))] + B̄

υρT
m P l

msB̄
υρ
m − ηT (k)Ps

mη(k)

}

, (11)

E{
V2(k)} = E

{

ηT (k)Q1η(k) + ηT (k)Q2η(k) + ηT (k)Q3η(k)

− ηT (k − d(k))Q1η(k − d(k)) − ηT (k − d1)Q2η(k − d1)

− ηT (k − d2)Q3η(k − d2) +
k−1∑

g=k−d2+1

ηT (g)Q1η(k)

}

, (12)

E{
V3(k)} = E

{

(d2 − d1)η
T (k)Q1η(k) −

k−1∑

g=k−d2+1

η(g)Q1η(g).

}

(13)
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Then, from (11)–(13), it follows that

E{
V (k) − ϑT (k)W ϑ(k)} ≤ E{ζ T (k)
[[�υρ

m ]5×5 + �υρT
m P l

ms�
υρ
m ]ζ(k)}, (14)

where ζ(k) = [η(k) η(k − d1) η(k − d(k)) η(k − d2) ϑ(k)] and the elements of
[�υρ

m ]5×5, �
υρ
m and P l

ms are defined as in the Theorem statement.
Now the elements in Theorem 1 are obtained from (14) by implementing Lemma

2.3 in [18]. Thus, if the LMIs in (6) and (7) hold, it is obvious that

E{V (k + 1)} < μ̃E{V (k)} + θ̃W E{ϑT (k)ϑ(k)}, (15)

where θ̃W = θ̃maxW . Furthermore, if μ̃ ≥ 1, then from Assumption 1, we can obtain
the following inequality

E{V (k)} ≤ μ̃ke{V (0)} + μ̃k θ̃W δ̃. (16)

Let P̂s
m = F−1/2Ps

mF
−1/2, Q̂1 = F−1/2Q1F−1/2, Q̂2 = F−1/2Q2F−1/2 and

Q̂3 = F−1/2Q3F−1/2. Then it follows from constraints (10) and 0 ≤ k ≤ H that

E{V (0)} = E

{

ηT (0)F 1/2Ps
mF

1/2η(0)

}

+ E

{ −1∑

g=−d(0)

ηT (0)F 1/2Q1F
1/2η(0)

}

+ E

{ −1∑

g=−d1

ηT (0)F 1/2Q2F
1/2η(0)

}

+ E

{ −1∑

g=−d2

ηT (0)F 1/2Q3F
1/2η(0)

}

+ E

{ −d1∑

i=−d2+1

−1∑

g=i

ηT (0)F 1/2Q1F
1/2η(0)

}

,

≤ ψ̃�1, (17)

where ψ̃ is defined in theorem statement.
On the other hand, from (10), we can have

E{V (k)} ≥ E{ηT (k)Ps
mη(k)} ≥ θ̃ P̂s

mE{ηT (k)Fmη(k)}. (18)

Now, by combining the inequalities (17) and (18), we have

E{ηT (k)Fmη(k)} ≤ (1/θ̃P̂s
m
(ψ̃�1 + θ̃W δ̃))μ̃k < �2. (19)

It is obvious to see that the inequality (19) is the same as that in (8) which is the
desired condition. Thus it is concluded that the augmented filtering error system (5) is
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finite-time stochastic bounded with respect to (�1, �2,Fm, H, δ̃), which completes
the proof. ��
By considering that the dissipative performance index is taken into account, sufficient
conditions for proving the finite-time stochastic boundedness with strict (Q, S, R)-
γ dissipativity of the augmented filtering error system (5) is given in the following
theorem.

Theorem 2 Let d1, d2, μ̃, μ̃−k , �1, H, δ̃, γ , ρ̄, λ̄1, λ̄2 be given positive scalars
and Fm (m ∈ S ) be the positive symmetric matrices. Further, the augmented
filtering error system (5) is finite-time stochastic bounded with strictly (Q, S, R)-γ
dissipativity subject to (�1, �2,Fm, H, δ̃, γ ), if there exist positive definite matrices
Ps

m, P l
ms (m ∈ S ), Qa (a = 1, 2, 3), Q, S, Rq = RTq and a scalar �2 > 0 such that

the following LMIs hold for υ, ρ = 1, 2, . . . , t:

[�̃υυ
1m] < 0, υ = ρ, (20)

[�̃υρ
1m] + [�̃ρυ

1m] < 0, υ < ρ, (21)

ψ̃�1 + θ̃W δ̃ < θ̃P̂s
m
�2μ̃

−k, m ∈ S , (22)

where

�̃
υρ
1m =

⎡

⎣
[�̃υρ

m ]5×5 �̃
υρT
m P l

ms C̄ υ
m
T√

Q
∗ −P l

ms 0
∗ ∗ −I

⎤

⎦ ,

[�̃υρ
m ]1,5 = −C̄ υ

m
T
S, [�̃υρ

m ]5,5 = R − γ I ,

and the other elements of [�̃υρ
m ]5×5 and �̃

υρ
m are same as in Theorem 1.

Proof To determine the strictly (Q, S, R)-γ dissipativity of the augmented filtering
error system (5), we consider the performance index as follows :

J (k) = E

{ H∑

k=0

([eT (k)Qe(k) + 2eT (k)Sϑ(k) + ϑT (k)Rϑ(k)] − γϑT (k)ϑ(k)
)
}

.

(23)

By following similar steps in the proof of Theorem 1, it is obvious that E{
V (k) −
(μ̃ − 1)V (k) − J (k)} ≤ 0. Thus we get E{V (k + 1)} < E

{
μ̃V (k) + eT (k)Qe(k) +

2eT (k)Sϑ(k) + ϑT (k)[R − γ I ]ϑ(k)
}
.

In addition, μ̃ ≥ 1, then it follows that

E{V (k)} ≤ E

{

μ̃kV (0) +
k−1∑

a=0

μ̃k−a−1eT (k)Qe(k) + 2
k−1∑

a=0

μ̃k−a−1eT (k)Sϑ(k)

+
k−1∑

a=0

μ̃k−a−1ϑT (k)[R − γ I ]ϑ(k)

}

.
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On the other hand V (k) ≥ 0 ∀k = 1, 2 . . . , H and under zero initial condition, we
have

E

{

γ

k−1∑

a=0

μ̃k−a−1ϑT (k)ϑ(k)

}

≤ E

{ k−1∑

a=0

μ̃k−a−1eT (k)Qe(k) + 2
k−1∑

a=0

μ̃k−a−1eT (k)Sϑ(k)

+
k−1∑

a=0

μ̃k−a−1ϑT (k)Rϑ(k)

}

.

This implies that

J (k) = E

{

γ

H∑

k=0

ϑT (k)ϑ(k)

}

≤ E

{ H∑

k=0

eT (k)Qe(k) + 2
H∑

k=0

eT (k)Sϑ(k)

+
H∑

k=0

ϑT (k)Rϑ(k)

}

.

Moreover, if LMIs (20)–(22) hold, then J (k) < 0. Thus, byDefinition 2, it is concluded
that the augmented filtering error system (5) is finite-time stochastic bounded with
strictly (Q, S, R)-γ dissipativity subject to (�1, �2,Fm, H, δ̃, γ ). Hence the proof is
complete. ��

Next we design the filtering error system (5) with the presence of randomly
occurring uncertainties which is denoted as A υ

m = Aυ
m + λ̄1
Aυ

m(k) and A υ
dm =

Aυ
dm + λ̄2
Aυ

dm(k).

Theorem 3 Let d1, d2, μ̃, μ̃−k , �1, H, δ̃, γ , ρ̄, λ̄1, λ̄2 be given positive scalars and
Fm (m ∈ S ) be the known positive matrices. Moreover the augmented filtering
error system (5) is finite-time bounded with strictly (Q, S, R)-γ dissipative subject to
(�1, �2,Fm, H, δ̃, γ ) if there exist positive definite matrices P111, P112, P12, U1, U3,
V , Q111, Q112, Q12, Q211, Q212, Q22, Q311, Q312, Q32, any appropriate dimensioned
matrices U, V, Aυ

Fm, B
υ
Fm, C

υ
Fm and positive scalars �2, ε̃1, ε̃2 such that the following

LMIs together with (22) hold for all υ, ρ = 1, 2, . . . , t:

[�υυ
m ] < 0, υ = ρ, (24)

[�υρ
m ] + [�ρυ

m ] < 0, υ < ρ, (25)
[
U V

∗ V

]

> 0, (26)
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where �
υρ
m =

⎡

⎢
⎢
⎢
⎢
⎣

[�̃υρ
m ]19×19 ε̃1�1 �2 ε̃2�3 �4

∗ −ε̃1 0 0 0
∗ ∗ −ε̃1 0 0
∗ ∗ ∗ −ε̃2 0
∗ ∗ ∗ ∗ −ε̃2

⎤

⎥
⎥
⎥
⎥
⎦
,

[�̃υρ
m ]1,1 = −μ̃P11 + (1 + dM )Q111 + Q211 + Q311,

[�̃υρ
m ]1,16 = AυT

m U + ρ̄CυT
m BυρT

Fm + C υT
m BυρT

Fm ,

[�̃υρ
m ]1,17 = AυT

m V + ρ̄C υT
m BυρT

Fm + C υT
m BυρT

Fm ,
[�̃υρ

m ]2,2 = −μ̃P12 + Q112 + dMQ112 + Q212 + Q312,

[�̃υρ
m ]2,14 = −CυρT

Fm S, [�̃υρ
m ]2,16 = AυρT

Fm , [�̃υρ
m ]2,17 = AυρT

Fm ,

[�̃υρ
m ]2,19 = CυρT

Fm

√−Q, [�̃υρ
m ]3,3 = −μ̃P2 + Q12 + dMQ12 + Q22 + Q32,

[�̃υρ
m ]3,15 = CυT

w S, [�̃υρ
m ]3,18 = AT

wV , [�̃υρ
m ]3,19 = −CT

w

√−Q,
[�̃υρ

m ]4,4 = −Q211, [�̃υρ
m ]5,5 = −Q212, [�̃υρ

m ]6,6 = −Q22, [�̃υρ
m ]7,7 = −Q111,

[�̃υρ
m ]7,16 = AυT

dmU + C υT
dm BυρT

Fm , [�̃υρ
m ]8,8 = −Q112, [�̃υρ

m ]9,9 = −Q12,
[�̃υρ

m ]10,10 = −Q311, [�̃υρ
m ]11,11 = −Q312, [�̃υρ

m ]12,12 = −Q32,

[�̃υρ
m ]13,13 = R1 − γ I , [�̃υρ

m ]13,16 = BυT
m U + DυT

m BυρT
Fm ,

[�̃υρ
m ]13,17 = BυT

m V + DυT
m BυρT

Fm , [�̃υρ
m ]14,14 = R2 − γ I ,

[�̃υρ
m ]14,16 = E υT

m U + G υT
m BυρT

Fm , [�̃υρ
m ]14,17 = E υT

m V + G υT
m BυρT

Fm ,

[�̃υρ
m ]15,15 = R3 − γ I , [�̃υρ

m ]15,16 = F υT
m U + H υT

m BυρT
Fm ,

[�̃υρ
m ]15,17 = F υT

m V + H υT
m BυρT

Fm , [�̃υρ
m ]15,18 = V

T Bw, [�̃υρ
m ]16,16 = −V,

[�̃υρ
m ]17,17 = −V, [�̃υρ

m ]18,18 = −V, [�̃υρ
m ]19,19 = −I ,

�1 = [λ1Nυ
m 0 · · · 0︸ ︷︷ ︸

5

λ2Nυ
m 0 · · · 0︸ ︷︷ ︸

12

]T , �2 = [0 · · · 0︸ ︷︷ ︸
15

MυT
m U MυT

m V 0 0]T ,

�3 = [0 Nρ
m 0 · · · 0︸ ︷︷ ︸

10

Nρ
mD

υ
m Nρ

mGυ
m Nρ

mH
υ
m 0 · · · 0︸ ︷︷ ︸

4

]T ,

�4 = [0 · · · 0︸ ︷︷ ︸
15

MρT
1m MρT

1m 0 0]T and the rest of the elements are zero. Then there

exists a desired fault detection filter in the form of (3) such that the augmented filtering
error system (5) is finite-time stochastic bounded with strictly (Q, S, R)-γ dissipative.
Moreover, if the matrix inequalities (24)–(26) are feasible, then the matrices for a
desired filtering error system in the form of (5) are constructed as

[
Aρ

f m Bρ
f m

Cρ
f m 0

]

=
[
V

−1 0
0 I

] [
Aρ
Fm Bρ

Fm
Cρ
Fm 0

]

. (27)

Proof FromTheorem 2, we partition somematrices in (21) which are given byP l
ms =

diag{U , V }, Ps
m = diag{P1, P2}, Q1 = diag{Q11, Q12}, Q2 = diag{Q21, Q22},

Q3 = diag{Q31, Q32}, where U , P1 ∈ R
2n × R

2n and V , P2 ∈ R
k × R

k . Now
the augmented filtering error system (5) is finite-time stochastic bounded with strict
(Q, S, R) − γ dissipativity if the above-defined partition matrices exist such that the
following LMIs hold:
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[�̂υυ
m ] < 0, υ = ρ, (28)

[�̂υρ
m ] + [�̂ρυ

m ] < 0, υ < ρ, (29)

where

�̂υρ
m =

⎡

⎢
⎢
⎣

[�̂υρ
m ]9×9 �̂

υρ
m U �̂wV �̂

ρ
C∗ −U 0 0

∗ ∗ −V 0
∗ ∗ ∗ −I

⎤

⎥
⎥
⎦

with

[�̂υρ
m ]1,1 = −μ̃P1 + (1 + dM )Q11 + Q21 + Q31, [�̂υρ

m ]1,9 = −Ĉ ρT
f m ,

[�̂υρ
m ]2,2 = −μ̃P2 + (1 + dM )Q12 + Q22 + Q32,

[�̂υρ
m ]2,9 = CT

w S, [�̂υρ
m ]3,3 = −Q21,

[�̂υρ
m ]4,4 = −Q22, [�̂υρ

m ]5,5 = −Q11, [�̂υρ
m ]6,6 = −Q12, [�̂υρ

m ]7,7 = −Q31,

[�̂υρ
m ]8,8 = −Q32, [�̂υρ

m ]9,9 = R − γ I ,

�̂υρ
m = [Âυ

1m + Â
υ
2m 0 0 0 Â

υ
dm 0 0 0 B̂υρ

m ]T ,

�̂w = [0 Aw 0 · · · 0︸ ︷︷ ︸
6

B̂w]T , �̂
ρ
C = [√Q

T
Ĉ ρ

f m − √
Q
T
Cw 0 · · · 0︸ ︷︷ ︸

7

]T ,

Â
υρ
1m =

[
A υ

m 0
ρ̄Bρ

f mC
υ
m A ρ

f m

]T
, Â

υρ
2m =

[
0 0

Bρ
f mC

υ
m 0

]T
,

B̂υρ
m =

[
Bυ

m E υ
m F υ

m
Bρ

f mD
υ
m Bρ

f mG
υ
m Bρ

f mH
υ
m

]T
, Ĉ ρ

f m =[0 C ρ
f m], B̂w = [0 0 Bw].

Now partition matrices P11, Q11, Q21, Q31 are defined as P11 = diag{P111, P112},
Q11 = diag{Q111, Q112}, Q21 = diag{Q211, Q112}, Q31 = diag{Q311, Q312}
and also partition U =

[
U1 U2
∗ U3

]

> 0, where U1, U2, U3 ∈ R
n×n . If U2 is square,

it is accepted as a nonsingular matrix without affecting generality. Moreover, define
the nonsingular matrices as follows:

� �
[
I 0
0 U−1

3 UT
2

]

, V � U2U
−1
3 UT

2 , U � U1. (30)

On the other hand, the filter gain parameters are modified as

[
Aρ
Fm Bρ

Fm
Cρ
Fm 0

]

�
[
U2 0
0 I

] [
Aρ
Fm Bρ

f m
Cρ

f m 0

] [
U−1
3 UT

2 0
0 I

]

. (31)
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Further, by performing a congruence transformation to (28) and (29) by � =
diag{I9×9, �, I , I }, we obtain

�T �̂υυ
m � < 0, (32)

�T �̂υρ
m � + �T �̂ρυ

m � < 0. (33)

Considering (30)–(31), we have

A
υρT
1m U� =

[
A υT

m U + ρ̄C υT
m BρT

Fm A υT
m V + ρ̄C υT

m BρT
Fm

AρT
Fm AρT

Fm

]

,

A
υρT
2m U� =

[
C υT
m BρT

Fm C υT
m BρT

Fm
0 0

]

,

A
υT
dmU� =

[
A υρT

dm U + ρ̄C υT
dm BρT

Fm A υT
dm V + ρ̄C υT

dm BρT
Fm

0 0

]

,

B
υρT
m U� =

⎡

⎢
⎣

BυT
m U + DυT

m BρT
Fm BυT

m V + DυT
m BρT

Fm

E υT
m V + G υT

m BρT
Fm E υT

m U + G υT
m Bρ

Fm
T

F υT
m U + H υT

m BρT
Fm F υT

m V + H υT
m BρT

Fm

⎤

⎥
⎦ .

Now (31) can be expressed as

[
Aρ

f m Bρ
f m

Cρ
f m 0

]

=
[
U−T
2 U−1

3 V
−1 0

0 I

] [
Aρ
Fm Bρ

Fm
Cρ
Fm 0

] [
U−T
2 U3 0
0 I

]

. (34)

Note that the filter gain parameters Aρ
f m , B

ρ
f m and Cρ

f m in (3) can be modified as

(34) which involveU−T
2 U3 as similarity transformation on the state-space realization

of the filter. Without loss of generality, we may assume that U−T
2 U3 = I , thus we

obtain (27). Furthermore, by considering (32)–(34) together with Lemma 2.1 in [18],
we can get the LMIs (24) and (25). Thus the considered augmented filtering error
system (5) is finite-time stochastic bounded with strict (Q, S, R)-γ dissipative subject
to (�1, �2,Fm, H, δ̃, γ ), only if the LMIs (24) and (25) hold together with (22).
Hence the proof of this Theorem is complete. ��

Next we consider the augmented filtering error system (5) with the absence of the
Markovian jump parameters in the following form

η(k + 1) = (Āυρ + ρ̄Ã
υ)η(k) + Ā

υρ
d η(k − d(k)) + B̄

υρϑ(k),

e(k) = C̄
υρη(k), (35)
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where

Ā
υρ =

⎡

⎣
A υ 0 0

ρ̄Bρ
f C

υ A ρ
f 0

0 0 Aw

⎤

⎦ , Ã
υρ =

⎡

⎣
0 0 0

Bρ
f C

υ 0 0
0 0 0

⎤

⎦ ,

Ā
υρ
d =

⎡

⎣
A υ

d 0 0
Bρ

f C
υ
d 0 0

0 0 0

⎤

⎦ ,

B̄
υρ =

⎡

⎣
Bυ E υ F υ

Bρ
fD

υ Bρ
f G

υ Bρ
fH

υ

0 0 Bw

⎤

⎦ and C̄
υρ = [

0 C ρ
f −Cw

]
.

Corollary 1 Under the Assumption 1, for given positive scalars d1, d2, μ̃, μ̃−k , �1,
H, δ̃, γ , ρ̄, λ̄1, λ̄2 and positive definite matrix F , the considered augmented system
(35) is finite-time stochastic bounded with strictly (Q, S, R)-γ , dissipative subject to
(�1, �2,F , H, δ̃, γ ) if there exist positive definite matrices P111, P112, P12, U1, U3, V ,
Q111, Q112, Q12, Q211, Q212, Q22, Q311, Q312, Q32, any appropriate dimensioned
matrices U, V, Aυ

F , B
υ
F , �υ

F and positive scalars �2, ε̃3, ε̃4 such that the following
LMIs together with (22) hold:

[�υυ ] < 0, υ = ρ, (36)

[�υρ] + [�ρυ ] < 0, υ < ρ, (37)

where �υρ =

⎡

⎢
⎢
⎢
⎢
⎣

[�̂υρ]19×19 ε̃3�
T
5 �6 ε̃4�

T
7 �8

∗ −ε̃3 0 0 0
∗ ∗ −ε̃3 0 0
∗ ∗ ∗ −ε̃4 0
∗ ∗ ∗ ∗ −ε̃4

⎤

⎥
⎥
⎥
⎥
⎦
,

[�̂υρ]1,1 = −μ̃P11 + (1 + dM )Q111 + Q211 + Q311,

[�̂υρ]1,16 = AυT
U + ρ̄CυT BυρT

F + C υT BυρT
F ,

[�̂υρ]1,17 = AυT
V + ρ̄C υT BυρT

F + C υT BυρT
F ,

[�̂υρ]2,2 = −μ̂P12 + Q112 + dMQ112 + Q212 + Q312,

[�̂υρ]2,14 = −CυρT
F S, [�̂υρ]2,16 = AυρT

F , [�̂υρ]2,17 = AυρT
F , [�̂υρ]2,19 =

CυρT
F

√−Q, [�̂υρ]3,3 = −μ̃P2 + Q12 + dMQ12 + Q22 + Q32, [�̂υρ]3,15 = CυT
w S,

[�̂υρ]3,18 = AT
wV , [�̂υρ]3,19 = −CT

w

√−Q, [�̂υρ]4,4 = −Q211, [�̂υρ]5,5 =
−Q212, [�̂υρ]6,6 = −Q22, [�̂υρ]7,7 = −Q111, [�̂υρ]7,16 = AυT

d U + C υT
d BυρT

F ,

[�̂υρ]8,8 = −Q112, [�̂υρ]9,9 = −Q12, [�̂υρ]10,10 = −Q311, [�̂υρ]11,11 = −Q312,

[�̂υρ]12,12 = −Q32, [�̂υρ]13,13 = R1 − γ I , [�̂υρ]13,16 = BυT
U + DυT BυρT

F ,

[�̂υρ]13,17 = BυT
V + DυT BυρT

F , [�̂υρ]14,14 = R2 − γ I , [�̂υρ]14,16 = E υT
U +

G υT BυρT
F , [�̂υρ]14,17 = E υT

V + G υT BυρT
F , [�̂υρ]15,15 = R3 − γ I , [�̂υρ]15,16 =

F υT
U + H υT BυρT

F , [�̂υρ]15,17 = F υT
V + H υT BυρT

F , [�̂υρ]15,18 = V
T Bw,

[�̂υρ]16,16 = −V, [�̂υρ]17,17 = −V, [�̂υρ]18,18 = −V, [�̂υρ]19,19 = −I , �1 =
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[ε̃1λ1Nυ 0 · · · 0︸ ︷︷ ︸
5

ε̃1λ2Nυ
d 0 · · · 0︸ ︷︷ ︸

12

]T , �2 = [0 · · · 0︸ ︷︷ ︸
15

MυT
U MυT

V 0 0]T , �3 =

[0 ε̃2N
ρ
a 0 · · · 0︸ ︷︷ ︸

10

ε̃2N
ρ
bD

υ ε̃2N
ρ
bG

υ ε̃2N
ρ
bH

υ 0 · · · 0︸ ︷︷ ︸
4

]T , �4 = [0 · · · 0︸ ︷︷ ︸
15

Mρ
1
T

Mρ
1
T 0 0]T and the remaining elements are zero. Then there exists a desired fault

detection filter in the form of (3) such that the augmented filtering error system (5)
is finite-time stochastic bounded with strictly (Q, S, R)-γ dissipative. Moreover, the
parameters of the filtering error system in the form of (35) are taken by

[
Aυ

f Bυ
f

Cυ
f 0

]

=
[
V

−1 0
0 I

] [
Aυ
F Bυ

F
Cυ
F 0

]

. (38)

Proof The proof of this corollary is similar to that of Theorem 3, and hence it is
neglected. ��

Remark 2 The system under consideration and results derived in this paper can effec-
tively reflect the nature of practical systems since it involves random parameter
uncertainties, time-varying delays and missing measurements. Thus, it is worthy of
mentioning that the consideration of all the unavoidable factors in a single framework
makes the system to be more appropriate and significant. In [7,8,33,34], various filters
are developed for discrete-time Markovian jump systems. So far in the works men-
tioned above, the finite-time results have not yet been discussed. However, from the
practical point of view, finite-time stability and boundedness are the most appropriate
concepts to employ in real-world systems. On the other hand, parameter uncertainty is
significant complexity in systemmodeling due to environmental disturbances. Further,
the parameter uncertainties occur in a probabilistic way due to sudden environmental
changes. Also, the transition probabilities among the modes are not always exactly
available, and hence, they are assumed to be partly known. Based on this scenario, in
this paper, the problem of finite-time fault detection filtering for a class of discrete-
time T–S fuzzy Markovian jump system subject to randomly occurring parameter
uncertainties, time-varying delay, external disturbances and missing measurements is
addressed which makes the present work different from the existing works.

4 Numerical Examples

In this section, we provide two numerical examples, including mass–spring–damper
model and their simulation results to display the validity of the proposed filter design
scheme.

Example 1 Consider the T–S fuzzy MJSs (1) with two-mode and two-plant rule given
as follows:
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Rule 1 and mode = 1, 2

A11 =
[
−0.04 −0.015
0.012 −0.035

]

, A12 =
[
−0.006 −0.039
0.046 −0.79

]

, A1d1 =
[
−0.055 0.034
0.067 −0.035

]

,

A1d2 =
[
−0.0025 0.0015

0 −0.0025

]

, B1
1 = [−0.003 − 0.035]T , B1

2 = [−0.008 − 0.02]T ,

C1
1 = [−0.036 − 0.09], C1

2 = [−0.035 − 0.04], C1
d1 = [−0.001 0.06],

C1
d2 = [0.002 − 0.03], E1

1 = E1
2 = [−0.08 0.02]T , F1

1 = [0.04 − 0.05]T ,

F1
2 = [0.06 0.02]T , H1

1 = G1
2 = 0.02, H1

2 = D1
1 = 0.04, D1

2 = 0.09, G1
1 = −0.03.

The parametric uncertainties for plant rule:1 are chosen as follows

M1
1 = M1

11 = [0.1 0.02]T , M1
2 = M1

12 = [0.1 0.14]T , N 1
1 = [0.01 0.01],

N 1
2 = [0.06 0.02], N 1

d1 = [0.04 0.12], N 1
d2 = [0.08 0.11], N 1

a1 = [0.01 0.12],
N 1
a2 = [0.03 0.02], N 1

b1 = 0.01, N 1
b2 = 0.03.

Rule 2 and mode = 1, 2

A21 =
[
−0.024 0.05
0.022 −0.05

]

, A22 =
[
−0.016 −0.05
0.006 −0.043

]

, A2d1 =
[
−0.0025 0.011

0 0.02

]

,

A2d2 =
[
−0.003 0.01

0 −0.03

]

, B2
1 = [−0.001 − 0.030]T , B2

2 = [−0.005 − 0.022]T ,

C2
1 = [−0.025 − 0.06]T , C2

2 = [−0.018 − 0.03], C2
d1 = [−0.05 − 0.03],

C2
d2 = [−0.003 − 0.08], E2

1 = [−0.004 0.039]T , E2
2 = [−0.005 0.022]T ,

F2
1 = [0.02 − 0.03]T , F2

2 = [0.03 0.08]T , H2
1 = −0.03, H2

2 = 0.02, D2
1 = 0.08,

D2
2 = 0.05, G2

1 = 0.07, G2
2 = 0.09.

The parametric uncertainties for plant rule:2 are taken as

M2
1 = M2

11 = [0.1 0.03]T , M2
2 = M2

12 = [0.1 0.32]T , N 2
1 = [0.05 0.11],

N 2
2 = [0.03 0.04], N 2

d1 = [0.06 0.04], N 2
d2 = [0.01 0.01], N 2

a1 = [0.02 0.01],
N 2
a2 = [0.04 0.05], N 2

b1 = 0.02, N 2
b2 = 0.04.

Further the fault weighting matrices are taken as Aw =
[
0.65 0.22
0.45 0.07

]

, Bw =
[0.05 0.09]T and Cw = [−0.02 0.05]. Furthermore we choose the parameters as
λ̄1 = 0.1, λ̄2 = 0.53, ρ̄ = 0.04, μ̃ = 0.2, γ = 2.5789 and assume that the time-
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Fig. 1 State responses of the system (2)

varying delay bound lies between 1 to 5. By solving the LMIs in Theorem (3) together
with the aforementioned parameter values, we obtain the filter gain matrices as

A f 11 =
[
−0.0104 −0.1247
0.0090 0.1085

]

, A f 12 =
[
−0.1223 −0.1800
0.1023 0.1489

]

,

A f 21 =
[
−0.0312 −0.0207
−0.0072 −0.0044

]

, A f 22 =
[
−0.1101 −0.1799
0.1855 0.2090

]

,

B f 11 =
[
0.2019 −0.1741

]T
, B f 12 =

[
0.2134 −0.1818

]T
,

B f 21 =
[
0.1230 0.0874

]T
, B f 22 =

[
0.0800 0.0449

]T
, C f 11 =

[
0.1483 1.7831

]
,

C f 12 =
[
0.2706 0.5276

]
, C f 21 =

[
0.9557 0.6339

]
and C f 22 =

[
1.0656 0.9983

]
.

For the simulation purposes, we have selected the following time-varying transition
probability matrices as

�1 =
[
0.2 0.8
? 0.65

]

, �2 =
[

? 0.45
0.48 ?

]

, �3 =
[
0.6 0.4
0.3 0.7

]

, �4 =
[
? 0.8
? 0.1

]

.

Moreover the control inputs the external disturbances, the fault signals and the mem-

bership functions are chosen as u(k) = 0.0065, w(k) =
{
4 sin(k), 5 ≤ k ≤ 50,

0, elsewhere.
,

f (k) =
{
2.5 sin(k), 30 ≤ k ≤ 80,

0, elsewhere.
, h1(x1(k)) = 1− sin2 k

0.2
2 and h2(x2(k)) = 1+ sin2 k

0.2
2

respectively. Under the initial conditions x(0) = x f (0) = [0.1 0.1]T together with
the above mentioned gain values, the corresponding simulation results are plotted in
Figs. 1, 2, 3, 4, 5, 6, 7 and8.The state response curves are depicted inFig. 1. Specifically
Figs. 2 and 3 expose the original state and the proposed filter state responses respec-
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Fig. 2 Trajectory of x1(k) and x f 1(k)
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Fig. 3 Trajectory of x2(k) and x f 2(k)

tively. Moreover the corresponding filter state responses, the error state responses and
the residual signal are shown in Figs. 4, 5 and 6, respectively. In Fig. 7, the evaluation
function is given for the fault and fault-free cases. Meanwhile, the selected threshold

value is Jth = sup
w �=0,u �=0, f =0

√
150∑

0
μ(k)Tμ(k) = 0.0797. Then we obtain the evaluation

function Jμ =
35∑

0
μT (k)μ(k) = 0.0798 and it is evident that the evaluation function

Jμ is greater than the threshold Jth . In this way, the fault is detected in five time steps
within the fault range. Further the jumping mode is given in Fig. 8. Moreover within
the �2 bound the time evolution of xT (k)Fmx(k) (m ∈ S ) is shown in Fig. 9. It is
examined from Fig. 9 that the trajectories of the augmented filtering error system are



1626 Circuits, Systems, and Signal Processing (2021) 40:1607–1634

0 20 40 60 80 100
−0.1

−0.05

0

0.05

0.1

Time (k)

 

 
xf1(k)
xf2(k)

Fig. 4 State responses of the filter system (3)
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Fig. 5 Filtering error

under the prescribed bounded �2 = 0.1957, which means that the considered system
(2) is finite-time stochastic bounded with strictly (Q, S, R)-γ dissipative subject to
(0.1, 0.1957, I , 100, 0.3, 2.5789). Hence, it can be concluded from the simulations
that the designed filter algorithm effectively works for the augmented filtering error
system (5) even in the presence of uncertainties and missing measurements.

Example 2 The mass–spring damper mechanical system from [45] is described as
follows:

x(k + 1) = (Aυ + λ̄1
Aυ(k))x(k) + (Aυ
d + λ̄2
Aυ

d (k))x(k − d(k)) + Bυu(k) + Eυw(k)

+ Fυ f (k),

y(k) = ρ(k)Cυ x(k) + Cυ
d x(k − d(k)) + Dυu(k) + Gυw(k) + Hυ f (k), (39)
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Fig. 6 Residual signal
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Fig. 7 Residual evaluation function

Rule 1

A1 =
[

0.3 0.2
−0.0012 0.5

]

, A1d =
[

0.2 0
−0.0028 0.1

]

, B1 =
[

0
0.2

]

, E1 =
[

0.02
−0.01

]

,

F1 =
[
0.3
0.5

]

, C1 =
[
0.2 0.9

]
, Cd1 =

[
0 −0.1

]
, D1 = 0.4, G1 = 0.2, H1 = −1.2.

We choose the uncertain parameters as

M1 = [0.1 0.02]T , N 1 = [0.01 0.2], N 1
d = [0.04 0.12],

N 1
a = [0.01 0.1], N 1

b = 0.01.
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Fig. 8 Jumping mode

0 20 40 60 80 100
0

0.05

0.1

0.15

0.2

0.25

Time (k)

2=0.1957

Fig. 9 Evolution of xT (k)Fmx(k)

Rule 2

A2 =
[

0.3 0.2
−0.0048 0.5

]

, A2d =
[

0.2 0
−0.0113 0.1

]

, B2 = [
0 0.2

]T
, E2 =

[−0.09
0.03

]

,

F2 =
[−0.4
0.6

]

, C2 = [
0.1 0.3

]
, Cd2 = [

0.6 −0.3
]
, D2 = 0.3, G2 = −0.2.

We consider the uncertain parameters as M2 = [0.1 0.14]T , N 2 = [0.06 0.1],
N 2
d = [0.06 0.04], N 2

a = [0.03 0.1] and N 2
b = 0.03.
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Fig. 10 State responses of the system (2)
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Fig. 11 Trajectory of x1(k) and x f 1(k)

Further, we set the remaining parameters to be the same as in Example 1. Then,
by solving the LMIs in Corollary (1) along with the parameter values as mentioned
above, we obtain the filter gain matrices as

A f 1 =
[
−0.0574 −0.5744
0.0518 0.5177

]

, A f 2 =
[
0.2145 0.0270
0.0270 0.2805

]

, B f 1 =
[
−0.5146 −0.1038

]
,

B f 2 =
[
−0.4445 0.0959

]
, C f 1 =

[
0.0460 0.4591

]
, C f 2 =

[
0.0736 0.3497

]
.

For simulation purposes, we consider the control input, disturbances input and fault

signals are w(k) =
{
1.5 sin(k) 15 ≤ k ≤ 30

0 otherwise,
f (k) =

{
0.8 sin(k) 20 ≤ k ≤ 40

0 otherwise
,
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Fig. 12 Trajectory of x2(k) and x f 2(k)
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Fig. 13 State responses of the filter system (35)

u(k) = 0.0045, h1(x1(k)) = 1 − (0.3x(k)+0.7x(k))2

0.09 and h2(x2(k)) = (0.3x(k)+0.7x(k))2

0.09 .
Moreover, under the initial conditions x(0) = [0.1 0.1]T and x f (0) = [0.1 0.3]T ,
the corresponding simulation results are plotted in Figs. 10, 11, 12, 13, 14, 15,
16, and 17. The state trajectory is displayed in Fig. 10.The actual states and
their estimations are shown in Figs. 11 and 12. Moreover, the corresponding fil-
ter state responses, the error state responses and the residual signal are depicted in
Figs. 13, 14 and 15, respectively. The evaluation function Jth is illustrated for fault
and fault-free cases in Fig. 16. Furthermore, the selected threshold values are Jth

= sup
u �=0, w �=0, f=0

(
∑150

k=0 μ′(k)μ(k)

)1/2

= 0.1679. Thenwe have the evaluation func-
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Fig. 14 Response of estimation error
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Fig. 15 Response of residual signal

tion Jμ(k) =
√(

∑24
k=0 μ′(k)μ(k)

)1/2

= 0.1682 and it is clear that the evaluation

function Jμ is greater than the threshold Jth ; thus the fault can be detected after four
time steps within the fault range. In addition to obtain the finite-time stability, the
time history of xT (k)F x(k) is displayed in Fig. 17. It is easy to observe that the state
responses of the filter state lies within the optimum bound �2 which is clearly shown
in Fig. 17. Hence, from these simulation results, it is concluded that the considered
mechanical system (39) is finite-time boundedwith strictly (Q, S, R)-γ dissipative sub-
ject to (0.07, 0.5017, I , 100, 0.1, 1.512) through the proposed filter design approach.
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Fig. 16 Residual evaluation function
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Fig. 17 Evaluation of xT (k)F x(k)

5 Conclusion

In this paper, we have studied the robust finite-time fault detection filtering problem for
a class of T–S fuzzy MJSs with randomly occurring uncertainties, time-varying delay
and missing measurements. In particular, we have considered the non-homogeneous
Markov process, which takes the transition probability as partly unknown. Besides, the
systemuncertainties are described through stochastic variables satisfying theBernoulli
distribution. By employing the Lyapunov stability theory and some discrete-time type
Jensen’s inequality technique, we developed a finite-time boundedness criterion with
the prescribed performance index. Moreover, a filter design algorithm is presented in
the form of LMI constraints to ensure the finite-time stochastic stabilization of the
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addressed systems. Finally, we have provided two numerical examples to verify the
developed theoretical results.

Data Availability Data sharing is not applicable to this article as no new data were created or analyzed in
this study.
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