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Abstract
In this paper, a novel diffusion estimation algorithm is proposed from a probabilistic
perspective by combining the diffusion strategy and the probabilistic leastmean square
(LMS) at all distributed network nodes. The proposed method, namely diffusion-
probabilistic LMS (DPLMS), is more robust to the input signal and impulsive noise
than previous algorithms like the diffusion sign-error LMS (DSE-LMS), diffusion
robust variable step-size LMS (DRVSSLMS), and diffusion least logarithmic abso-
lute difference (DLLAD) algorithms. Instead of minimizing the estimation error,
the DPLMS algorithm is based on approximating the posterior distribution with an
isotropic Gaussian distribution. In this paper, the stability of the mean estimation error
and the computational complexity of the DPLMS algorithm are analyzed theoreti-
cally. Simulation experiments are conducted to explore the mean estimation error for
the DPLMS algorithm with varied conditions for input signals and impulsive inter-
ferences, compared to the DSE-LMS, DRVSSLMS, and DLLAD algorithms. Both
results from the theoretical analysis and simulation suggest that the DPLMS algorithm
has superior performance than the DSE-LMS, DRVSSLMS, and DLLAD algorithms
when estimating the unknown linear system under the changeable impulsive noise
environments.
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1 Introduction

Over the last decade, distributed estimation has received increased attention in the
multi-task network and single-task network [3, 11, 15, 16, 21, 29], especially for the
parameter estimation of linear frequency modulation (LFM) signals [24], as well as
heat and mass transfer [34]. In a single-task network, the same target parameters are
collaboratively estimated for all network nodes, while in a multi-task network, tar-
get parameters of each network node need to be estimated separately [20]. This can
be improved since diffusion is important for distributed estimation. Diffusion is a
common physical phenomenon in the complex transport process. For example, Yang
et al. proposed some novel methods to deal with the analytical solution in heat and
mass transfer, such as fractional derivatives [33, 37] and kernel functions [35, 36].
Local cooperation and data processing are two important components of distributed
data processing technology, and there are three cooperative strategies widely used
for the distributed network estimation, namely incremental, consensus, and diffusion
strategies [20]. However, the incremental strategy has the same limitation with con-
sensus strategy, which is the asymmetry problem. The asymmetry problem is likely to
cause unstable growth of a network state. As the diffusion strategy is more adaptive
to environmental changes, it is not limited by this asymmetry problem. The diffusion
strategy includes the adapt-then-combine (ATC) scheme [20] and the combine-then-
adapt (CTA) scheme [3]. For the ATC scheme, the first step is to update the local
estimation by using an adaptive filtering algorithm, and then, the intermediate esti-
mates for the neighbors are fused. For the CTA scheme, first data fusion is performed,
and then the local estimation is updated by using the adaptive filtering algorithm. Cat-
tivelli and Sayed analyzed the performance of both schemes, and demonstrated that
the ATC scheme outperformed the CTA scheme [20]. After that, a variety of diffusion
estimation algorithms using ATC scheme have been proposed [2, 4, 9, 12–14, 17, 18,
31, 32, 38].

For the distributed estimation, a significant challenge is how to cope with the impul-
sive noise, since most of diffusion estimation algorithms over a network are highly
susceptible to various impulsive noises with different types of input signals. Therefore,
it is necessary to design a robust diffusion estimation algorithm to impulse noises of
different intensities. Recently, using a fixed power p, Wen [31] proposed the diffu-
sion least mean p-power (DLMP) algorithm, which is robust to the interference of
generalized Gaussian distribution environments. But the performance of the DLMP
algorithm is limited by the selected parameter p. On the other hand, minimizing the
L1-norm subject to a constraint on the estimation vectors, Ni [22] designed a diffusion
sign subband adaptive filtering (DSSAF) algorithm. The DSSAF algorithm is robust
against impulsive interferences while its complexity is relatively large. By modifying
the diffusion least mean square (DLMS) algorithm [3] and then applying the sign
operation to the estimated error signals at each iteration moment point, Ni et al. [17]
proposed a diffusion sign-error LMS (DSE-LMS) algorithm. Ye et al. [7] provided
steady-state and stability analyses of the DSE-LMS algorithm, showing that although
the DSE-LMS algorithm architecture is simple and easy to implement, the DSE-LMS
algorithm has amajor drawback, i.e., the steady-state error is high. Additionally, based
on the Huber objective function, a similar set of algorithms have been proposed by
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Zhi [13], Wei et al. [9], and Soheila et al. [1], which are the Diffusion Normalized
Huber adaptive filtering (DNHuber) [13], the diffusion robust variable step-size LMS
(DRVSSLMS) [9], and the Robust Diffusion LMS (RDLMS) [1] algorithms, respec-
tively. But, the RDLMS algorithm is not designed for impulse noise. For the DNHuber
algorithm, its robustness against the impulsive interference and input signal need to be
explored more comprehensively. The DRVSSLMS algorithm has high computational
complexity. Last but not the least, inspired by the least logarithmic absolute difference
operation, Chen et al. [4] designed another distributed cost function for the diffusion
least logarithmic absolute difference (DLLAD) algorithm. But it is unclear whether
the DLLAD algorithm is robust to the input signal and impulse noise.

In many engineering applications, the impulsive interference is present with var-
ious characteristics so that the input signal may not behave in an ideal fashion as
assumed. For example, if the input signal is strongly correlated in time, different
intensity sparsity ratios might lead to the performance degradation of parameter esti-
mation algorithms, even when the algorithms could eventually stop. As stated above,
the DSE-LMS, DRVSSLMS, and DLLAD algorithms may not be robust against the
input signal and impulsive noise. Therefore, it becomes essential to design a dis-
tributed, adaptive algorithm that is more robust to the input signal and impulsive noise
than the DSE-LMS, DRVSSLMS, and DLLAD algorithms. These factors, such as var-
ious types of the input signals or impulsive noises, usually reinforce the randomness
and non-stationarity of system identification. Approximating the posterior distribu-
tion can be used to tackle this problem. In a recent study, Fernandez-Bes et al. [6]
proposed the probabilistic LMS algorithm, and the theoretical stochastic behavior of
the probabilistic LMS algorithm has since been analyzed [10].

In earlier studies, the problem of identification was considered in either a deter-
ministic framework or with the assumption that the observation noise has a Gaussian
distribution. However, it is known that in some realistic studies, there will be outliers
due to the non-Gaussian noise. For such instances, based on themodified and extended
Masreliez-Martin filter, Stojanovic et al. [26] proposed an algorithm for the joint state
estimation and parameter estimation of stochastic nonlinear systems in the presence
of non-Gaussian noises. To cope with outliers in the estimation of unknown system
problems, they also designed an identification of the output error model by using a
constraint on the output power [25], and proposed an adaptive two-stage procedure for
generating the input signal [28].Besides, for the state estimation of nonlinearmultivari-
able stochastic systems, they derived the robust extended Kalman filter algorithm [27].
It should be noted that in the probabilistic LMS algorithm, the system coefficients are
considered to be an unknown time-varying system whose time-varying characteristics
satisfy the Gaussian distribution while the observation noise is a stationary additive
noise with zero mean and constant variance. Moreover, the α-stable distribution has
been used to model the non-Gaussian noise and is widely utilized as an impulsive
noise [22]. That is, the characteristic function of impulsive noise is defined as the
α-stable distribution. Then, Bayes’ theorem and the maximum a posteriori (MAP)
estimate were used as an approximation for the predictive step. Thus, regardless the
noise distribution, the probabilistic LMS algorithm is more robust to impulsive inter-
ference. From the probabilistic perspective, the probabilistic LMS algorithm has two
major advantages. First, this algorithm has an adaptable step size, making it suitable
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for both stationary and non-stationary environments, and having less free parameters.
Second, the use of a probabilistic model provides an estimation of the error variance,
which is useful in many applications. Thus, from approximating the posterior distri-
bution with an isotropic Gaussian distribution, we propose a diffusion probabilistic
least mean square (DPLMS) algorithm, which combines the ATC diffusion strategy
and the probabilistic LMS algorithm [6, 10] at all distributed network nodes. The sta-
bility of the mean estimation error and the computational complexity of this proposed
algorithm are analyzed theoretically. Also, simulation experiments are conducted to
explore the mean estimation error for the DPLMS algorithm with varied conditions
for input signal and impulsive interference, compared to the DSE-LMS, DRVSSLMS,
and DLLAD algorithms.

This paper is organized as follows: The proposed DPLMS algorithm is derived in
Sect. 2. The theoretical stability of the mean estimation error, mean square perfor-
mance, and the computational complexity is analyzed in Sect. 3. Then, in Sect. 4, we
design several simulation experiments. Finally, in Sect. 5, conclusions are drawn.

2 The Proposed DPLMS Algorithm

2.1 TheModified Probabilistic LMS Algorithm

The probabilistic LMS is a VSS-LMS algorithm [10]. It has been derived from a
probabilistic perspective, such as MAP estimation. Now, we will review and modify
the probabilistic LMS algorithm in this subsection. Firstly, consider an unknown time-
varying system with length M, with its coefficients at iteration moment i,

Wo(i) � Wo(t − 1) + p(i) (1)

In Eq. (1), p(i) is a white Gaussian noise with zero-mean. The time-varying Wo

(i) obeys Eq. (2), which is a Gaussian distribution:

p(Wo(i)|Wo(i − 1)) � N
(
Wo(i);Wo(i − 1), Iσ 2

p

)
(2)

where Iσ 2
p � E

[
p(i) pT(i)

]
, σ 2

p is variance for p(i), and I is a matrix with the
appropriate size.

For this unknown time-varying system, when we input a signal X(i) �
[x(i), x(i + 1), x(i + 2), . . . , x(i + M − 1)]T , the desired signal is d(i),

d(i) � WT
o (i)X(i) + ε(i) (3)

where ε(i) is a stationary additive noise with zero mean and variance of σ 2
ε . Also, we

assume that Eq. (3) obeys Eq. (4), which is a Gaussian distribution also,

p(d(i)|X(i),Wo(i)) � N
(
d(i);WT

o (i)X(i), σ 2
ε

)
(4)
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supposing that the estimation mean vector and variance of Wo(i) at iteration i are θ

(i) and σ 2(i), respectively. So, by using an isotropic spherical Gaussian distribution
[as Eq. (5)] to approximate the posterior distribution, we can obtain the probabilistic
LMS algorithm.

p(Wo(i)|Zi ) � N
(
Wo(i); θ(i), Iσ 2(i)

)
(5)

where Zi � {X(k), d(k)}ik�1.
So, based on Eq. (5), we can get

p(Wo(i)|Zi−1) �
∫

p(Wo(i)|Wo(i − 1))p(Wo(i − 1)|Zi−1)dWo(i − 1)

� N
(
Wo(i); θ(i − 1), I

(
σ 2(i − 1) − σ 2

ρ

))
(6)

where p(Wo(i − 1)|Zi−1) � N
(
Wo(i − 1); θ(i − 1), Iσ 2(i − 1)

)
at iteration i − 1.

By combining Bayes’ rule and Eq. (6), then we approximate the posterior with an
isotropic Gaussian as Eq. (7).

p(Wo(i)|Zi ) � p(d(i)|u(i),Wo(i))p(Wo(i)|Zi−1)

� N
(
Wo(i); θ(i), Iσ 2(i)

)
(7)

where

θ(i) � θ(i − 1) + α(i)
[
d(i) − XT(i)θ(i − 1)

]
X(i) (8)

and

σ 2(i) �

⎡
⎢⎢⎢⎣1 −

σ 2(i−1)+σ 2
ρ[

σ 2(i−1)−σ 2
ρ

]
‖X(i)‖2+σ 2

ε

‖X(i)‖2

L

⎤
⎥⎥⎥⎦

[
σ 2(i − 1) − σ 2

ρ

]
(9)

Set α(i) � σ 2(i−1)+σ 2
ρ[

σ 2(i−1)−σ 2
ρ

]
‖X(i)‖2+σ 2

ε

, then σ 2(i) �
[
1 − α(i)‖X(i)‖2

L

]

[
σ 2(i − 1) − σ 2

ρ

]
.

So, based on Eq. (7), by using MAP, i.e., W(i) � argmaxWo(i) p(Wo(i)|Zi ), we
can get the recursive estimation weight-vector equation of the probabilistic LMS algo-
rithm.

W(i + 1) � W(i) + α(i)e(i)X(i) (10)

where e(i) is the error signal, as e(i) � d(i) − y(i),

e(i) � d(i) − WT(i − 1)X(i)
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� WT
o (i)X(i) + ε(i) − WT(i − 1)X(i)

� XT(i)(Wo(i − 1) + p(i)) − WT(i − 1)X(i) + ε(i)

� XT(i)[Wo(i − 1) − W(i − 1)] + XT(i) p(i)) + ε(i)

� XT(i)Ŵ(i − 1) + XT(i) p(i)) + ε(i) (11)

and Ŵ(i − 1) � Wo(i − 1) − W(i − 1) is the weight-deviation vector.
To facilitate comparative analysis, we make a slight adjustment to the probabilistic

LMS that is to add a constant value parameter in Eq. (8) and Eq. (10), as Eq. (12) and
Eq. (13).

θ(i) � θ(i − 1) + τα(i)
[
d(i) − XT(i)θ(i − 1)

]
X(i) (12)

W(i + 1) � W(i) + τα(i)e(i)X(i) (13)

where 0 < τ ≤ 1 is a constant value parameter.

2.2 The Diffusion Probabilistic LMS (DPLMS) Algorithm

Now in this subsection, we will extend the modified probabilistic LMS algorithm
[as Eqs. (12)–(13)] to the diffusion probabilistic LMS algorithm. In the beginning,
we set a distributed network consisting of N network nodes (or agents), where each
node measures its data {Xn(i), dn(i)} to estimate an unknown parameter vector Wo

of length M vector through a linear model at agent n ∈ {1, 2, . . . , N }.

dn(i) � Xn(i)Wo + εn(i) (14)

In Eq. (14) Xn(i) is the input signal at n-node, dn(i) is the desired signal at n-
node,εn(t) is the measurement noise at n-node with variance σ 2

ε,n and independent of
any other data. Under reference [13], we also set Xn(i) as temporally white Gaussian
with zero mean and spatially independent with Rxx,n(i) � E

[
XT
n (i)Xn(i)

]
> 0.

The global cost function of DPLMS can be formulated as:

J global(W(i)) �
∑
n

J localn (W(i))

�
∑
n

J localn

(
argmaxWo(i) p(Wo(i)|Zi )

)

�
∑
n

∑
l∈Nn

cl,n
(
argmaxWo(i) p(Wo(i)|Zi )

)
(15)

In Eq. (15) Nn is the neighborhood of node n and its definitions, the set of nodes that
are connected to n node (including n node itself); {cl,n} is the weighting coefficients
(nonnegative real value) for each the neighborhood of nodes n and meet

∑
l∈Nn

cl,n �
1. For all network nodes, {cl,n} forms a whole combination matrix C.
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Table 1 The DPLMS algorithm summary

Therefore, inspired by the DLMS algorithm in [3], we get the motivation that we
can refer to this process to design the DPLMS algorithm via an adaptation step and
combination step.

Adaptation step at node n:

ϕn(i) � Wn(i − 1) + μαn(i)en(i)Xn(i) (16)

Combination step at node n:

Wn(i) �
∑
l∈Nn

al,nϕl(i) (17)

In Eq. (16), μ denotes the DPLMS algorithm step size, and ϕn(i) is the estimated
vectors at node n. {al,n} is the nonnegative real weighting diffusion coefficients, and
if l /∈ Nn, al,n � 0. {al,n} forms a whole diffusion coefficients matrix A and AT1 � 1.
Then, we combine the ATC diffusion strategy and the probabilistic least mean square
(PLMS) at all distributed network nodes. For convenience, based on Eqs. (14)–(17),
Table 1 is a summary of the DPLMS algorithm. Since the convergence speed and the
steady-state error will increase (decrease) as the step size μ increases (decreases), the
step size μ should be appropriately set at the beginning of the DPLMS algorithm.
Because improperly initialized weights may cause the DPLMS algorithm to slow
down, themost commonway is used.

{
wn,0 � 0

}
was set at zero for each network node

n. Furthermore, the diffusion method was used in this algorithm, so at the beginning
nonnegative combination weights, {al,n, cl,n} were set at the beginning.
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3 Performance of the DPLMS Algorithm

Performances of the DPLMS algorithm including mean behavior and computa-
tional complexity will be discussed in this subsection. Firstly, let us give some
equations,Ŵn(i − 1) � Wo −Wn(i − 1), ϕ̂n(i − 1) � Wo − ϕn(i − 1),W(i) � col
{W1(i),W2(i), . . . ,WM (i)}, ϕ(i) � col

{
ϕ1(i),ϕ2(i), . . . ,ϕM (i)

}
, Ŵ(i) � col{

Ŵ1(i), Ŵ2(i), . . . , ŴM (i)
}
, ϕ̂(t) � col

{
ϕ̂1(i), ϕ̂2(i), . . . , ϕ̂M (i)

}
.

To facilitate performance analysis, we make the following assumptions:

Assumption 1 Both the additive noise vn(i) and the regression vectorXn(i), ∀k, i, are
spatially and temporally independent. Besides, vn(i) and Xn(i) are independent of
each other.

Assumption 2 The regression vectorXn(i) is independent of Ŵk( j) for all k and j < i.

Although these assumptions are not true in general, they have been widely used in
the field of adaptive filtering [8, 20], which can help facilitate performance analysis.

3.1 Mean Performance Analysis

Using the above definitions Ŵn(i − 1) � Wo −Wn(i − 1), Eq. (16) can be shown as

ϕ̂(i) � Ŵn(i − 1) − S(i)
[
R(i)Ŵn(i − 1) +O(i)

]
(18)

where S(i) � diag{μαn(i)IM , . . . , μαn(i)IM }, R(i) � diag{∑N
l�1 cl,1X

T
l (i)Xl(i), . . . ,

∑N
l�1 cl,NX

T
l (i)Xl(i)

}
, O(i) � CTcol{

XT
n (i)εn(i),XT

n (i)εn(i), . . . ,XT
n (i)εn(i)

}
, C � C ⊗ IM , and ⊗ denotes the

Kronecker product operation.
Also, from combining ϕ̂n(i − 1) � Wo − ϕn(i − 1) and Eq. (17), we can get

Ŵ(i) � ATϕ̂(i) (19)

where A � A ⊗ IM .
So, taking Eq. (18) into Eq. (19), we can get Eq. (20), as

Ŵ(i) � AT[I − S(i)R(i)]Ŵ(i − 1) + ATS(i)O(i) (20)

Then taking the expectation at both ends of the equal sign of Eq. (20).

E
[
Ŵ(i)

]
� E

{
AT[I − S(i)R(i)]Ŵ(i − 1) + ATS(i)O(i)

}

� AT[I − E{S(i)R(i)}]E
{
Ŵ(i − 1)

}
+ E

{
ATS(i)O(i)

}

� AT[I − E{S(i)R(i)}]E
{
Ŵ(i − 1)

}
(21)
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whereE[S(i)R(i)] � μdiag
{∑N

l�1 αl(i)cl,1Rxx,l(i), . . . ,
∑N

l�1 αl(i)cl,NRxx,l(i)
}
.

Then, based on Eq. (21), we will get the condition for stability, as Eq. (22).

0 < μ <
2

ρmax

(∑N
l�1 αl(i)cl,lRxx,l(i)

) (22)

In Eq. (22), ρmax is the maximal eigenvalue of
∑N

l�1 αl(i)cl,lRxx,l(i). So, based

on Eq. (22), and under that condition, we obtain E
[
Ŵ(∞)

]
� 0, this means that the

DPLMS algorithm can achieve accurate estimation, theoretically.

3.2 Mean Square Performance

To characterize the mean square behavior of the DPLMS algorithm, we define the
mean square of weight error as weighted by a Hermitian positive-definite matrix �

that we are free to choose, which is shown as

E
∥∥∥Ŵ(i)

∥∥∥
2

�
� ŴT(i)�Ŵ(i) (23)

The matrix� can be freely chosen so that E
∥∥∥Ŵ(i)

∥∥∥
2

�
can describe various kinds of

mean square behaviors. From Eq. (20) and using Assumptions 1 and 2, if we compute
theweighted normonboth sides of the equality and use the fact thatO(i) is independent
of Ŵ(i) and Ŵ(i − 1), we can rewrite (23) more compactly as the following recursive
expression:

E
∥∥∥Ŵ(i)

∥∥∥
2

�
� E

∥∥∥Ŵ(i − 1)
∥∥∥
2

�′ + E
{
OT(i)S(i)A�ATS(i)O(i)

}
(24)

where �′ � E
{
[I − R(i)S(i)]A�AT[I − S(i)R(i)]

}
.

Moreover, setting

G � E
{
O(i)OT(i)

}
� CTdiag

{
σ 2

v,1Ru,1, . . . , σ 2
v,N Ru,N ,

}
C (25)

we can rewrite (24) in the form

E
∥∥∥Ŵ(i)

∥∥∥
2

�
� E

∥∥∥Ŵ(i − 1)
∥∥∥
2

�′ + Tr
[
�ATS(i)GS(i)A

]
(26)

where Tr[ ] denotes the trace operator. Let σ � vec(�) and σ ′ � vec
(
�′),

where the vec() notation stacks the columns of � on top of each other and vec−1

() is the inverse operation. We will use interchangeably the notation
∥∥∥Ŵ(i)

∥∥∥
2

σ

and
∥∥∥Ŵ(i)

∥∥∥
2

�
to denote the same quantity ŴT(i)�Ŵ(i). Using the Kronecker

product property vec(U�V) � (
VT ⊗U

)
vec(�), we can vectorize both sides
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of �′ � E
{
[I − R(i)S(i)]A�AT[I − S(i)R(i)]

}
and conclude that �′ � E{

[I − R(i)S(i)]A�AT[I − S(i)R(i)]
}
can be replaced by the simpler linear vector

relation:σ ′ � vec
(
�′) � Fσ , where F is the following N 2M2 × N 2M2 matrix with

block entries of size M2 × M2 each:

F � (I ⊗ I )
{
I − I ⊗ (R(i)S(i)) −

(
RT (i)S(i)

)
⊗ I + E

{
RT (i)S(i)

}
⊗

(
RT (i)S(i)

)}
(A ⊗ A)

(27)

Using Tr[�X] � vec
(
XT

)T
σ , we can then rewrite Eq. (26) as follows:

E
∥∥∥Ŵ(i)

∥∥∥
2

σ
� E

∥∥∥Ŵ(i − 1)
∥∥∥
2

Fσ
+

[
vec

(
ATS(i)GTS(i)A

)]T
σ (28)

Based on Assumptions 1 and 2, then the DPLMS algorithm (21) will be mean
square stable if the step sizes are sufficiently small such that (26) is satisfied, and the
matrix in (27) is stable.

F ≈ (I ⊗ I )
{
I − I ⊗ (R(i)S(i)) −

(
RT (i)S(i)

)
⊗ I + RT (i)S(i) ⊗ R(i)S(i)

}
(A ⊗ A)

�
[
AT (I − S(i)R(i))

]T [
AT (I − S(i)R(i))

]
(29)

Taking the limit as i → ∞ as (assuming the step-sizes are small enough to ensure
convergence to a steady-state), we deduce from (28) that:

lim
i→∞E

∥∥∥Ŵ(i)
∥∥∥
2

(I−F)σ
�

[
vec

(
ATS(i)GTS(i)A

)]T
σ (30)

Equation (30) is a useful result: it allows us to derive several performance metrics
through the proper selection of the free weighting parameter σ (or �), as was done
in [16]. For example, the MSD for any node n is defined as the steady-state value E∥∥∥Ŵ(i)

∥∥∥
2
, as i → ∞, and can be obtained by computing limi→∞ E

∥∥∥Ŵ(i)
∥∥∥
2

Tn
with

a block weighting matrix Tn that has the M × M identity matrix at block (n, n) and
zeros elsewhere. After, denoting the vectorized version of the matrix Tn by tn � vec
(diag(en) ⊗ IM ), where en is the vector whose n-th entry is one and zeros elsewhere,
and if we are selecting σ in (30) as σn � (I − F)−1tn , we arrive at the MSD for node
n:

MSDn �
[
vec

(
ATS(i)GTS(i)A

)]T
(I − F)−1tn (31)

The average network MSD is given by:

MSD � lim
i→∞

1

N

N∑
n�1

E
∥∥∥Ŵn(i)

∥∥∥
2

(32)
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Then, to obtain the networkMSD from Eq. (30), the weighting matrix of limi→∞ E∥∥∥Ŵ(i)
∥∥∥
2

T
should be chosen as T � IMN

N . Let q denote the vectorized version of IMN ,

i.e., q � vec(IMN ), and selected σ in (30) as σ � (I−F)−1q
N , the network MSD is

given by:

MSD � 1

N

[
vec

(
ATS(i)GTS(i)A

)]T
(I − F)−1q (33)

3.3 Computational Complexity

For the adaptive filtering algorithm, the computational complexity previously men-
tioned is the number of arithmetic operations per iteration for a weight vector or
coefficients vector, which includes, the number ofmultiplications, additions, divisions,
and comparisons and so on. Moreover, the time-consuming operation of a multiplica-
tion operation is much more than that of addition, so that the multiplication operation
takes a major proportion in the computational complexity of an adaptive algorithm.
Therefore, the computational complexity is an important parameter, which influences
the performance of an adaptive filtering algorithm. Compared to the probability LMS
algorithm, there are more multiplications and additions in the adaptive and combined
parts. For convenience, the computational complexity of some diffusion algorithms is
summarized in Table 2, which includes the DSE-LMS [7], DRVSSLMS [9], DLLAD
[4], probability LMS [6], and DPLMS algorithms. From Table 2, compared to the
DSE-LMS, DRVSSLMS, and probability LMS [6] algorithms, the DPLMS algorithm
is smaller. The computational complexity of DLLAD and DPLMS is the same. The
computational complexity of the probability LMS algorithm is the lowest. This is
understandable because, in the distributed strategy, each node is the executor of the
adaptive algorithm, so that the computational complexity of the distributed algorithm
is large.

4 Simulation Results

In this paper,we focus on the distributed adaptive algorithms, and compare theDPLMS
algorithm with the DSE-LMS [7], DRVSSLMS [9], and DLLAD [4] algorithms in
system identification. So, in this part, to demonstrate the robustness performance
of the proposed DPLMS algorithm in the presence of different intensity levels of
impulsive interferences and input signal, we conduct simulation experiments with
various impulsive interferences and different types of input signals. For this unknown
system, we set M � 16, and the parameters vector was selected randomly. Each
distributed network topology consists of N � 20 nodes. For impulse noise, according
to [13], we can compute the Bernoulli-Gaussian impulse noise. We set impulse noise
as v(i) � f (i)g(i), which is a product of a Bernoulli process g(i) � {0, 1} with the
probabilities p(1) � Pr, p(0) � 1− Pr and a Gaussian process f (i). Besides, we set
the impulse noise as spatiotemporally independent. For the adaptation weights in the
adaptation step and combination weights in combination step, we apply the uniform
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Table 2 The computational complexity of the DSE-LMS, DRVSSLMS, DLLAD, DPLMS, and probability
LMS algorithms

Algorithm Computational cost per iteration

Recursion × + | | sgn(·)

DSE-LMS Equation 1a in [7] (2M + 1)N + M (3M− 1)N 0 N

Equation 1b in [7] NM (N− 1)M 0 0

DRVSSLMS Equation 11 in [9] > (3M + 1)N + M (3M− 1)N 0 0

Equation 11 in [9] > (3M + 1)N + M (3M− 1)N 0 N

Equation 12 in [9] NM (N− 1)M 0 0

DLLAD Equation 16 in [4] 2MN + M (3M− 1)N N 0

Equation 17 in [4] NM (N− 1)M 0 0

Probabilistic LMS Equation 11 in [6] 3M + 4 3M + 2 0 0

DPLMS Equation 16 in this
paper

2MN + M (3M− 1)N 0 0

Equation 17 in this
paper

NM (N− 1)M 0 0

Where “×” denotesMultiplications. “>” denotes larger than. “ + ” denotesAdditions. “| |” denotesAbsolute.

rule i.e., al,n � cl,n � 1/Nn . We use the network mean square deviation (MSD)
to evaluate the performance of diffusion algorithms, where MSD(i) � 1

N

∑N
n�1 E[|Wo − Wn(i)|2

]
[8]. In addition, the independent Monte Carlo number is 60 and

each run has 4000 iteration numbers.

4.1 Simulation Experiment 1

To illustrate that our algorithm is more robust to the input signal, has a faster con-
vergence rate and a lower steady-state estimation error than the DSE-LMS [7],
DRVSSLMS [9] and DLLAD [4] algorithms, the simulation experiment 1 considered
the same network topology and the same impulsive interference with the different
input signals. If any two nodes in network topology are declared neighbors, with a
connect probability greater than or equal to 0.2, the network topology is shown in
Fig. 1. The MSD iteration curves for DRVSSLMS (μ equal to 0.6), DSE-LMS (μ
equal to 0.6), DNLMS (μ equal to 0.6), and DLLAD (μ equal to 0.6) algorithms in
Figs. 2, 3, and 4 are different types of the input signal when the measurement noise in
an unknown system is impulse noise with Pr � 0.4 and σ 2

f � 0.2.
In this experiment, we want to show that the DPLMS algorithm is more robust to

the input signal, so we set three sub-experiments with different types of input signals,
same impulsive noise and same distributed network topology. From Figs. 2, 3, and 4,
we can find that although different types of the input signals are used, the DPLMS
algorithm has the faster convergence rate and lowest steady-state error than the DSE-
LMS, DRVSSLMS, and DLLAD algorithms. Besides, the DPLMS algorithm is more
robust to the input signal. In conclusion, from Simulation experiment 1, we can get
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Fig. 1 Random network topology to be decided by probability

Fig. 2 (Left_top) the input signals {Xn(i)} variances of at each network node with Rxx,n � σ 2
x,nIM with

possibly different diagonal entries chosen randomly, (Left_bottom) themeasurement noise variances {εn(i)}
at each network node; (Right) Transient networkMSD (dB) iteration curves of the DSE-LMS,DRVSSLMS,
DLLAD, and DPLMS algorithms

that the DPLMS algorithm is superior to the DSE-LMS, DRVSSLMS, and DLLAD
algorithms.

4.2 Simulation Experiment 2

To illustrate that our algorithm is more robust to the input signal, has a faster con-
vergence rate, and a lower steady-state estimation error than the DSE-LMS [7],
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Fig. 3 (Left_top) the input signals {Xn(i)} variances of at each network node withRxx,n � σ 2
x,nIM with the

same value in each diagonal entries, (Left_bottom) themeasurement noise variances {εn(i)} at each network
node; (Right) Transient network MSD (dB) iteration curves of the DSE-LMS, DRVSSLMS, DLLAD, and
DPLMS algorithms

Fig. 4 (Left_top) the input signals {Xn(i)} variances of at each network node with Rxx,n � σ 2
x,n

(t)IM , t � 1, 2, 3, . . . , M with a different values in each diagonal entries, (Left_bottom) the measure-
ment noise variances {εn(i)} at each network node; (Right) Transient network MSD (dB) iteration curves
of the DSE-LMS, DRVSSLMS, DLLAD, and DPLMS algorithms

DRVSSLMS [9], and DLLAD [4] algorithms, the simulation experiment 2 considered
the same network topology and the same input signal with the different probability
densities of impulsive interference. If any two nodes in network topology are declared
neighbors, with a certain radius for each node large than or equal to 0.3, the network
topology is shown in Fig. 5 (Left). The MSD iteration curves for DRVSSLMS (μ
equal to 0.4), DSE-LMS (μ equal to 0.4), DNLMS (μ equal to 0.4), and DLLAD (μ
equal to 0.4) algorithms were shown in Fig. 6 with Pr � 0.1, Pr � 0.4, and Pr � 0.7
under same σ 2

f � 0.2, respectively.
In this experiment, we aim to show that the DPLMS algorithm is more robust

to different the probability densities of impulsive interference. So we set three sub-
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Fig. 5 (Left) Random network topology to be decided by a certain radius; (Right_top) the input signals
{Xn(i)} variances of at each network node with Rxx,n � σ 2

x,nIM with possibly different diagonal entries
chosen randomly, (Right_bottom) the measurement noise variances {εn(t)} at each network node

Fig. 6 Transient network MSD (dB) iteration curves of the DSE-LMS, DRVSSLMS, DLLAD, and DPLMS
algorithms. (Left) with Pr � 0.1, (middle) with Pr � 0.4 and (Right) with Pr � 0.7

experiments with different probability densities of impulsive interference, the same
input signal (correlation coefficient is 0.7) and same distributed network topology.
From Fig. 6, we can find that although different probability densities of impulsive
interference is considered, the DPLMS algorithm is slightly faster than that of the
DSE-LMS, DRVSSLMS, and DLLAD algorithms, and the DPLMS algorithm still
has a smaller steady-state error than the DSE-LMS, DRVSSLMS, and DLLAD algo-
rithms. In other words, fromSimulation experiment 2, we can observe that theDPLMS
algorithm is more robust to impulsive interference than the DSE-LMS, DRVSSLMS,
and DLLAD algorithms.

4.3 Simulation Experiment 3

To illustrate that our algorithm is more robust to the input signal, has a faster con-
vergence rate and a lower steady-state estimation error than the DSE-LMS [7],
DRVSSLMS [9], and DLLAD [4] algorithms, the simulation experiment 3 considered
the same network topology and the same input signal with the different probability
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Fig. 7 Random network topology to be decided by a certain radius

densities and variance of impulsive interference. If any two nodes in network topology
are declared neighbors, with a certain radius for each node large than or equal to 0.3,
the network topology is shown in Fig. 7. The MSD iteration curves for DRVSSLMS
(μ equal to 0.4), DSE-LMS (μ equal to 0.4), DNLMS (μ equal to 0.4), and DLLAD
(μ equal to 0.4) algorithms in Fig. 8 (Left-top, Pr � 0.7, σ 2

f � 0.2; Right-top, Pr �
0.7, σ 2

f � 0.4; Left-bottom, Pr � 0.4, σ 2
f � 0.4; Right-down, Pr � 0.4, σ 2

f � 0.6,
respectively.

Comparing Fig. 8 (Left_top) with Fig. 8 (Right_top), the DPLMS algorithm can
perform better in identifying the unknown coefficients under different impulsive inter-
ference intensities. From Fig. 8 (Left_bottom) with Fig. 8 (Right_bottom), the same
conclusion can be obtained. However, for the DSE-LMS, DRVSSLMS, and DLLAD
algorithms, the identification performance is easily interfered with by different char-
acteristics that is to say that the DPLMS algorithm is more robust. The DPLMS
algorithm is superior to the DSE-LMS, DRVSSLMS, and DLLAD algorithms. So,
for distributed network estimation in impulsive interference environments, from Sim-
ulation experiment 1–Simulation experiment 3 (total ten sub-experiments), we know
that the DPLMS algorithm has a superior performance when estimating an unknown
linear system under the changeable impulsive noise environments.

5 Conclusion

In this paper, we propose a novel DPLMS algorithm, which is a distributed algorithm
robust to various input signal and impulsive interference environments. The method
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Fig. 8 Transient network MSD (dB) iteration curves of the DSE-LMS, DRVSSLMS, DLLAD, and DPLMS
algorithms with Rxx,n � σ 2

x,n(t)IM , t � 1, 2, 3, . . . , M with different values in each diagonal entries.

(Left-top): Pr � 0.7, σ 2
f � 0.2; (Right-top): Pr � 0.7, σ 2

f � 0.4; (Left-bottom): Pr � 0.4, σ 2
f � 0.4;

(Right-down): Pr � 0.4, σ 2
f � 0.6

is developed based on the combination and modification of the DLMS algorithm and
the probabilistic LMS algorithm at all nodes in a distributed network. The theoretical
analysis demonstrates that the DPLMS algorithm can achieve an effective estima-
tion from a probabilistic perspective. It is shown that the computational complexity
of the DPLMS algorithm is smaller than that of the DRVSSLMS and DSE-LMS
algorithms, despite being equal to that of the DLLAD algorithm. Besides, theoretical
mean behavior interpretes that the DPLMS algorithm can achieve accurate estimation,
and simulation results show that the DPLMS algorithm is more robust to the input
signal and impulsive interference than the DSELMS, DRVSSLMS, and DLLAD algo-
rithms. In short, the DPLMS algorithm has a superior performance when estimating an
unknown linear system under changeable impulsive noise environments, which will
have a significant impact on real-world applications. Additionally, we wish to bring
more probability theory-based techniques to distributed adaptive filtering algorithms.
Although the DPLMS algorithm has superior performance compared to the DSE-
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LMS, DRVSSLMS, and DLLAD algorithms, the environment in actual engineering
applications is complex and time-varying, which means DPLMS algorithm needs to
be adjusted accordingly for different application scenarios. First, the delay caused by
the communication of different nodes needs to be considered [30], because the delay
will cause asynchronization. Second, we need to consider whether the parameters to
be evaluated are sparse (such as brain networks) [5, 19]. In such cases, it will be better
to add a regularized constraint terms (L1-norm) to this algorithm. Lastly, the exter-
nal environment factors such as the temperature where the system is located should
also be considered, because earlier study reported that high temperature could make
the system unstable and time-varying [23]. In such cases, it is best to increase the
parameters of the external environment in this algorithm.
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