
Circuits, Systems, and Signal Processing (2021) 40:1278–1294
https://doi.org/10.1007/s00034-020-01517-4

Implementation of a Novel, Fast and Efficient Image
De-Hazing Algorithm on Embedded Hardware Platforms

Prathap Soma1 · Ravi Kumar Jatoth1

Received: 31 December 2019 / Revised: 27 July 2020 / Accepted: 31 July 2020 /
Published online: 18 August 2020
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
Improving the visibility of hazy images is desirable for robot navigation, security
surveillance, and other computer vision applications. The presence of fog signifi-
cantly damages the quality of the captured image, which does not only affect the
reliability of the surveillance system but also produce potential danger. Therefore,
developing as well as implementing a simple and efficient image de-hazing algorithm
is essential. The reconfigurable computing devices like Field Programmable Gate
Array and Digital Signal Processing (DSP) processors are used to implement these
image processing applications. Several strategies are available for configuring these
reconfigurable devices. In this paper, two approaches for hardware implementation
of image de-hazing algorithm are presented. The pixel wise and gray image-based
de-hazing algorithm is proposed in this paper. The key advantage of this proposed
method is to estimate accurate transmission map. It eliminates the computationally
complex step of refine transmission map as well as halos & artifacts in the recovered
image and achieves faster execution without noticeable degradation of the quality of
the de-hazed image. The proposed method is initially verified in MATLAB and com-
paredwith the existing four state-of-artmethods. This algorithm is implemented on two
different hardware platforms, i.e.,DSPProcessor (TMS320C6748)with floating point-
ing operations and Zynq-706 fixed-point operations. The performance comparison of
hardware architectures is made with respect to Average Contrast of the Output Image,
Mean Square Error, Peak Signal to Noise Ratio, Percentage of Haze Improvement and
Structural Similarity Index (SSIM). The results obtained show that Zynq-706-based
hardware implementation processing speed is 1.33 times faster when compared to
DSP processor-based implementation for an image dimensions of 256 × 256.

B Prathap Soma
prathap.soma@student.nitw.ac.in

Ravi Kumar Jatoth
ravikumar@nitw.ac.in

1 Department of Electronics and Communication Engineering, NIT Warangal, Warangal, India

http://crossmark.crossref.org/dialog/?doi=10.1007/s00034-020-01517-4&domain=pdf
http://orcid.org/0000-0003-2350-4458


Circuits, Systems, and Signal Processing (2021) 40:1278–1294 1279

Keywords Field programmable gate array (FPGA) · Digital signal processing (DSP)
Processor · Zynq · Image de-hazing · Hardware descriptive language (HDL)

1 Introduction

Haze is a phenomenon of absorption or scattering of particles in the atmosphere. It
influences the attenuation of radiance along the path toward the camera and captured
images are suffered fromcontrast and quality. It limits the visibility of distant scenes. In
recent times, significant advancements has been made in de-hazing techniques based
on the atmospheric scattering model of the hazy image. The image de-hazing tech-
niques are categorized: Based on image enhancement and physical model. The image
enhancement methods include dynamic range compression and shadow compensa-
tion methods [1,7,12], linear transformation [10], structure-preservation [20] and dark
channel prior [11] whereas, polarization-based [22] image de-hazing is an example
for the physical model method.

According to [28], the methods [1,7,12] work well to enhance low-light areas while
maintaining the color information and image data, without producing visual halos. But
it has disadvantages in the dark areas and they are not being enough enhanced. In the
polarization method, the haze can be removed by considering many hazy images taken
from the dissimilar degree of polarization. In this case, more than one image is needed
to recover the de-hazed image. Based on this, Narasimhan et al. [18,19] proposed a
haze image model to estimate the haze properties of an image. This method can be
used only when the environment has a thin haze. Schechner et al. [22] observed that
air-light is partially polarized when it is scattered with atmospheric particles. Based
on the above concept, they proposed a new haze removal algorithm using a polarizer
at various angles. Therefore, the polarization method is inefficient for removing the
haze from an image. Later, Kopf et al. [14] suggested a haze removal algorithm using
depth information. Jobson et al. [13] used a multi-scale retinex method to increase the
visualness of hazy images. Tan et al. [24] used to maximize the contrast of the de-haze
image to achieve high contrast haze-free image. Since the resultant de-hazed image has
a higher contrast than a hazy image, this method is better for the thickest haze regions
with severe color distortions. Fattal et al. [9] proposed a refined image formationmodel
with an assumption that the surface shading and the scene transmission are locally
uncorrelated to estimate the thickness of the haze. Next, He et al. [11] proposed a well-
used method called dark channel prior, which produces good outcomes and efficiently
work compared with enhancement methods [1,7,10,12,20,28] for image de-hazing.
Meng et al. [16] suggested an effective regularization method for de-hazing where
the haze-free image can be restored with the help of inherent boundary constraints.
Tang et al.[25] started an investigation to find out the best feature combination for
image de-hazing on different hazy features in a random forest. The random forest is
an over-fitting problem that has inherent limitations. Cai et al. [6] proposed a trainable
end-to-end system called DehazeNet. This system works using Convolutional Neural
Networks (CNN) based on deep architecture [4]. Recently, an active contour on a
region based on image segmentation with a variational level set formulation for de-
hazing is proposed [2]. This method minimizes the energy function to preserve the



1280 Circuits, Systems, and Signal Processing (2021) 40:1278–1294

edges and it is an iterative structure. Thus, the computational complexity of thismethod
is more. Hence, it is difficult to implement on hardware. A fast and memory efficient
dehazing algorithm for real-time computer vision applications is proposed in [23] but
not discussed about its hardware implementation. Bai et al. [5] proposed a real-time
single image de-hazing system on DSP Processor, which required 4mSec time for
execution. Hence, for real-time applications, de-hazing is still a challenging task.

Digital image/video processing algorithms are difficult to implement on a processor
due to a few factors like a huge amount of data present in an image, and the complex
operations need to be performed on the image. A single image of size 256× 256 can be
considered, to perform a single operation (3x3 convolution/masking) it requires about
0.2 million computations (addition/subtraction, multiplication, padding, and shifting)
without considering the overhead of loading and recovering pixel values. This paper
presents two different implementation strategies to carry out the goal of hardware
implementation. One method is on Zynq-706 FPGA and another on DSP processor
(TMS320C6748).

This paper is organized as follows. Section 2 describes the proposed method.
In Sect. 3, the hardware architectures for the implemented de-hazing algorithm are
described in detail. Section 4 illustrates the discussion of simulation results. Conclu-
sions are provided in Sect. 5.

2 ProposedMethod

Based on atmospheric scattering theory, McCartney [15] has described a haze image
model in terms of light attenuation and air-light. This model is commonly used to
define the haze image formation and is given as

I (x) = J (x)t(x) + A[1 − t(x)] (1)

where x is the image pixel coordinate, I (x) is input hazy image, J (x) is output de-haze
image, A is air light, and t(x) is transmission media. In (1), the product term J (x)t(x)
is known as direct attenuation, the second term A[1− t(x)] is an additive component
and termed as air-light. Three unknown components are present in the above equation.
The basic idea of de-hazing is restoring J (x) from I (x) by estimating the parameters
A and t(x). Then, the final dehazed image can be represented in (2)

J (x) = A +
(

I (x) − A

max(t(x), t0))

)
(2)

Using method [11] de-hazing can be done. But, this method suffers from high com-
putation complexity owing to, wide-ranging matrix multiplication/division, sorting,
and floating-point operations. In low-speed processors, this method cannot meet the
user timing requirements for the real-time image processing applications. Therefore,
an efficient and low-complexity haze removal method using pixel-based and gray
image-based is proposed for real-time applications.

Figure 1 represents the block diagram of the proposed algorithm based on the
minimum number of computations.



Circuits, Systems, and Signal Processing (2021) 40:1278–1294 1281

Fig. 1 Block diagram of proposed algorithm

Fig. 2 Halo effect

2.1 Estimation of Average Channel

The DCP method employed a minimum channel of the pixels as a dark channel of the
image. As a result, it produces halos and artifacts in the de-hazed image. The effect of
employing a minimum of pixels with a patch-based moment is represented in Fig. 2.
The white region becomes shaded, resulting in will lead to producing undesired pixel
intensity which causes a halo effect.

Iaverage = Idark + Igray
2

(3)

The Idark can be estimated using [11]. The Igray can be estimated using (4). The
mean of these can be termed as Iaverage and it significantly reduce the halos and
artifacts present in the final dehazed image.

Igray = 0.3 ∗ R + 0.59 ∗ G + 0.11 ∗ B (4)



1282 Circuits, Systems, and Signal Processing (2021) 40:1278–1294

AL=0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Fig. 3 Variation of atmospheric light on hazy images (Flower, Table database)

Fig. 4 Transmission depth map
of different algorithms a.Zhu et
al. b. Tarel et al., c.Our Proposed
d. He et al., e. Tripathi et al.

Bicycle database

a b

c

d e

2.2 Estimation of Atmospheric Light (AL)

It is noticed that the value of the air light is always closed to higher pixel value within
the image. By conducting several simulation experiments in MATLAB with different
values of atmospheric light ranging from 0 to 1 for floating-point datatype and 0 to
255 for unsigned integer format (uint8), the atmospheric light value is assumed as
maximum pixel value within the dark image. It can be calculated as “255 −min” for
uint8 format and “1 − min” for floating-point format. Figure 3 represents the effect
of variation of atmospheric-light on de-hazed images, it is observed that the flower
database produces accurate de-hazing output at AL=0.7, whereas table database at
AL=0.9.

2.3 Estimation of TransmissionMap

The transmission can be estimated by normalizing the average imagewith atmospheric
light. Later, recovered scene radiance can be obtained as a de-hazed image. The trans-
mission map of various algorithms are visually compared and is shown in Fig. 4. It is
observed that our proposed method is estimated an accurate transmission map when
compared with other existing algorithms.



Circuits, Systems, and Signal Processing (2021) 40:1278–1294 1283

2.4 Performance EvaluationMetrics

Evaluationmetrics gives information about which scheme of themethod can be prefer-
able. In this paper, five performance metrics are used for evaluating the efficiency of
the proposed algorithm.

2.4.1 PSNR andMSE

PSNR and MSE are well-identified performance metrics for measuring the degree of
error because these represent overall error content in the entire output image. PSNR is
defined as the “logarithmic ratio of peak signal energy (P) to the mean squared error
(MSE) between output Ni and input Mj images”. It can be expressed as

PSN R = 20 × log

[
max(P))√

MSE

]
(5)

MSE = 1

kn

k−1∑
i=0

n−1∑
j=0

∥∥Mi − N j
∥∥2 (6)

where P is the maximum value of the pixel in an image (typical value of P = 255),
MSE is mean squared error, k, n are the no. of rows, no. of columns of the image,
respectively. Generally, the value of PSNR would be desirably high.

2.4.2 Computation Time or Average Time Cost (ATC)

It represents the amount of time needed to complete an algorithm. The unit is in
seconds. The average time cost of our proposed algorithm is estimated with the other
four existing algorithms in 21 number of iteration.

2.4.3 Average Contrast of Output Image (ACOI)

C = 1

MN

(
max

(
Lmax − Lmin

Lmax + Lmin

))
(7)

Here, Lmin Lmax is the minimum, maximum luminance of an output image corre-
spondingly. M , N row, and column of an output image, respectively. Generally, the
maximum value of it directs that an image is more quality.

The proposed algorithm is qualitatively and quantitatively compared in MATLAB
2017a with four existing state-of-art algorithms, namely Zhu et al. [31], Tarel et al.
[26], He et al. [11] and Tripathi et al. [27] in terms of PSNR, ATC, ACOI, MSE,
PHI, and SSIM [29] for an input image dimensions of 640 × 480. The comparison
of quantitative metrics of the proposed algorithm is represented in Table 1 and cor-
responding visual comparison using qualitative metrics are represented in Fig. 5. It
is observed that the proposed algorithm takes an optimum amount of execution time.
The SSIM value indicates that the proposed method produces good quality of the



1284 Circuits, Systems, and Signal Processing (2021) 40:1278–1294

Table 1 Comparison of quantitative metrics

Database Method PSNR(dB) ATC (s) ACOI MSE PHI SSIM

Men Zhu et. al. 22.19 1.478520 0.0107 1.52 12.1976 0.6342

Tarel et. al. 22.54 2.885601 0.6080 1.53 14.2584 0.0236

He et. al. 22.87 2.038838 0.1258 1.78 10.4658 0.7676

Tripathi et. al. 22.16 1.628883 0.5399 1.69 27.0457 0.6749

Proposed 23.54 1.155503 1.4617 1.34 27.3232 0.7736

Play Table Zhu et. al. 22.99 1.44128 0.0123 1.63 12.976 0.7612

Tarel et. al. 22.99 2.885601 0.0123 1.63 10.3668 0.0482

He et. al. 22.99 2.038838 0.0123 1.63 7.4004 0.6813

Tripathi et. al. 21.76 1.628883 0.4578 2.35 25.5258 0.7423

Proposed 23.78 1.052765 1.2154 1.58 26.7324 0.8395

Shelves Zhu et. al. 23.14 1.455901 0.0488 2.83 1.3772 0.7642

Tarel et. al. 22.19 1.813378 0.0487 2.43 0.4644 0.0125

He et. al. 22.62 2.024570 0.0046 1.93 1.5700 0.8431

Tripathi et. al. 23.27 1.631953 0.1752 1.44 4.5346 0.2355

Proposed 23.59 0.894809 1.4300 0.54 9.0500 0.8337

Storage Zhu et. al. 22.76 1.418704 0.0329 1.61 3.2373 0.8166

Tarel et. al. 22.57 1.906796 0.0341 1.76 6.6550 0.0917

He et. al. 22.61 2.029526 -0.0195 1.87 4.1131 0.8169

Tripathi et. al. 22.82 1.619069 0.1238 1.53 5.9353 0.6730

Proposed 23.16 1.148978 0.6168 0.31 10.6060 0.9139

Shopvac Zhu et. al. 22.73 1.428657 -0.0359 2.25 13.7933 0.8133

Tarel et. al. 22.96 1.831700 -0.0343 2.79 13.1588 0.5378

He et. al. 22.58 2.020214 -0.0686 2.53 18.9791 0.8152

Tripathi et. al. 22.47 1.588451 0.1011 2.05 34.3493 0.53757

Proposed 54.95 0.796819 2.0290 2.02 3.6349 0.9382

Classroom Zhu et. al. 23.11 1.393388 0.0448 1.75 16.6764 0.7069

Tarel et. al. 23.72 1.845369 0.0964 1.82 7.6522 0.2151

He et. al. 22.58 2.029721 0.0193 1.61 13.1743 0.8049

Tripathi et. al. 23.09 1.602608 0.3582 1.54 18.9678 0.2151

Proposed 23.86 1.146288 1.8996 1.13 23.6419 0.9089

Umbrella Zhu et. al. 23.50 1.525979 0.017 1.29 5.2107 0.7973

Tarel et. al. 22.65 1.773976 0.0257 1.71 1.2454 0.0222

He et. al. 23.78 1.964879 -0.0265 1.95 6.6677 0.6674

Tripathi et. al. 22.59 1.603365 0.2060 1.29 4.9916 0.1274

Proposed 24.58 1.295478 2.5145 2.58 9.7845 0.8121

Library Zhu et. al. 22.35 0.999786 3.8515 2.61 10.7208 0.6732

Tarel et. al. 31.15 1.845405 3.0461 4.83 34.6196 0.1156

He et. al. 16.74 2.388612 4.9670 2.11 20.1557 0.7420

Tripathi et. al. 22.83 1.635244 2.4354 2.19 27.7894 0.1156

Proposed 24.35 0.853564 1.4576 2.12 15.7623 0.7702



Circuits, Systems, and Signal Processing (2021) 40:1278–1294 1285

St
or
ag
e

P
la
y-
ta
bl
e

Sh
el
ve
s

M
en

Fig. 5 Simulation results of de-hazing Techniques (Input hazy image, output of Zhu et al., Tarel et. al., He
et. al., Tripathi et. al., Proposed from left to right.)

de-hazed images. The PSNR and PHI values of our method are high which indicating
that haze particle elimination, as well as visualization of a de-hazed image is good.
Thereby, it eliminates hallos & artifacts in the recovered output image, reduces the
time-consuming computational step of refining transmission in DCP, and produces
accurate transmission map. The bold value in the Table 1 is indicating that the better
evaluation metric value produced by the corresponding method over other methods.

3 Hardware Architecture

3.1 Implementation on Zynq-706 FPGA

Since the existing state-of-art algorithms are difficult to implement on the hardware
platform, the 14-stage pipeline structure based on Zynq-706 [8] FPGA for single
image haze removal is designed. The implemented algorithm takes full advantage
of powerful parallel processing and the ability to perform the same on the hardware
platform. Figure 6 represents the hardware architecture of the proposed de-hazing
algorithm on Zynq FPGA. Initially, the design includes RAM inference using MIF
(Memory Initialization File), which specifies the initial content of a memory block.
Three .mif files are sufficient for storing the input image data. With the help of a
counter, the data which is stored in the .mif file can be invoked. In the proposed
design, Each .mif stores 256× 256=65536 pixels data. Therefore, A 16-bit counter is
used for extracting the address of 64Kb .mif data. Then, three 8-bit comparators are
employed for finding minimum pixel among R, G and B, followed by a gray image of
the input image using shift operations can be obtained using the following equation.

Igraymodi f ied = 0.25 ∗ R + 0.5 ∗ G + 0.25 ∗ B (8)



1286 Circuits, Systems, and Signal Processing (2021) 40:1278–1294

Fig. 6 Proposed Hardware architecture of image de-hazing

The (8) is not the same as the traditional definition (4). Still, it makes almost no
difference. It is much easier to be implemented in hardware design, to reduce the
resource utilization, we employed a cut-off operation (shifting) instead of multiplica-
tion, thereby achieving a gray image of an input.

Later, a 10-bit adder is used and then truncating the LSB of the sum and carry
bit so that an 8-bit data is given as input to further stages. Once the gray and dark
channel is achieved, the mean of them using left shift operation is considered as
the average channel of a hazy input image. Since the uint8 format of the image is
employed, the value of atmospheric light calculated as the “255-minimum” pixel value
of the input image. Moreover, the visibility content of the output is not much effected
compared with the software platform. The normalization of the average channel to the
atmospheric light results in a transmission map. An 8-bit divider circuit is employed
for this operation. The above process is run in parallel for R, G, and B channels of
the input image. Finally, using (2) modified pixel values are obtained as a de-haze
image. The detailed 14-stage pipelining structure in the form of RTL of the proposed
algorithm on the Zynq-706 platform using HDL is represented in Fig. 7. In order to
obtain the output in a systematic manner, we introduced two new Intellectual Property
(IP) cores, i.e., Virtual Input/ Output (VIO) and Integrated Logic Analyzer (ILA)
these cores are responsible for verifying the de-haze algorithm. Figure 8 represents
the top-level arrangement of IP cores with the de-haze algorithm.

Once the algorithm is implemented on hardware, verification of the algorithm can
be done using VIO console. Figure 9 represents simulation results of the handwritten
HDL code of image de-hazing. It can be observed that the first three signals within the
waveform are input red, green and blue pixels, respectively, the corresponding gray,



Circuits, Systems, and Signal Processing (2021) 40:1278–1294 1287

design_1_i

design_1

dehaze_0

design_1_dehaze_0_0

U0

dehaze

clk2

clr

s2

at_li[7:0]

atli[7:0]

b[7:0]

b2[7:0]

b_f[7:0]

count[15:0]

g[7:0]

g_f[7:0]

min[7:0]

r[7:0]

r_f[7:0]

w_d[7:0]

a_l_i

RTL_MUX

I0S=1'b0

I1S=default
O

S

a_l_reg

RTL_LATCH

G

D[7:0]
Q[7:0]

b_f1_i

RTL_MUXS

I0[7:0]S=1'b1

I1[7:0]S=default
O[7:0]

c_reg

RTL_REG

C

D
Q

cnt_reg[5:0]

RTL_REG

C

D
Q

c0

count_16

clk

clr

count[15:0]

=

eqOp_i

RTL_EQ

O
I0[5:0]

I1[5:0]

=

eqOp_i__0

RTL_EQ

O
I0[5:0]

I1[5:0]V=B"011110"

g_f1_i

RTL_MUXS

I0[7:0]S=1'b1

I1[7:0]S=default
O[7:0]

<

gtOp_i

RTL_LT

O
I0[7:0]

I1[7:0]

<

gtOp_i__0

RTL_LT

O
I0[7:0]

I1[7:0]

<

gtOp_i__1

RTL_LT

O
I0[7:0]

I1[7:0]

<

ltOp_i

RTL_LT

O
I0[7:0]

I1[7:0]

<

ltOp_i__0

RTL_LT

O
I0[7:0]

I1[7:0]

l0

rom_vhd_mif

clk_i

addr_i[15:0] data_o[7:0]

l1

rom_vhd_mif_g

clk_i

addr_i_g[15:0] data_o_g[7:0]

l2

rom_vhd_mif_b

clk_i

addr_i_b[15:0] data_o_b[7:0]

-

minusOp_i

RTL_SUB

I0[7:0]

I1[7:0]
O[7:0]

-

minusOp_i__0

RTL_SUB

I0[7:0]

I1[7:0]
O[7:0]

-

minusOp_i__1

RTL_SUB

I0[7:0]

I1[7:0]
O[7:0]

-

minusOp_i__2

RTL_SUB

I0[7:0]

I1[7:0]
O[7:0]

-

minusOp_i__3

RTL_SUB

I0[7:0]

I1[7:0]
O[7:0]

-

minusOp_i__4

RTL_SUB

I0[7:0]

I1[7:0]
O[7:0]

m1

min_block

a[7:0]

b[7:0]

c[7:0]

m2

min_block

a[7:0]

b[7:0]

c[7:0]

+

plusOp_i

RTL_ADD

I1

I0[5:0]
O[5:0]

p1_reg

RTL_REG

C

D
Q

q1_i

RTL_MUXS

I0[7:0]S=1'b1

I1[7:0]S=default
O[7:0]

q1_reg[7:0]

RTL_REG

C

D
Q

q2_i

RTL_MUXS

I0[7:0]S=1'b1

I1[7:0]S=default
O[7:0]

q2_reg[7:0]

RTL_REG

C

D
Q

q3_reg[7:0]

RTL_REG_SYNC

C

D
Q

RST

q4_i

RTL_MUX

I0S=1'b0

I1S=default
O

S

q4_reg[7:0]

RTL_REG

C

CE

D

Q

r_f1_i

RTL_MUXS

I0[7:0]S=1'b1

I1[7:0]S=default
O[7:0]

s0

Sing_MUL

b[7:0] b1[9:0]

g[7:0] g1[9:0]

r[7:0] r1[9:0]

u3

adder_10_bit

a[9:0]

b[9:0]

s[9:0]

u4

adder_10_bit

a[9:0]

b[9:0]

s[9:0]

u6

ten_2_8_bit

a[9:0] b[7:0]

Fig. 7 Schematic and elaborated design structure

dark channel and average channel of these pixels are indicated in the bottom of these
waveforms. It is very hard to analyze for 256 × 256 = 65536 pixels. But, using the
Tcl command the corresponding pixel values which are currently being executed on
the FPGA can be exported to the spreadsheet, and qualitative analysis is verified in
MATLAB.

3.2 Implementation on DSP Processor (TMS320C6748)

Based on DaVinci technology, an ideal core power for signal processing as well as
image processing applications, the lowest cost DSP device has to choose. For which



1288 Circuits, Systems, and Signal Processing (2021) 40:1278–1294

Fig. 8 Test setup of de-hazing
algorithm in Vivado

Fig. 9 Simulation results of image de-hazing system

Fig. 10 Flow of hardware
implementation on
TMS320C6748

various kinds of DSP processors have been compared. Finally, TMS320C6748 [30] is
chosen to be the core device of the system. The TMS320C6748 evaluation module is
chosen as the hardware platform of data processing, and Code Composer [21] V6.0
simulator is chosen to implement simulation.

The hardware implementation flow of the proposed algorithm on TMS320C6748
is presented in Figure 10. In initial step, an input image is taken from the standard
database of size 256 by 256 for experimental verification. At the pre-processing stage,
an image is cast into a standard datatype ‘floating point (double precision)’ format.
The implementation of the de-haze algorithm in the code composer as follows. In



Circuits, Systems, and Signal Processing (2021) 40:1278–1294 1289

Fig. 11 Basic Steps involved in
hardware implementation of
image De-hazing using
TMS320C6748

the first step, we implemented a minimum filter for an image of M × N × 3 pixels.
Using (4) gray image of the input image is calculated. The overall cost O(2×M×N)
time. Since the floating format of the image is employed, therefore, in transmission
estimation each pixel value is escalating to 1. The value of atmospheric light assumed
as the “1-minimum” pixel value of the image. Figure 11 represents basic steps involved
for implementing image de-hazing on DSP TMS320C6748 processor. The process is
applied on each color channel individually and combined at the final step.

4 Results and Discussion

The validity of the proposed algorithm, which is implemented on two hardware plat-
forms is verified using a well-known standard database of Middlebury [3] and from
the Flickr website. To speed up the algorithm while implementing it on Zynq FPGA,
the “uint8” format for representing the pixels is employed. Consequently, there is a
negligible amount of loss in information resulting in the variation of the percentage
of haze improvement. Whereas the floating-point operations are added as an advan-
tage for obtaining better results in DSP processor-based implementation. In these two
implementations, a refined transmission map (Guided filter in case of DCP) was elim-
inated, and this technique is helpful for disallowing the artifacts and hallows. The
intensity variation between the haze and de-hazed image can be observed in Fig. 12.
Here, red, green and blue lines represent the variation of RGB pixels of the image. It is
observed that the brightness or intensity value of the de-hazed image is less compared
with haze image pixels.

Table 2 indicates the speed of operation of the above-mentioned techniques. It is
observed that the processing time required for executing the haze removal algorithm
is optimal in two hardware platforms. The Zynq-706 FPGA with HDL [17] based
implementation took less amount of time when compared with DSP processor-based
implementation. Since a 14-stage pipeline line structure is used, resulting in a number



1290 Circuits, Systems, and Signal Processing (2021) 40:1278–1294

Fig. 12 Sharp variation of brightness of the image pixels a. Haze image b.Dehazed image

Table 2 Execution time on hardware platforms

Parameter On TMS320C6748 On Zynq-706 Using HDL Code

Max. operating clock frequency (MHz) 456 933

Throughput 333Mpixels/s 385Mpixels/s

Execution time 4.8 ns 3.59 ns

Table 3 Utilization summary of hardware resources

Resources Utilization % (HDL) Available resources Resource utilized

LUT 1.12 218600 2664

LUTRAM 0.3 70400 211

FF 1.63 218600 3562

BRAM 44.04 545 240

IO 0.55 362 2

BUFG 12.5 32 4

of clock pulses (256 × 256 × 3 × 14 = 2752512) are required for de-haze operation
theoretically.

Hardware resource utilization summary of the proposed algorithm on the Zynq
platform is presented in Table 3, and it is noticed that the algorithm took less num-
ber of hardware resources. A very less number of other resources (LUT (Look Up
Table), LUTRAM, FF (Flip-Flops), IO (Input Output), and MMCM) are utilized
when compared with BRAM. Since storing the entire image or frame is not an effi-
cient way of using on-chip memory (BRAM) resources on FPGA. Such a storage
mechanism (.mif based) generally affects BRAM memory resources. This algorithm
requires approximately 44 percentage of BRAM resources, which can be considered
as a major challenging issue in hardware implementation. It can be overcome by stor-
ing a small portion of the image data inside the FPGA using line buffer instead of
BRAMs, i.e., a portion of the image data or few selected lines of image data can be
stored in a line buffer for manipulation and then, the remaining part of the image will
be stored. Figure 13 and Table 4 represent qualitative and quantitative comparison
of de-haze algorithm, respectively. Since the cutoff operation has employed for find-



Circuits, Systems, and Signal Processing (2021) 40:1278–1294 1291

M
en

P
la
y-
ta
bl
e

Sh
el
ve
s

St
or
ag
e

Sh
op

va
c

U
m
br
el
la

C
la
ss
ro
om

L
ib
ra
ry

Fig. 13 Implementation results of de-hazing system (Input hazy image, output on DSP processor, output
on hand-written HDL based design, output of MATLAB from left to right)

ing the gray image in HDL-based implementation resulting in high MSE compared
with processor-based implementation. PSNR andACOI values are suggested that both
hardware-based de-hazing algorithms produce a better result. When throughput is the
user constraint, Zynq-based hardware platform is well suited and if the quality of the
output image requirement is the user constraint then DSP processor-based hardware
implementation is well suited for de-haze applications. The hardware test setup of the
proposed algorithm is represented in Fig. 14.

5 Conclusion

In this paper, we have introduced a fast and efficient de-hazing algorithm well suited
for implementing on any hardware platform. The entire work is carried out on i5
CPU 3 GHz and 8GB memory with OS window 8.1 with MATLAB 2017a. Vivado



1292 Circuits, Systems, and Signal Processing (2021) 40:1278–1294

Table 4 Quantitative performance of de-haze algorithm on different hardware platforms

Database Method ACOI MSE PSNR PHI

Men DSP 0.4972 0.0706 29.8036 16.5585

HDL 0.5000 0.0712 29.8222 15.4700

Play Table DSP 0.4918 0.0963 28.9336 19.3389

HDL 0.4887 0.1063 29.1463 14.3087

Shelves DSP 0.4800 0.0358 29.2759 24.5587

HDL 0.4984 0.0908 31.2973 23.4660

Storage DSP 0.4725 0.0653 28.9938 37.8124

HDL 0.4995 0.1034 29.9920 38.2875

shopvac DSP 0.4952 0.0883 29.3367 38.7377

HDL 0.2510 0.2847 26.7937 32.5731

umbrella DSP 0.2036 0.2180 27.3732 16.8774

HDL 0.2037 0.2142 27.4115 15.0265

classroom DSP 0.5000 0.1152 28.7583 16.0200

HDL 0.4514 0.2336 28.1334 08.3962

Library DSP 0.4000 0.1241 27.3341 27.4581

HDL 0.2608 0.2220 28.5963 11.7153

Fig. 14 Hardware Platform Test Setup; Left: on DSP Processor TMS320C6748, Right: on Zynq 706 All
programmable SoC

version of 2015.4 andCode composer studio v6.0 are used for implementation. AZynq
(xc7z045ffg900-2)-based hardware architecture, and DSP processor-based image de-
hazing algorithms are implemented successfully. The RGB format always needs 24-
bits to represent pixels. It will still affect the processing time and hardware resources.
To overcome this issue, a YUV 4:2:2 format may be used. We consent to this issue in
future research. The same algorithm can be extended for real-time video de-hazing in
the future.

Acknowledgements The authors are thankful to SERB, Department of Science Technology, Govt. of India,
for providing financial support under the grant of EEQ/2016/000556.

Funding This work was supported by the Science and Engineering Research Board (SERB) India, under
the grant of EEQ/2016/000556.



Circuits, Systems, and Signal Processing (2021) 40:1278–1294 1293

Data Availability Statement Data sharing not applicable to this article as no datasets were generated or
analyzed during the current study.

Compliance with Ethical Standards

Conflict of interest The authors declare that they have no conflict of interest.

References

1. F. Albu, C. Vertan, C. Florea, A. Drimbarean, One scan shadow compensation and visual enhancement
of color images. in 2009 16th IEEE International Conference on Image Processing (ICIP) (pp. 3133-
3136). IEEE (2009)

2. H. Ali, A. Sher, N. Zikria, LR ÜLGEN, a joint image dehazing and segmentation model. Turk J Electr
Eng Comput Sci 27(3), 1652–66 (2019)

3. C. Ancuti, CO. Ancuti, C. De Vleeschouwer, D-hazy: a dataset to evaluate quantitatively dehazing
algorithms. in 2016 IEEE International Conference on Image Processing (ICIP) (pp. 2226-2230).
IEEE (2016)

4. V. Andrearczyk, P.F. Whelan, Using filter banks in convolutional neural networks for texture classifi-
cation. Pattern Recognit. Lett. 1(84), 63–9 (2016)

5. L. Bai, Y. Wu, J. Xie, P. Wen, Real time image haze removal on multi-core dsp. Procedia Eng. 1(99),
244–52 (2015)

6. B. Cai, X. Xu, K. Jia, C. Qing, D. Tao, Dehazenet: an end-to-end system for single image haze removal.
IEEE Trans. Image Process. 25(11), 5187–98 (2016)

7. A. Capra, A. Castrorina, S. Corchs, F. Gasparini, R. Schettini, Dynamic range optimization by local
contrast correction and histogram image analysis. in: 2006 Digest of Technical Papers International
Conference on Consumer Electronics (pp. 309–310). IEEE (2006)

8. L.H. Crockett, R.A. Elliot, M.A. Enderwitz, R.W. Stewart, The Zynq Book: Embedded Processing with
the Arm Cortex-A9 on the Xilinx Zynq-7000 All Programmable Soc (Strathclyde Academic Media,
Glasgow, 2014)

9. R. Fattal, Single image dehazing. ACM Trans. Graphics (TOG). 27(3), 1–9 (2008)
10. G. Ge, Z. Wei, J. Zhao, Fast single-image dehazing using linear transformation. Optik. 126(21), 3245–

52 (2015)
11. K. He, J. Sun, X. Tang, Single image haze removal using dark channel prior. IEEE Trans. Pattern Anal.

Mach. Intell. 33(12), 2341–53 (2010)
12. S.C. Huang, F.C. Cheng, Y.S. Chiu, Efficient contrast enhancement using adaptive gamma correction

with weighting distribution. IEEE Trans. Image Process. 22(3), 1032–1041 (2012)
13. D.J. Jobson, Z.U. Rahman, G.A. Woodell, A multiscale retinex for bridging the gap between color

images and the human observation of scenes. IEEE Trans. Image Process. 6(7), 965–76 (1997)
14. J. Kopf, B. Neubert, B. Chen, M. Cohen, D. Cohen-Or, O. Deussen, M. Uyttendaele, D. Lischinski,

Deep photo: model-based photograph enhancement and viewing. ACMTrans. Graphics (TOG). 27(5),
1 (2008)

15. E.J. McCartney, Optics of the Atmosphere: Scattering by Molecules and Particles (Wiley, New York,
1976)

16. G. Meng, Y. Wang, J. Duan, S. Xiang, C. Pan, Efficient image dehazing with boundary constraint and
contextual regularization. in Proceedings of the IEEE International Conference on Computer Vision
(pp. 617–624) (2013)

17. J. Mermet, Fundamentals and Standards in Hardware Description Languages (Springer, Berlin, 2012)
18. S.G. Narasimhan, S.K. Nayar, Vision and the atmosphere. Int. J. Computer Vis. 48(3), 233–54 (2002)
19. S. K. Nayar, S. G. Narasimhan, Vision in badweather. in Proceedings of the Seventh IEEE International

Conference on Computer Vision (Vol. 2, pp. 820–827). IEEE (1999)
20. M. Qi, Q. Hao, Q. Guan, J. Kong, Y. Zhang, Image dehazing based on structure preserving. Optik.

126(22), 3400–6 (2015)
21. S. Qureshi, Embedded Image Processing on the TMS320C6000TMDSP: Examples in Code Composer

StudioTM and MATLAB (Springer, Berlin, 2005)



1294 Circuits, Systems, and Signal Processing (2021) 40:1278–1294

22. Y. Y. Schechner, S. G. Narasimhan, S. K. Nayar, Instant dehazing of images using polarization. in Pro-
ceedings of the 2001 IEEEComputer SocietyConference onComputerVision and PatternRecognition.
CVPR 2001 (Vol. 1, pp. I–I). IEEE (2001)

23. P. Soma, R.K. Jatoth, H. Nenavath, Fast and memory efficient de-hazing technique for real-time com-
puter vision applications. SN Appl. Sci. 2(3), 1–10 (2020)

24. R.T. Tan, Visibility in bad weather from a single image. in 2008 IEEE Conference on Computer Vision
and Pattern Recognition (pp. 1–8). IEEE (2008)

25. K. Tang, J. Yang, J. Wang, Investigating haze-relevant features in a learning framework for image
dehazing. in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp.
2995–3000) (2014)

26. J.P. Tarel, N. Hautiere, Fast visibility restoration from a single color or gray level image. in 2009 IEEE
12th International Conference on Computer Vision (pp. 2201–2208). IEEE (2009)

27. A.K. Tripathi, S. Mukhopadhyay, Efficient fog removal from video. Signal Image Video Process. 8(8),
1431–9 (2014)

28. W. Wang, B. Zhang, An improved visual enhancement method for color images. in Fifth Interna-
tional Conference on Digital Image Processing (ICDIP 2013) 2013 Jul 19 (Vol. 8878, p. 88780C).
International Society for Optics and Photonics

29. Z. Wang, A.C. Bovik, H.R. Sheik, E.P. Simoncelli, Image quality assessment: from error visibility
to structural similarity. IEEE Trans. Image Process. 13(4), 1–14 (2004). https://doi.org/10.1109/TIP.
2003.819861

30. P. Zahradnik, B. Simak, Implementation of Morse decoder on the TMS320C6748 DSP development
kit. in 2014 6th European Embedded Design in Education and Research Conference (EDERC) (pp.
128–131). IEEE (2014)

31. M. Zhu, B. He, Q. Wu, Single image dehazing based on dark channel prior and energy minimization.
IEEE Signal Process. Lett. 25(2), 174–8 (2017)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

https://doi.org/10.1109/TIP.2003.819861
https://doi.org/10.1109/TIP.2003.819861

	Implementation of a Novel, Fast and Efficient Image De-Hazing Algorithm on Embedded Hardware Platforms
	Abstract
	1 Introduction
	2 Proposed Method
	2.1 Estimation of Average Channel
	2.2 Estimation of Atmospheric Light (AL) 
	2.3 Estimation of Transmission Map
	2.4 Performance Evaluation Metrics
	2.4.1 PSNR and MSE
	2.4.2 Computation Time or Average Time Cost (ATC)
	2.4.3 Average Contrast of Output Image (ACOI)


	3 Hardware Architecture
	3.1 Implementation on Zynq-706 FPGA
	3.2 Implementation on DSP Processor (TMS320C6748)

	4 Results and Discussion
	5 Conclusion
	Acknowledgements
	References




