
Circuits, Systems, and Signal Processing (2021) 40:669–690
https://doi.org/10.1007/s00034-020-01511-w

Event-Triggered H∞ Filtering for Discrete-TimeMarkov
Jump Systems with Repeated Scalar Nonlinearities

Huijiao Wang1,2 · Yujia Ying3 · Anke Xue4

Received: 6 May 2020 / Revised: 22 July 2020 / Accepted: 24 July 2020 / Published online: 3 August 2020
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
This paper is concerned with the H∞ filtering problem for discrete-time Markov
jump systems with repeated scalar nonlinearities in an event-triggered communication
scheme. An event-triggered scheme is proposed to determine whether the current
data should be transmitted to the filter or not. Based on the time interval analysis
approach, the discrete-time Markov jump system with network-induced delays under
event-triggered communication scheme is converted into the discrete-time Markov
jump time-delay system. By employing the positive-definite diagonally-dominant-
type Lyapunov function technique, criteria are derived to guarantee the system is
stochastically stable with a prescribed H∞ performance level. The correspondent
filter and the event-triggered parameters are also solved. Finally, a numerical example
is given to illustrate the effectiveness of the proposed method.
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1 Introduction

Due to the capability of modeling a class of hybrid systems in which the structure is
subject to random abrupt changes, Markov jump systems have attracted considerable
research attentions and have potential applications inmanufacturing systems, chemical
process, power systems, networked control systems, and so on [1,25].Many interesting
results have been reported in the literature, including stability and stabilization [10,37],
controller design [18,21,22], filter design [6,11–13], and state estimation problem
[33,38].

Nonlinear is very common in the real applications, and repeated scalar nonlinear-
ities include some typical nonlinearities, such as semi-linear function, sine function,
saturation function, and hyperbolic tangent function [4]. So repeated scalar nonlinear
systems are used widely to model manufacturing systems, recurrent neural networks,
cold rolling mills, and so on [7]. Therefore, lots of researches devote efforts to stability
analysis and stabilization problems [4], control problems [8], filtering problems [9],
and model reduction problems [5] of the repeated scalar nonlinear systems. Due to its
advantage of modeling the abrupt changes in real applications, Markov jump systems
with repeated scalar nonlinearities attract considerable attentions. Lots of instructive
results ofMarkov jump systemswith repeated scalar nonlinearities have been reported,
for example, output feedback control [26], stabilization problem [35], filtering design
[14,15,23,36], and L2 − L∞ tracking control [24].

On the other hand, with the development of network technology, lots of real systems
are controlled through networks. But the network bandwidth is limited, which restricts
the transmission of the data or makes the network-based control low efficient. Tradi-
tionally, the data is transmitted through networks within a given time interval, which
is often called time-triggered communication scheme [2,3]. In time-triggered commu-
nication scheme, the data is transmitted every time interval even if the data has not
changed or little changed, which is easy to implement but often leads to unnecessary
waste of network resource [39]. In order to solve this problem, a novel method called
event-triggered communication scheme has been proposed during these decades. In
event-triggered communication scheme, whether the newly sampled data should be
transmitted or not is predefined by an event condition [16,19]. Only when the prede-
fined event condition is violated, the newly sampled data will be transmitted. So the
network communication load can be greatly reduced and the network resources can
be largely saved under the event-triggered communication scheme [27–29]. There-
fore, event-triggered control or filter for different systems becomes a hot research
topic and lots of event-triggered results have been discussed during these decades. To
name a few, the event-triggered H∞ filtering for continuous-time and discrete-time
Markov jump systems with time delays was studied in [30,31] and [32,34], respec-
tively. In [32], the H∞ performance criterion is derived, and co-design method of the
event detector and the H∞ filter is given. The event-based H∞ filtering for networked
linear systems with communication delays has been studied in [17], and the linear
system is converted into a time-delay linear system by using the time interval analysis
approach. The problem of event-triggered state estimation is investigated in [40], and
a novel state estimator is presented to estimate the networked states. The paper [20]
has addressed event-triggered fault detection filtering for discrete-time Markov jump
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systems. Although there are many event-triggered results on Markov jump systems,
to the best of the author’s knowledge, the H∞ filtering problem for Markov jump
systems with repeated scalar nonlinearities under an event-triggered scheme has not
been fully studied in the open literature. The results on Markov jump systems with
repeated scalar nonlinearities under an event-triggered scheme can be applied to many
practical systems, which increases the author’s research motivation.

Motivated by the above discussion, we focus on the event-triggered H∞ filtering for
discrete-timeMarkov jump systemswith repeated scalar nonlinearities. Themain con-
tributions of this paper include three points: (1) Event-triggered scheme for dynamic
discrete-time Markov jump systems with repeated scalar nonlinearities is presented
to reduce network resource wastage; (2) based on the diagonally dominant Lyapunov
function approach, a sufficient condition is presented, which guarantees that the fil-
tering error system is stochastically stable and has a H∞ performance; and (3) the
parameter of the event-triggers and H∞ filter can be co-designed.

The rest of the paper is organized as follows. Section 2 formulates the problem
under consideration. H∞ filtering performance analysis and the co-design method of
event-based condition and H∞ filter are presented in Sect. 3. An illustrative example
is given in Sect. 4, and we conclude the paper in Sect. 5.
Notations Through this paper, the superscripts “T” and “−1” stand for the transpose
of a matrix and the inverse of a matrix; Rn denotes n-dimensional Euclidean space;
Rn×m is the set of all real matrices with m rows and n columns; P > 0 means that P
is positive definite; I is the identity matrix with appropriate dimensions; the space of
square-integrable vector functions over [0,∞) is denoted by L2[0,∞); |x | represents
the absolute value (or modulus) of x ; and E{·} denotes the expectation operator; for a
symmetric matrix, ∗ denotes the matrix entries implied by symmetry.

2 Problem Formulation

2.1 System description

The framework of event-triggered H∞ filtering for discrete Markov jump system in
this paper is shown in Fig. 1, where the plant is discrete-time Markov jump system
with repeated scalar nonlinearities.

We suppose that the discrete-time Markov jump system with repeated scalar non-
linearities can be described as follows:

⎧
⎪⎨

⎪⎩

x(k + 1) = A(rk) f (x(k)) + B(rk)w(k)

y(k) = C(rk) f (x(k)) + D(rk)w(k)

z(k) = E(rk) f (x(k))

, (1)

where x(k) ∈ Rn is the state of the plant; y(k) ∈ Rm represents the measurement
output; z(k) ∈ Rp is the signal to be estimated; w(k) ∈ L2[0,∞) is the disturbance
input; and rk represents a discrete-time homogeneous Markov chain, which takes
values in a finite set S = {1,2,3,…,N} with the following mode transition probabilities:
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Fig. 1 The frame of event-triggered H∞ filter

Pr {r(k + 1) = j |r(k) = i} = πi j ,

where 0 ≤ πi j ≤ 1, ∀i, j ∈ S and
∑N

j=1 πi j = 1, ∀i ∈ S. f (x(k)) is the nonlinear

function; for the vector x(k) = [x1(k) x2(k) . . . xn(k)]T, we denote f (x(k)) =
[ f (x1(k)) f (x2(k)) . . . f (xn(k))]T. The function f (x(k)) satisfies the following
assumption.

Assumption 1 [4] The nonlinear function f (x(k)) in (1) satisfies:

∀x, y ∈ R, | f (x) + f (y)| ≤ |x + y|. (2)

For notational simplicity, in this paper, when rk = i ∈ S, a matrix M(rk) is denoted
by Mi ; for example, A(rk) is denoted by Ai , B(rk) by Bi , and so on.

2.2 Event Detector

In Fig. 1, an event detector is employed between the plant and the filter to determine
whether the current data should be transmitted to the filter or not. y(k) is the current
measurement data, and y(sl) is the latest transmitted data. So the event-triggered
scheme can be defined as follows:

[y(k) − y(sl)]TΦi [y(k) − y(sl)] ≥ εi y
T (k)Φi y(k), (3)

where the Φi is the positive-definite weighting matrix to be design and the εi ∈ [0,1)
is a given scalar parameter. Obviously, if y(k) and y(sl) satisfies (3), y(k) will be
transmitted to the filter.
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Remark 1 Note that the event-triggered scheme (3) is a dynamic condition with some
adjustable parameters. The event-triggered parameter Φi is different for different
jumping modes, which is more practicable.

2.3 H∞ Filter

Since the network bandwidth is limited, time delay is the inevitable phenomenon in
the process of network transmission. In this paper, we suppose that the time delay is
τk and bounded at time instant k. τk satisfies 0 < τk < τ̃ , where τ̃ is a positive integer.
Taking time delay into account, the output y(sl) reaches the filter at the time instant
sl + τsl , and considering the behavior of zero-order holder (ZOH), we have

y f (k) = y(sl) k ∈ [sl + τsl , sl+1 + τsl+1 − 1]. (4)

The H∞ filter used in this paper is supposed to be

{
x f (k + 1) = A f i f (x f (k)) + B f i y f (k)

z f (k) = C f i f (x f (k)) + D f i y f (k),
(5)

where x f (k) ∈ Rn is the state vector of the filter, the y f (k) ∈ Rm is the actual input of
the filter, and z f (k) ∈ Rp is the output of the filter. The matrices A f i , B f i ,C f i , D f i

are appropriate dimensional filter parameters to be determined.
Substituting (4) into (5), we have

{
x f (k + 1) = A f i f (x f (k)) + B f i y(sl)

z f (k) = C f i f (x f (k)) + D f i y(sl), k ∈ [sl + τsl , sl+1 + τsl+1 − 1]. (6)

2.4 Time-Delay Modeling Based on Event-Triggered Scheme

Using the similar methods in [30], we convert the networked discrete-time Markov
jump system (1) under event-triggered scheme (3) into a new time-delay system,
which will simplify the analysis and design. So, the following two cases should be
considered:

Case A: if sl + τ̃ + 1 ≥ sl+1 + τsl+1 − 1, we define a function:

τ(k) = k − sl k ∈ [sl + τsl , sl+1 + τsl+1 − 1]. (7)

Obviously,
τsl ≤ τ(k) ≤ (sl+1 − sl) + τsl+1 − 1 ≤ 1 + τ̃ . (8)

Case B: If sl + 1 + τ̃ < sl+1 + τsl+1 − 1, we should consider the following two
intervals:

[sl + τsl , sl + τ̃ ], [sl + τ̃ + d, sl + 1 + τ̃ + d], (9)

where d is a positive integer, d ≥ 1.
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As τsl ≤ τ̃ , it can be easily shown that there exists a positive integer dM , such that

sl + τ̃ + dM < sl+1 + τsl+1 − 1 < sl + dM + 1 + τ̃ , (10)

and y(sl), y(sl + d) with d = 1, 2, 3, . . . , dM satisfy

[y(sl + d) − y(sl)]TΦi [y(sl + d) − y(sl)] ≤ εi y
T (sl + d)Φi y(sl + d). (11)

From (8) − (10), we can obtain:

[sl + τsl , sl+1 + τsl+1 − 1] = [sl + τsl , sl + τ̃ + 1)
⋃

{dM−1⋃

d=1

[sl+τ̃ + d, sl+τ̃ + d + 1]
}

⋃
[sl + dM + τ̃ , sl+1 + τsl+1 − 1].

Define function τ(k) as

τ(k) =
⎧
⎨

⎩

k − sl k ∈ Ω1
k − sl − d k ∈ Ω2
k − sl − dM k ∈ Ω3,

(12)

where

Ω1 = [sl + τsl , sl + τ̃ + 1),

Ω2 = [sl + τ̃ + d, sl + τ̃ + d + 1), d = 1, 2, 3, . . . dM − 1,

Ω3 = [sl + dM + τ̃ , sl+1 + τsl+1 − 1].

From (12), we have

⎧
⎨

⎩

τsl ≤ τ(k) ≤ 1 + τ̃ = τM k ∈ Ω1
τsl ≤ τ(k) ≤ τM k ∈ Ω2
τsl ≤ τ(k) ≤ τM k ∈ Ω3.

(13)

So we can obtain that
0 ≤ τm ≤ τsl ≤ τ(k) ≤ τM (14)

and τm = inf{τsl }.
For Case A, k ∈ [sl + τsl , sl+1 + τsl+1 − 1], define an error vector ei (k) = 0. For

Case B, we define

ei (k) =
⎧
⎨

⎩

0 k ∈ Ω1
y(sl + d) − y(sl) k ∈ Ω2
y(sl + dM ) − y(sl) k ∈ Ω3.

(15)

From the definition of ei (k) and the triggered scheme (3), we can have

eTi (k)Φi ei (k) ≤ εi y
T (k − τ(k))Φi y(k − τ(k)). (16)
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Utilizing τ(k) and ei (k), the filter (6) can be rewritten as

{
x f (k + 1) = A f i f (x f (k)) + B f i y(k − τ(k)) − B f i ei (k)

z f (k) = C f i f (x f (k)) + D f i y(k − τ(k)) − D f i ei (k),
(17)

where k ∈ [sl + τsl , sl+1 + τsl+1 − 1].
Define the new state vector ξ T (k) =

[
xT (k) xTf (k)

]
, e(k) = z(k) − z f (k), and

ŵT (k) = [
wT (k) wT (k − τ(k))

]
, and then, the following filtering error system can

be obtained from (1) and (17),

{
ξ(k + 1) = Āi f (ξ(k)) + Ēi H f (ξ(k − τ(k))) + B̄wi ŵ(k) − B̄ei ei (k)

e(k) = C̄i f (ξ(k)) + F̄i H f (ξ(k − τ(k))) + D̄i ŵ(k) + D f i ei (k),
(18)

where

Āi =
[
Ai 0
0 A f i

]

, Ēi =
[

0
B f iCi

]

, H = [
In 0

]
, B̄wi =

[
Bi 0
0 B f i Di

]

, B̄ei =
[

0
B f i

]

C̄i = [
Ei −C f i

]
, D̄i = [

0 −D f i Di
]
, F̄i = −D f iCi .

2.5 Event-Triggered H∞ Filter Problem

Definition 1 The filtering error system (18) with ŵ(k) = 0 is stochastically stable, if
for any initial conditions, the following equality holds

E
{ ∞∑

k=0

‖ξ(k)‖2|ξ(0), r(0)

}

< ∞. (19)

Definition 2 Given a scalar γ > 0, the filtering error system (18) is said to be stochas-
tically stable with H∞ performance γ , if for any nonzero ŵ(k) ∈ L2[0,∞) under
zero initial condition, the following inequality holds

‖z̄(k)‖2∞ < γ 2‖ŵ(k)‖22, (20)

where ‖z̄(k)‖2∞ = supk z̄
T (k)z̄(k) and ‖ŵ(k)‖22 = ∑∞

l=0 ŵT (l)ŵ(l).

The objective of this paper is to design the H∞ filter (17) such that the filtering
error system (18) is stochastically stable with H∞ performance γ .

Before ending this section, we first introduce the following definition and lemma,
which will help us in deriving the main results.

Definition 3 [4] A square matrix P = [pi j ] ∈ Rn×n is called diagonally dominant if
the i satisfies:

pii ≥
∑

i 	= j

|pi j |. (21)
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Lemma 1 [4] If P > 0 is diagonally dominant, for all nonlinear functions f (x(k))
satisfying (2), it holds for all 	 :

f T (	)P f (	) ≤ 	 T P	. (22)

Lemma 2 [4] If and only if P > 0 is diagonally dominant, there exists a symmetric
matrix T = [ti j ] ∈ Rn such that

{
ti j ≥ 0, pi j + ti j ≥ 0, ∀i 	= j
pii ≥ ∑

i 	= j
(pi j + 2ti j ), ∀i . (23)

3 Main Results

3.1 H∞ filter performance analysis

In this subsection, we will discuss the H∞ filter performance for the filtering error
system (18).

Theorem 1 For given scalars γ > 0, τM > τm > 0, 0 ≤ εi < 1, the filtering error
system (18) is stochastically stable with an H∞ index γ , if there exist diagonally

dominant matrices Pi = [ P1i P2i
PT
2i P3i

] > 0, Φi > 0, Q1 > 0, Q2 > 0, Q3 > 0, and

Q4 > 0 with appropriate dimensions such that

[
(1, 1) (1, 2)

∗ (2, 2)

]

< 0 (24)

and
N∑

j=1

πi j Pj ≤ Pi , (25)

with

(1, 1) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ξ11 HT Q3 0 0 0 0
∗ Ξ22 Q4 Q3 + Q4 0 Ξ26
∗ ∗ −Q2 − Q4 0 0 0
∗ ∗ ∗ −Q1 − Q3 − Q4 0 0
∗ ∗ ∗ ∗ −Φi 0
∗ ∗ ∗ ∗ ∗ Ξ66

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

(1, 2) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

ĀT
i Pi ĀT

i H
T Q1 ĀT

i H
T Q2 Ξ110 Ξ111 C̄T

i
ĒT
i Pi ĒT

i HT Q1 ĒT
i HT Q2 Ξ210 Ξ211 F̄T

i
0 0 0 0 0 0
0 0 0 0 0 0

−B̄T
ei Pi −B̄T

ei H
T Q1 −B̄T

ei H
T Q2 Ξ510 Ξ511 DT

f i
B̄T

wi Pi B̄T
wi H

T Q1 B̄T
wi H

T Q2 Ξ610 Ξ611 D̄T
i

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,
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(2, 2) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

−Pi 0 0 0 0 0
∗ −Q1 0 0 0 0
∗ ∗ −Q2 0 0 0
∗ ∗ ∗ −Q3 0 0
∗ ∗ ∗ ∗ −Q4 0
∗ ∗ ∗ ∗ ∗ −I

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

and

Ξ11 = −Pi − HT Q3H , Ξ110 = τM ( Āi − I )T HT Q3,

Ξ111 = (τM − τm)( Āi − I )T HT Q4,

Ξ22 = −2Q3 − 2Q4 + εiC
T
i ΦiCi , Ξ26 = εiC

T
i Φi [0 Di ],

Ξ210 = τM ĒT
i HT Q3, Ξ211 = (τM − τm)ĒT

i HT Q4,

Ξ510 = −τM B̄T
ei H

T Q3, Ξ511 = −(τM − τm)B̄T
ei H

T Q4,

Ξ66 = −γ 2 I + εi [0 Di ]TΦi [0 Di ],
Ξ610 = τM B̄T

wi H
T Q3, Ξ611 = (τM − τm)B̄T

wi H
T Q4.

Proof For the filtering error system (18), construct the following Lyapunov functional:

V (x(k), r(k)) =
5∑

l=1

Vl(x(k), r(k)), (26)

where r(k) = i, i ∈ S, with

V1(x(k), r(k)) = ξ T (k)Piξ(k), Pi > 0,

V2(x(k), r(k)) =
k∑

s=k−τM

ξ T (s)HT Q1Hξ(s), Q1 > 0,

V3(x(k), r(k)) =
k∑

s=k−τm

ξ T (s)HT Q2Hξ(s), Q2 > 0,

V4(x(k), r(k)) = τM

0∑

s=−τM+1

k−1∑

l=k+s−1

δT (l)HT Q3Hδ(l), Q3 > 0,

V5(x(k), r(k)) = (τM − τm)

−τm∑

s=−τM+1

k−1∑

l=k+s−1

δT (l)HT Q4Hδ(l), Q4 > 0,

δ(l) = ξ(l + 1) − ξ(l).


�
When the disturbance w(k) = 0, we consider the stochastically stable of the filtering
error system (18). Let E(·) stand for the mathematics statistical expectation of the
stochastic process, for r(k) = i, r(k + 1) = j , we have
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E{ΔV (k)} = E{V (x(k + 1), r(k + 1) | x(k), r(k))} − V (x(k), r(k)), (27)

with

E{ΔV1(k)} = ξ T (k + 1)
N∑

j=1

πi j Pjξ(k + 1) − ξ T (k)Piξ(k),

E{ΔV2(k)} = ξ T (k + 1)HT Q1Hξ(k + 1) − ξ T (k − τM )HT Q1Hξ(k − τM ),

E{ΔV3(k)} = ξ T (k + 1)HT Q2Hξ(k + 1) − ξ T (k − τm)HT Q2Hξ(k − τm),

E{ΔV4(k)} = τ 2MδT (k)HT Q3Hδ(k) − τM

k−1∑

l=k−τM

δT (l)HT Q3Hδ(l),

E{ΔV5(k)} = (τM − τm)2δT (k)HT Q4Hδ(k) − (τM − τm)

k−1−τm∑

l=k−τM

δT (l)HT Q4Hδ(l).

Since

−τM

k−1∑

l=k−τM

δT (l)HT Q3Hδ(l) = −τM

k−τ(k)−1∑

l=k−τM

δT (l)HT Q3Hδ(l)

− τM

k−1∑

l=k−τ(k)

δT (l)HT Q3Hδ(l),

−(τM − τm)

k−1−τm∑

l=k−τM

δT (l)HT Q4Hδ(l) = −(τM − τm)

k−1−τ(k)∑

l=k−τM

− (τM − τm)

k−1−τm∑

l=k−τ(k)

δT (l)HT Q4Hδ(l).

According to the Jensen inequality, we have

− τM

k−τ(k)−1∑

l=k−τM

δT (l)HT Q3Hδ(l) − τM

k−1∑

l=k−τ(k)

δT (l)HT Q3Hδ(l)

≤ −[
k−τ(k)−1∑

l=k−τM

δ(l)]THT Q3H [
k−τ(k)−1∑

l=k−τM

δ(l)] − [
k−1∑

l=k−τ(k)

δ(l)]THT Q3H [
k−1∑

l=k−τ(k)

δ(l)]

− (τM − τm)

k−τ(k)−1∑

l=k−τM

δT (l)HT Q4Hδ(l) − (τM − τm)

k−1−τm∑

l=k−τ(k)

δT (l)HT Q4Hδ(l)
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≤ −[
k−τ(k)−1∑

l=k−τM

δ(l)]THT Q4H [
k−τ(k)−1∑

l=k−τM

δ(l)] − [
k−1−τm∑

l=k−τ(k)

δ(l)]THT Q4H [
k−1−τm∑

l=k−τ(k)

δ(l)].

(28)

Combining the event-triggered scheme (16), we have

E{ΔV (k)} ≤ E{ΔV1(k)} + E{ΔV2(k)} + E{ΔV3(k)} + E{ΔV4(k)}
+ E{ΔV5(k)} + εi y

T (k − τ(k))Φi y(k − τ(k)) − eTi (k)Φi ei (k).
(29)

From Lemma 1, we know that

f T (ξ(k))Pi f (ξ(k)) ≤ ξ T (k)Piξ(k). (30)

Clearly, from (27) to (30), we have

E{ΔV (k)} ≤ ϕT (k)Πϕ(k), (31)

with

ϕT (k) = [
f T (ξ(k)) f T (ξ(k − τ(k)))HT f T (ξ(k − τm))HT f T (ξ(k − τM ))HT eTi (k)

]
,

Π = Θ + Γ T
1 PiΓ1 + Γ T

1 HT Q1HΓ1 + Γ T
1 HT Q2HΓ1,

+ τ 2M (Γ1 − Ĩ )T HT Q3H(Γ1 − Ĩ ) + (τM − τm)2(Γ1 − Ĩ )T HT Q4H(Γ1 − Ĩ ),

Γ1 = [
Āi Ēi 0 0 −B̄ei

]
, Ĩ = [

I 0 0 0 0
]
,

Θ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ξ11 HT Q3 0 0 0

∗ Ξ22 Q4 Q3 + Q4 0

∗ ∗ −Q2 − Q4 0 0

∗ ∗ ∗ −Q1 − Q2 − Q3 0

∗ ∗ ∗ ∗ −Φi

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

Ξ11 = −Pi − HT Q3H , Ξ22 = −2Q3 − 2Q4 + εiC
T
i ΦiCi .

By using the Schur complement, (24) and (25) ensure that Π < 0, which implies
that E{ΔV (k)} < 0. Similar to literature [32], we have

E{ΔV (k)} = E{V (x(k + 1), r(k + 1) | x(k), r(k))} − V (x(k), r(k))

≤ −βxT (k)x(k),
(32)

where β = in f {λmin(−Π)} and {λmin(−Π)} denotes the minimal eigenvalue of −Π .
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From (32), if there is a T > 1, we know that

E{V (x(T + 1), r(T + 1))} − E{V (x(0), r(0))} ≤ −β

T∑

k=0

E{xT (k)x(k)}.

Then, for any T > 1, the following equation is satisfied

T∑

k=0

E{xT (k)x(k)} ≤ 1

β
(E{V (x(0), r(0)) − E{V (x(T + 1), r(T + 1))})

≤ 1

β
E{V (x(0), r(0))},

which implies that

T∑

k=0

E{xT (k)x(k)} ≤ 1

β
E{V (x(0), r(0))} < ∞.

So according to Definition 2, the filtering error system (18) is stochastically stable.
Next we will show the H∞ performance of the filtering error system (18). When

w(k) 	= 0, under the zero initial conditions, we have

E{ΔV (k)} ≤ ηT (k)Ψ η(k) − eT (k)e(k) − γ 2wT (k)w(k), (33)

where

ηT (k) = [
ϕT (k) ŵT (k)

]
,

Ψ = Θ1 + Γ T
2 PiΓ2 + Γ T

2 HT Q1HΓ2 + Γ T
2 HT Q2HΓ2

+ τ 2M (Γ2 − Ĩ1)
T HT Q3H(Γ2 − Ĩ1) + Γ T

3 Γ3

+ (τM − τm)2(Γ2 − Ĩ1)
T HT Q4H(Γ2 − Ĩ1),

Γ2 = [
Āi Ēi 0 0 −B̄ei −B̄wi

]
, Ĩ1 = [

I 0 0 0 0 0
]
,

Γ3 = [
C̄i F̄i 0 0 D f i D̄i

]
,

Θ1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ξ11 HT Q3 0 0 0 0
∗ Ξ22 Q4 Q3 + Q4 0 Ξ26
∗ ∗ −Q2 − Q4 0 0 0
∗ ∗ ∗ −Q1 − Q2 − Q3 0 0
∗ ∗ ∗ ∗ −Φi 0
∗ ∗ ∗ ∗ ∗ Ξ66

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

Ξ22 = −2Q3 − 2Q4 + εiC
T
i ΦiCi , Ξ66 = −γ 2 I + εi

[
0 Di

]T
Φi

[
0 Di

]
.

By using the Schur complement, (24) guarantees Ψ < 0, so we have

E{ΔV (k)} + eT (k)e(k) − γ 2wT (k)w(k) ≤ ηT (k)Ψ η(k) < 0 (34)
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According to Definition 1 and under the zero initial conditions, the following holds

E
{ ∞∑

k=0

‖ e(k) ‖2
}

≤ γ 2
∞∑

k=0

‖ w(k) ‖2 .

Therefore, the filtering error system (18) is stochastically stable with H∞ performance
index γ . This completes the proof.

3.2 H∞ Filter Design

In this subsection, we will discuss the H∞ filter algorithm for the filtering error system
(18).

Theorem 2 For given scalars 0 ≤ εi < 1, γ > 0, and τM > τm > 0, the filtering
error system (18) is stochastically stable with a guaranteed H∞ performance γ , if

there exist matrices Pi = [ P1i P2i
PT
2i P3i

] = [pabi ] > 0, the block P1i > 0, Wi > 0,

Φi > 0, Q1 > 0, Q2 > 0, Q3 > 0, Q4 > 0 and T = T T = [tabi ], Ā f i , B̄ f i , C̄ f i ,
D̄ f i with appropriate dimensions such that

P1i − Wi > 0, (35)
[ ˜(1, 1) ˜(1, 2)

∗ ˜(2, 2)

]

< 0, (36)

N∑

j=1

πi j (P1 j − Wj ) ≤ P1i − Wi , (37)

paai −
∑

b 	=a

(pabi + 2tabi ) ≥ 0, ∀a, (38)

tabi ≥ 0, ∀a 	= b, (39)

pabi + tabi ≥ 0, ∀a 	= b, (40)

with

˜(1, 1) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ξ̄11 Wi Q3 0 0 0 0 0
∗ Wi 0 0 0 0 0 0
∗ ∗ Ξ̄33 Q4 Ξ̄35 0 0 Ξ̄38

∗ ∗ ∗ Ξ̄44 0 0 0 0
∗ ∗ ∗ ∗ Ξ̄55 0 0 0
∗ ∗ ∗ ∗ ∗ −Φi 0 0
∗ ∗ ∗ ∗ ∗ ∗ −γ 2 I 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ Ξ̄88

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,
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˜(1, 2) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

AT
i P1i AT

i Wi AT
i Q1 AT

i Q2 Ξ̄113 Ξ̄114 ET
i

ĀT
f i ĀT

f i 0 0 0 0 −C̄T
f i

C̄T
i B̄T

f i C̄T
i B̄T

f i 0 0 0 0 −CT
i D̄T

f i
0 0 0 0 0 0 0
0 0 0 0 0 0 0
B̄T

f i B̄T
f i 0 0 0 0 D̄T

f i
BT
i P1i BT

i Wi BT
i Q1 BT

i Q2 Ξ̄713 Ξ̄714 0
DT

f i B̄
T
f i D

T
f i B̄

T
f i 0 0 0 0 −DT

i D̄T
f i

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

˜(2, 2) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−P1i Wi 0 0 0 0 0
∗ −Wi 0 0 0 0 0
∗ ∗ −Q1 0 0 0 0
∗ ∗ ∗ −Q2 0 0 0
∗ ∗ ∗ ∗ −Q3 0 0
∗ ∗ ∗ ∗ ∗ −Q4 0
∗ ∗ ∗ ∗ ∗ ∗ −I

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

Ξ̄11 = −P1i − Q3, Ξ̄113 = τM (AT
i − I )Q3,

Ξ̄114 = (τM − τm)(AT
i − I )Q4, Ξ̄33 = −2Q3 − 2Q4 + εiC

T
i ΦiCi ,

Ξ̄35 = Q3 + Q4, Ξ̄38 = εiC
T
i Φi Di ,

Ξ̄44 = −Q2 − Q4, Ξ̄55 = −Q1 − Q3 − Q4,

Ξ̄713 = τM BT
i Q3, Ξ̄714 = (τM − τm)BT

i Q4,

Ξ̄88 = −γ 2 I + εi D
T
i Φi Di .

If the above conditions are feasible, the following filter parameters can be obtained:

A f i = W−1
i Ā f i , B f i = W−1

i B̄ f i , C f i = C̄ f i , D f i = D̄ f i . (41)

Proof According to Theorem 1, if (24) and (25) are feasible, the filtering error sys-
tem (18) is stochastically stable with an H∞ performance index γ . Now we define
J1i = diag{I , P2i P−1

3i }, J2i = diag{J1i , I , I , I , I , I , J1i , I , I , I , I , I }. Pre- and post-
multiply (22) by J2i and J T2i , respectively, and define new variables

Wi = P2i P
−1
3i PT

2i , Ā f i = P2i A f i P
−1
3i PT

2i , B̄ f i = P2i B f i ,

C̄ f i = C f i P
−1
3i PT

2i , D̄ f i = D f i .


�

Then, (24) is equivalent to (36). In addition, according to the Schur complement, (37)

holds, and the matrix Pi =
[
P1i P2i
PT
2i P3i

]

> 0 is equivalent to P1i − P2i P
−1
3i PT

2i =
P1i − Wi > 0.
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Note that P2i , P3i cannot be directly derived from the condition (36), but we know
the continuous-time transfer function from y f (k) to z f (k) by

Tz f y f = C f i (z I − A f i )
−1B f i + D f i ,

= C̄ f i P
−T
2i P3i (z I − P−1

2i Ā f i P
−T
2i P3i )

−1P−1
2i B̄ f i + D̄ f i ,

= C̄ f i (zWi − Ā f i )
−1 B̄ f i + D̄ f i ,

= C̄ f i (z I − W−1
i Ā f i )

−1W−1
i B̄ f i + D̄ f i .

(42)

Furthermore, from (38) to (40), for each i ∈ S, one has

paai ≥
∑

b 	=a

(pabi + 2tabi ) =
∑

b 	=a

(| pabi + tabi | + | −tabi |) ≥
∑

b 	=a

pabi . (43)

Therefore, according toDefinition 3 and (43),we know that the positive-definitematrix
Pi is diagonally dominant. This completes the proof.

4 Numerical Examples

In this section, we provide an example to illustrate the effectiveness of our proposed
method.

Consider the system described by (1) with two modes, S = {1, 2}. The mode
switching is governed by a Markov process with the generator

Π =
[
0.35 0.65
0.8 0.2

]

.

Mode 1:

A1 =
⎡

⎣
−1.2 0 0.5
−1.2 −0.2 0.5
−0.5 0 −0.6

⎤

⎦ , B1 =
⎡

⎣
0.2
0.3
0.5

⎤

⎦ ,C1 = [
1.2 0.5 1.4

]
,

D1 = 0.4, E1 = [
0.4 1 −0.3

]
.

Mode 2:

A2 =
⎡

⎣
−0.9 0.4 0.8
−0.9 −0.2 0.9
0.5 0.1 −1

⎤

⎦ , B2 =
⎡

⎣
0.6
0.2
0.4

⎤

⎦ ,C2 = [
0.9 −0.6 −0.2

]
,

D2 = 0.3, E1 = [−0.5 −0.9 0.2
]
.

For this system, two cases are considered to show the effectiveness of the proposed
method, that is, Case 1: ε1 = ε2 and Case 2: ε1 	= ε2.

In Case 1, according to Theorem 2, when τm = 1 and τM = 7, Table 1 shows the
minimum H∞ performance index γ for different triggered threshold εi . Moreover,
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Table 1 γmin and for different
εi under τm = 1 and
τM = 7(Case 1)

ε1 = ε2 0.05 0.1 0.15 0.2

γmin 4.6713 4.9981 5.7114 6.0018

Table 2 τM and for different εi
(Case 1)

ε1 = ε2 0.05 0.1 0.15 0.2

τM 14 9 5 5

Fig. 2 Possible mode for Case 1

Fig. 3 Release instants and release interval for Case 1

when γ = 7 and τm = 1, Table 2 shows the maximum allowable delay τM . We can
find that the bigger εi , the bigger γmin and the smaller delay τM . So the triggered
threshold εi can affect the network-induced delay and H∞ performance.
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Fig. 4 z(k) and its estimation z f (k) for Case 1

Fig. 5 Estimation error e(k) for Case 1

Let γ = 6.5, ε1 = ε2 = 0.15, τM = 5, and τM = 1, according to Theorem 2, we
obtain that the triggered matrix Φ1 = 1.5167, Φ2 = 4.9145, and the filter parameters
are

A f 1 =
⎡

⎣
−3.7163 −0.9915 1.3592
0.7667 −1.5582 1.7441
0.4688 0.1203 −0.7619

⎤

⎦ , B f 1 =
⎡

⎣
1.0510
1.9644

−0.9003

⎤

⎦ ,

C f 1 = [−0.5117 −2.1349 0.8781
]
, D f 1 = −0.0011

A f 2 =
⎡

⎣
−1.5614 −0.2143 0.3419
0.2219 −2.5903 0.7419
0.5584 1.5587 −4.3419

⎤

⎦ , B f 2 =
⎡

⎣
0.7957
1.0367

−0.3314

⎤

⎦ ,

C f 2 = [
2.2251 0.0576 −1.0018

]
, D f 2 = −0.0026.
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Table 3 τM and for different εi
(Case 2)

ε1 0.05 0.1 0.15 0.2

ε2 0.1 0.1 0.1 0.1

τM 12 9 5 5

Fig. 6 Possible mode for Case 2

Fig. 7 Release instants and release interval for Case 2

We assume that the repeated scalar nonlinearity is f (x(k)) = sin(x(k)), which sat-
isfies Assumption 1. The initial condition is assumed to be x(0) = x f (0) = [

0 0 0
]T ,

and the disturbance input is w(k) = 0.5/(1 + k2). Figure 2 shows the possible sys-
tem mode transition. Figure 3 shows the event-triggered release instants and intervals.
From Fig. 3, we know that 44 times are triggered, in contrast to the time-triggered
scheme, in which 150 times are need to be triggered. So the event-triggered scheme
reduces the use of networked bandwidth. The z(k) and its estimation of z f (k) are
depicted in Fig. 4. Figure 5 shows the response of filter error e(k).
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Fig. 8 z(k) and its estimation z f (k) for Case 2

In Case 2, we consider that ε1 	= ε2, and the ε1 varies; the ε2 is constant. For given
γ = 7 and τm = 1, according to Theorem 2, Table 3 shows the maximum allowable
delay τM . Similar to Case 1, from Table 3, we can also find that the bigger εi , the
smaller delay τM .

Let γ = 6.5, ε1 = 0.15, ε2 = 0.1, τm = 1 and τM = 5, according to Theorem 2,
we obtain that the triggered matrix Φ1 = 1.0053 and Φ2 = 1.9517, and the filter
parameters are

A f 1 =
⎡

⎣
−7.1169 −2.3815 0.6318
−0.0365 −4.6229 0.1938
0.0326 0.0988 −2.7159

⎤

⎦ , B f 1 =
⎡

⎣
0.7724
1.0031

−2.6471

⎤

⎦ ,

C f 1 = [−0.0647 −4.6718 2.1571
]
, D f 1 = −0.3175

A f 2 =
⎡

⎣
−5.5449 −2.1638 0.0812
−2.3391 −6.0017 1.5384
1.4473 0.0912 −7.0946

⎤

⎦ , B f 2 =
⎡

⎣
−1.1367
0.0488

−2.5715

⎤

⎦ ,

C f 2 = [
1.3641 0.0076 −3.6116

]
, D f 2 = −0.0791

Giving a possible system mode evolution as in Fig. 6. Figure 7 shows the event-
triggered release instants and intervals. From Fig. 7, we know that only 41 times are
triggered, in contrast to the time-triggered scheme, in which 150 times need to be
triggered. So our method can reduce the use of networked bandwidth. z(k) and its
estimation of z f (k) are depicted in Fig. 8. Figure 9 shows the response of filter error
e(k).



688 Circuits, Systems, and Signal Processing (2021) 40:669–690

Fig. 9 Estimation error e(k) for Case 2

5 Conclusion

The problem of event-triggered H∞ filtering for discrete-time Markov jump systems
with repeated scalar nonlinearities is studied in this paper. In order to reduce the
communication bandwidth utilization, a dynamic discrete event-triggered scheme has
been employed to determine whether the current sampled output signals should be
transmitted or not. By using the diagonally-dominant-type Lyapunov function, the
sufficient conditions of stochastically stability with H∞ performance are obtained for
discrete-time Markov jump filter error system. The H∞ filter is designed based on
the sufficient conditions. Finally, a numerical example is given to illustrate the effec-
tiveness of our proposed method. The future work may focus on the event-triggered
control or filter problem forMarkov jump systems under different network conditions,
such as network attack and asynchronous communication.
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