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Abstract
In this paper, the improvedwavelet transform domain least mean squares (IWTDLMS)
adaptive algorithm is established. The IWTDLMS algorithm has a faster conver-
gence speed than the conventional WTDLMS for colored input signals. Since the
performances of WTDLMS and IWTDLMS are degraded in impulsive noise inter-
ference, the IWTDLMS sign algorithm (IWTDLMS-SA) is proposed. In comparison
with IWTDLMS, the IWTDLMS-SA has lower computational complexity. In order
to improve the performance of IWTDLMS-SA, the variable step-size IWTDLMS-SA
(VSS-IWTDLMS-SA) is introduced. TheVSS-IWTDLMS-SA is derived byminimiz-
ing the �1-norm of the a posteriori error vector. To increase the tracking ability of the
VSS-IWTDLMS-SA, the modified VSS-IWTDLMS-SA (MVSS-IWTDLMS-SA)is
presented. The simulation results demonstrate that the proposed algorithms have a
faster convergence rate and lower misadjustment than the conventional WTDLMS.
The robustness feature of the IWTDLMS-SA, VSS-IWTDLMS-SA, and MVSS-
IWTDLMS-SA against impulsive noises is also verified through several experiments
in a system identification setup.

Keywords Adaptive filters · Sign algorithm · Variable step size · Wavelet transform ·
Impulsive noise interference

B Seyed Mahmoud Khademiyan
m_khademiyan@srttu.edu

Mohammad Shams Esfand Abadi
mshams@srttu.edu

Hamid Mesgarani
hmesgarani@srttu.edu

1 Faculty of Electrical Engineering, Shahid Rajaee Teacher Training University,
P.O.Box: 16785-163, Tehran, Iran

2 Department of Applied Mathematics, Shahid Rajaee Teacher Training University,
P.O.Box: 16785-163, Tehran, Iran

http://crossmark.crossref.org/dialog/?doi=10.1007/s00034-020-01508-5&domain=pdf
http://orcid.org/0000-0002-9810-2819


Circuits, Systems, and Signal Processing (2021) 40:958–979 959

1 Introduction

Adaptive filters play a significant role in signal processing fields such as system iden-
tification, channel equalization, network and acoustic echo cancellation, and active
noise control [8,9,21]. The least mean square (LMS) and normalized LMS (NLMS)
algorithms are the most popular adaptive filter algorithms due to their simplicity and
ease of realization. However, the LMS algorithm has slow convergence in highly cor-
related signals [14]. To overcome the slow convergence in highly correlated signals,
the affine projection algorithm (APA) has been proposed. In the APA, the convergence
rate and the computational complexity increase along with increasing the recent input
vectors in adaptation [13,14].

The variable step-size APA (VSS-APA) is derived by minimizing the MSD to
improve the convergence rate in the APA [17]; however, the APA and the VSS-APA
are unstable against the impulsive noise interference. When the �2-normminimization
is used for adaptive algorithms in impulsive noise interference, their performances are
deteriorated. To address this problem, the sign algorithm was introduced based on the
�1-normminimization. In comparison with conventional adaptive algorithms, the sign
algorithms utilize the error signal sign in filter coefficients adaptation. The sign algo-
rithms not only reduce the computation cost, but also improve the stability in impulsive
noise interference [7,15,20,27]. In another class of sign adaptive algorithm, the sign
operation is applied into the input signal regressors. The computational complexity
can be significantly reduced by this approach [2,3].

In the case of APA, various sign algorithms have been proposed. The affine projec-
tion sign algorithm (APSA)was proposed to utilize the benefits of the affine projection
and the sign algorithm [16]. Additionally, the variable step-size APSA (VSS-APSA)
was introduced to decrease the mean square deviation (MSD) in APSA [18]. To
increase the tracking ability, the VSS-SA and VSS-APSA with reset methods were
also introduced in [24,25]. Furthermore, by minimizing the �1-norm, the VSS-APA-
SAwas proposed in [10]. The results in [10] show that the performance of the presented
algorithm is better than other APSA algorithms in [18,25] and [24].

It should be noted that the transform domain filters such as the discrete Fourier
transform (DFT), the discrete cosine transform (DCT) and thewavelet transform (WT)
improve the convergence performance of the LMS-type algorithms by prewhitening
the input signal. In the case ofWT, differentWT domain LMS (WTDLMS) algorithms
were proposed [1,4,5,22]. In recent studies, theWTDLMSwith dynamic subband coef-
ficients update (WTDLMS-DU) was introduced [1]. In comparison with WTDLMS,
the WTDLMS-DU has a faster convergence speed and lower computational complex-
ity.

In the current research, we extend the affine projection approach to WTDLMS
algorithm to improve the performance of the WTDLMS. The improved WTDLMS
(IWTDLMS) has a faster convergence speed than WTDLMS, especially for colored
input signal. Since the performances of the WTDLMS and IWTDLMS are degraded
in impulsive noise interference, the IWTDLMS sign adaptive algorithm (IWTDLMS-
SA) is introduced based on �1-norm minimization. In the following, the variable step-
size IWTDLMS-SA (VSS-IWTDLMS-SA) is established to improve the performance
of IWTDLMS-SA. In this algorithm, the variable step size is obtained byminimizing a
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posteriori error vector. Also, themodified VSS-IWTDLMS-SA is proposed which has
a better tracking capability than VSS-IWTDLMS-SA. Table 1 compares the features
of other studies and the proposed algorithms.

What we propose in this paper can be summarized as follows:

1. The establishment of the IWTDLMS: This algorithm utilizes the strategy of APA
to speed up the convergence rate of WTDLMS.

2. The establishment of the IWTDLMS-SA: To improve the convergence speed of
IWTDLMS against impulsive interference, the IWTDLMS-SA is proposed.

3. The establishment of the VSS-IWTDLMS-SA: The VSS approach is extended to
IWTDLMS-SA in order to achieve a fast convergence speed and low steady-state
error.

4. The establishment of the MVSS-IWTDLMS-SA: To increase the tracking ability
of VSS-IWTDLMS-SA, the MVSS-IWTDLMS-SA is introduced.

This paper is organized as follows. Section 2 presents the data model and
background on NLMS and APA. In Sect. 3, the IWTDLMS algorithm is intro-
duced. Section 4 presents the IWTDLMS-SA, VSS-IWTDLMS-SA and the MVSS-
IWTDLMS-SA. The computational complexity of the proposed algorithms is studied
in Sect. 5. Section 6 introduces the convergence conditions for the proposed algo-
rithms. Finally, before concluding the paper, the usefulness of the proposed algorithms
is demonstrated by presenting several experimental results. Table 2 summarizes the
notations and abbreviations which are used in the paper.

2 Data Model and Background on APA

Consider a linear data model for d(n) as

d(n) = xT (n)wt + v(n), (1)

where wt is an unknown M-dimensional vector that we expect to estimate, v(n) is the
measurement noisewith variance σ 2

v , and x(n) = [x(n), x(n−1), . . . , x(n−M+1)]T
denotes an M-dimensional input (regressor) vector. It is assumed that v(n) is zero
mean, white, Gaussian, and independent of x(n). The update equation for NLMS
algorithm is given by

w(n + 1) = w(n) + μ
x(n)

‖x(n)‖2 e(n), (2)

where w(n) is M × 1 weight coefficients of adaptive filter, μ is the step size, and
e(n) = d(n) − wT (n)x(n). To improve the performance of NLMS, the APA was
proposed. By defining the input signal matrix and desired signal vector as

X(n) = [x(n), x(n − 1), . . . , x(n − K + 1)] (3)

d(n) = [d(n), d(n − 1), . . . , d(n − K + 1)], (4)
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Table 2 The notations and abbreviations

| . | Norm of a scalar

‖.‖1 �1 norm of a vector

‖.‖2 Squared Euclidean norm of a vector

(.)T Transpose of a vector or a matrix

sgn[.] The sign of scalar or vector

APA Affine projection algorithm

APSA Affine projection sign algorithm

DCT Discrete cosine transform

DFT Discrete Fourier transform

IWTDLMS Improved WTDLMS

IWTDLMS-SA IWTDLMS sign algorithm

LMS Least mean square

MSD Mean-square deviation

NLMS Normalized least mean square

SA Sign algorithm

TD Transform domain

VSS-APA Variable step-size APA

VSS-APA-SA Variable step-size affine projection sign algorithm

VSS-IWTDLMS-SA Variable step-size IWTDLMS-SA

WT Wavelet transform

WTDLMS Wavelet transform domain LMS

where K is the number of recent regressors, the update equation for APA is obtained
by

w(n + 1) = w(n) + μX(n)[XT (n)X(n)]−1e(n), (5)

where e(n) = d(n) − XT (n)w(n).

3 The IWTDLMS Adaptive Algorithm

Figure 1 shows the structure of theWTDLMS algorithm [4]. In this figure, the M×M
matrix T is an orthogonal matrix derived from a uniform N -band filter bank with
filters denoted by h0, h1, . . . , hN−1 following the procedure given in [4,19,23]. In
matrix form, the orthogonal WT can be expressed as z(n) = Tx(n). This vector
is represented as z(n) = [zTh0(n), zTh1(n), . . . , zThN−1

(n)]T where zhi (n)’s are output
vectors of an N -band filter bank. By splitting the wavelet transform domain adaptive
filter coefficients at time n, g(n), into N subfilters, each having M

N coefficients, g(n) =
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Fig. 1 Structure of the WTDLMS algorithm

[gTh0(n), gTh1(n), . . . , gThN−1
(n)]T , the output signal can be stated as

y(n) =
N−1∑

i=0

gThi (n)zhi (n), (6)

and the error signal is obtained by e(n) = d(n) − y(n). The update equation for each
subfilter in WTDLMS is given by

ghi (n + 1) = ghi (n) + μ
zhi (n)

σ 2
hi

(n)
e(n), (7)

where μ is the step size and σ 2
hi

(n) can be computed iteratively by

σ 2
hi (n) = ασ 2

hi (n − 1) + (1 − α)‖zhi (n)‖2, (8)
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with the smoothing factorα (0 � α < 1). The new improvedWTDLMS (IWTDLMS)
scheme is proposed based on the following cost function

min‖g(n + 1) − g(n)‖2 (9)

subject to

d(n) = ZT (n)g(n + 1), (10)

where

Z(n) = [z(n), z(n − 1), . . . , z(n − K + 1)], (11)

and

d(n) = [d(n), d(n − 1), . . . , d(n − K + 1)]T . (12)

In comparison withWTDLMS, the IWTDLMS applies K input vector and the desired
signal for the establishment of the update equation. It means that K constraints are
used based on (10) to achieve the IWTDLMS algorithm. This strategy improves the
convergence speed of the proposed algorithm. The IWTDLMS algorithm is obtained
from the solution of the following constraint minimization problem:

J(n) = ‖g(n + 1) − g(n)‖2 + Λ[d(n) − ZT (n)g(n + 1)] (13)

which can be represented as

J(n) =
N−1∑

j=0

‖gh j (n + 1) − gh j (n)‖2

+ Λ[d(n) −
N−1∑

j=0

ZT
h j

(n)gh j (n + 1)], (14)

where

Zhi (n) = [zhi (n), zhi (n − 1), . . . , zhi (n − K + 1)], (15)

and Λ = [λ1, λ2, . . . , λK ] is the Lagrange multipliers vector with length K . Using
∂J(n)

∂ghi (n+1) = 0 and ∂J(n)
∂Λ

= 0, we get

ghi (n + 1) = ghi (n) + 1

2
Zhi (n)ΛT , (16)

where

ΛT = 2[ZT (n)Z(n)]−1e(n), (17)
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Table 3 The notations in
IWTDLMS algorithm T WT matrix

μ Step size

x(n) Input signal vector

d(n) Desired signal vector

e(n) Error signal vector

z(n) Transformed input signal vector

Z(n) Transformed input signal matrix

g(n) Transformed weight coefficients

Table 4 Summary of
IWTDLMS adaptive algorithm For n = 0, 1, . . .

x(n) = [x(n), x(n − 1), . . . , x(n − M + 1)]T

z(n) = Tx(n)

Z(n) = [z(n), z(n − 1), . . . , z(n − K + 1)]

d(n) = [d(n), d(n − 1), . . . , d(n − K + 1)]

e(n) = d(n) − ZT (n)g(n)

g(n + 1) = g(n) + μZ(n)[εI + ZT (n)Z(n)]−1e(n)

End

and e(n) = [e(n), e(n − 1), . . . , e(n − K + 1)]T , which is expressed as

e(n) = d(n) − ZT (n)g(n). (18)

Substituting (17) into (16), the update equation for IWTDLMS is given by

ghi (n + 1) = ghi (n) + Zhi (n)[ZT (n)Z(n)]−1e(n), (19)

which can be reformulated as

g(n + 1) = g(n) + μZ(n)[ZT (n)Z(n)]−1e(n). (20)

To take care of the possibility that [ZT (n)Z(n)]may be close to singular, it is replaced
by [εI + ZT (n)Z(n)], where ε is the regularization parameter. Also, the parameter
μ controls the convergence rate in IWTDLMS. Note that for K = 1, the conven-
tional WTDLMS is established. Tables 3 and 4 summarize all the notations and the
IWTDLMS algorithm.

4 The IWTDLMS Sign Adaptive Algorithms

This section presents two IWTDLMS sign adaptive algorithms. In the first algorithm,
the sign approach extended to IWTDLMS and IWTDLMS-SA is established. In the
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second algorithm, the variable step-size IWTDLMS-SA (VSS-IWTDLMS-SA) is pro-
posed which has better performance than IWTDLMS-SA. Finally, to increase the
tracking capability, the modified VSS-IWTDLMS-SA is introduced.

4.1 The IWTDLMS Sign Adaptive Algorithms

The IWTDLMS-SA minimizes the following cost function:

min‖ep(n)‖1, (21)

subject to

‖g(n + 1) − g(n)‖2 ≤ δ2, (22)

where ep(n) is a posteriori error vector defined as

ep(n) = d(n) − ZT (n)g(n + 1). (23)

Therefore, the cost function is obtained as

J(n) = ‖ep(n)‖1 + β(‖g(n + 1) − g(n)‖2 − δ2). (24)

This equation can be expressed as

J(n) = |d(n) − zT (n)g(n + 1)|
+ |d(n − 1) − zT (n − 1)g(n + 1)|
+ · · · + |d(n − K + 1) − zT (n − K + 1)g(n + 1)|

+ β[
N−1∑

j=0

‖gh j (n + 1) − gh j (n)‖2 − δ2]. (25)

Equation (25) can be rewritten as

J(n) = |d(n) −
N∑

j=1

zTh j
(n)gh j (n + 1)|

+ |d(n − 1) −
N∑

j=1

zTh j
(n − 1)gh j (n + 1)|

+ · · · + |d(n − K + 1) −
N∑

j=1

zTh j
(n − K + 1)gh j (n + 1)|

+ β[
N−1∑

j=0

‖gh j (n + 1) − gh j (n)‖2 − δ2]. (26)
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Taking the derivative of (26) with respect to the tap-weight vector ∂ghi (n + 1), we
have

∂J(n)

∂ghi (n + 1)
= −zhi (n)

ep(n)

|ep(n)|
− zhi (n − 1)

ep(n − 1)

|ep(n − 1)| − · · ·

− zhi (n − K + 1)
ep(n − K + 1)

|ep(n − K + 1)|
+ 2β[ghi (n + 1) − ghi (n)], (27)

where ep(n) = [ep(n), ep(n − 1), . . . , ep(n − K + 1)]T and the elements of ep(n)

for 0 ≤ m ≤ K − 1 are given by

ep(n − m) = d(n − m) − zT (n − m)g(n + 1). (28)

By combining (28) and (27), we get

∂J(n)

∂ghi (n + 1)
= −

K−1∑

m=0

zhi (n − m)sgn[ep(n − m)]

+ 2β[ghi (n + 1) − ghi (n)]
= −Zhi sgn[ep(n)]

+ 2β[ghi (n + 1) − ghi (n)], (29)

where sgn[ep(n)] = [sgn(ep(n)), sgn(ep(n−1)), . . . , sgn(ep(n−K +1))]T . Setting
∂J(n)

∂ghi (n+1) = 0, we obtain

ghi (n + 1) = ghi (n) + 1

2β
Zhi (n)sgn[ep(n)]. (30)

From (30), we can get

‖ghi (n + 1) − ghi (n)‖2 = ‖Zhi (n)sgn[ep(n)]‖2
(2β)2

. (31)

Therefore,

‖g(n + 1) − g(n)‖2 =
N∑

i=1

‖ghi (n + 1) − ghi (n)‖2

=
∑N

i=1 ‖Zhi (n)sgn[ep(n)]‖2
(2β)2



968 Circuits, Systems, and Signal Processing (2021) 40:958–979

Table 5 Summary of the
IWTDLMS-SA For n = 0, 1, . . .

x(n) = [x(n), x(n − 1), . . . , x(n − M + 1)]T

z(n) = Tx(n)

Z(n) = [z(n), z(n − 1), . . . , z(n − K + 1)]

d(n) = [d(n), d(n − 1), . . . , d(n − K + 1)]

e(n) = d(n) − ZT (n)g(n)

g(n + 1) = g(n) + μ
Z(n)sgn[e(n)]√

‖Z(n)sgn[e(n)]‖2+ε

End

= ‖Z(n)sgn[ep(n)]‖2
(2β)2

. (32)

Finally, we have

1

(2β)2
= ‖g(n + 1) − g(n)‖2

‖Z(n)sgn[ep(n)]‖2 , (33)

and then

1

2β
= δ√

‖Z(n)sgn[ep(n)]‖2 + ε

. (34)

From the above analyses, the update equation for IWTDLMS-SA is established as

ghi (n + 1) = ghi (n) + μ
Zhi (n)sgn[ep(n)]

√
‖Z(n)sgn[ep(n)]‖2 + ε

, (35)

which can be represented as

g(n + 1) = g(n) + μ
Z(n)sgn[ep(n)]

√
‖Z(n)sgn[ep(n)]‖2 + ε

. (36)

As the a posteriori error vector ep(n) depends on g(n + 1) which is not accessible,
it is reasonable to approximate it with the a priori error vector e(n). Therefore, the
update equation of IWTDLMS-SA becomes

g(n + 1) = g(n) + μ
Z(n)sgn[e(n)]√‖Z(n)sgn[e(n)]‖2 + ε

. (37)

Table 5 summarizes the relations of IWTDLMS-SA.
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Table 6 Summary of the VSS-IWTDLMS-SA

For n = 0, 1, . . .

x(n) = [x(n), x(n − 1), . . . , x(n − M + 1)]T

z(n) = Tx(n)

Z(n) = [z(n), z(n − 1), . . . , z(n − K + 1)]

d(n) = [d(n), d(n − 1), . . . , d(n − K + 1)]

e(n) = d(n) − ZT (n)g(n)

r(n) = ZT (n)Z(n)sgn(e(n))√
sgn

(
eT (n)

)
ZT (n)Z(n)sgn(e(n))+δ

For j = 1, 2, . . . , K

μ j (n) = e(n− j+1)
r j (n)+ε

End

μsol(n) = argmin
μ j (n)

∥∥e(n) − μ j (n)r(n)
∥∥
1

μsol(n) =
{

μU μsol(n) > μU
μL μsol(n) < μL

μ(n) = αμ(n − 1) + (1 − α)min{μsol(n), μ(n − 1)}
g(n + 1) = g(n) + μ(n)

Z(n)sgn(e(n))√
sgn

(
eT (n)

)
ZT (n)Z(n)sgn(e(n))+δ

End

4.2 IWTDLMS-SA with Variable Step Size

By substituting (37) into (23) and using the variable step size μ(n), we have

ep(n) = e(n) − μ(n)
ZT (n)Z(n)sgn[e(n)]√‖Z(n)sgn[e(n)]‖2 + ε

(38)

which can be written as

ep(n) = e(n) − μ(n)r(n), (39)

where

r(n) = ZT (n)Z(n)sgn[e(n)]√‖Z(n)sgn[e(n)]‖2 + ε
. (40)

The IWTDLMS-SA minimizes the following cost function:

min‖ep(n)‖1 = ‖e(n) − μ(n)r(n)‖1 = f [μ(n)], (41)

subject to

μL ≤ μ(n) ≤ μU . (42)
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Table 7 Summary of the MVSS-IWTDLMS-SA

For n = 0, 1, . . .

x(n) = [x(n), x(n − 1), . . . , x(n − M + 1)]T

z(n) = Tx(n)

Z(n) = [z(n), z(n − 1), . . . , z(n − K + 1)]

d(n) = [d(n), d(n − 1), . . . , d(n − K + 1)]

e(n) = d(n) − ZT (n)g(n)

r(n) = ZT (n)Z(n)sgn(e(n))√
sgn

(
eT (n)

)
ZT (n)Z(n)sgn(e(n))+δ

For j = 1, 2, . . . , K

μ j (n) = e(n− j+1)
r j (n)+ε

End

μsol(n) = argmin
μ j (n)

∥∥e(n) − μ j (n)r(n)
∥∥
1

μsol(n) =
{

μU μsol(n) > μU
μL μsol(n) < μL

μ̄sol(n) = βμ̄sol(n − 1) + (1 − β)μsol(n)

If (μ̄sol(n) > βμU )

μ(n) = μU

Else

μ(n) = αμ(n − 1) + (1 − α)min{μsol(n), μ(n − 1)}
End

g(n + 1) = g(n) + μ(n)
Z(n)sgn(e(n))√

sgn
(
eT (n)

)
ZT (n)Z(n)sgn(e(n))+δ

End

In (41), f [μ(n)] is a function of μ(n). In practice, the lower bound μL in (42) should
be selected to be a small positive constant to force the step size to be positive and the
upper boundμU in (42) should be selected to be smaller than one in order to guarantee
the convergence of the introduced algorithm [10]. Since the objective function (41) is
a piecewise linear convex one, the minimum of (41) is obtained by

μsol(n) = argmin f [μ j (n)], (43)

where

μ j (n) = e(n − j + 1)

r j (n) + ε
, j = 1, 2, . . . , K (44)

and r(n) = [r1(n), r2(n), . . . , rK (n)]T and ε is a small positive constant introduced
to avoid dividing by zero. If μsol(n) > μU , then μsol(n) = μU , and if μsol(n) < μL

then μsol(n) = μL . If several consecutive impulsive noises occur, they add to the
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filter output. In this situation, μsol(n) may increase and the performance of VSS-
IWTDLMS-SA is degraded. To avoid such possibility, the proposed step size is
designed to decrease monotonically by adopting the following time-average scheme:

μ(n) = αμ(n − 1) + (1 − α)min{μsol(n), μ(n − 1)}. (45)

Therefore, the update equation of VSS-IWTDLMS-SA is given by

g(n + 1) = g(n) + μ(n)
Z(n)sgn[e(n)]√‖Z(n)sgn[e(n)]‖2 + ε

. (46)

Table 6 describes the relations of VSS-IWTDLMS-SA. To improve the tracking capa-
bility of VSS-IWTDLMS-SA, the modified VSS-IWTDLMS-SA is proposed. If the
filter coefficients of the unknown system are constant during the iterations, then μ(n)

begins from μU and goes to μL . Thus, if the filter coefficients of the unknown system
change at the middle of the iterations, thenμ(n) needs to be reset and start fromμU to
have a good tracking of the filter coefficients of the unknown system. But the parameter
μ(n) in Eq. (45) cannot increase during the iterations due to themin{μsol(n), μ(n−1)}.
The parameterμsol(n) increases to high values in two situations (when the strong inter-
ference takes place at iteration n and when the weight vector of the unknown system
changes). The effect of the changing of the unknown system on μsol(n) is very high
during the iterations. Therefore, we propose the following relation for detecting this
iteration as

μ̄sol(n) = βμ̄sol(n − 1) + (1 − β)μsol(n). (47)

Table 7 presents the MVSS-IWTDLMS-SA. Also, Fig. 2 describes the diagram of
MVSS-IWTDLMS-SA. The dotted line box in this diagram shows the process of
updating the equation in the proposed algorithm.

5 Computational Complexity

Table 8 shows the number of multiplications for each term in MVSS-IWTDLMS-SA
at every adaptation. We can calculate the computational complexity of other algo-
rithms through this strategy. Table 9 describes the computational complexity of the
IWTDLMS, IWTDLMS-SA, VSS-IWTDLMS-SA, and MVSS-IWTDLMS-SA. The
number of multiplications has been calculated for each algorithm at every adaptation.
In this table,M is the number of filter coefficients and K is the number of recent regres-
sors. In comparison with IWTDLMS, the IWTDLMS-SA needs M2 + M(K + 2)+ 1
multiplications which is lower than IWTDLMS. The VSS-IWTDLMS-SA needs
M2+M(2K +1)+K 2+2K +3 multiplications. This algorithm has also lower com-
putational complexity than IWTDLMS. But the performance of VSS-IWTDLMS-SA
is significantly better than that of IWTDLMS.
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Table 8 The computational complexity of MVSS-IWTDLMS-SA

Computation Multiplications

z(n) = Tx(n) M2

e(n) = d(n) − ZT (n)g(n) KM

Q(n) = ZT (n)Z(n)sgn (e(n)) KM

s(n) = √
sgn (e(n))Q(n) + δ -

r(n) = Q(n)
s(n)

K

μ j (n) = e(n− j+1)
r j (n)+ε

K

μsol(n) = argmin
μ j (n)

∥∥e(n) − μ j (n)r(n)
∥∥
1 K 2

μ̄sol(n) = βμ̄sol(n − 1) + (1 − β)μsol(n) 2

μ(n) = αμ(n − 1) + (1 − α)min{μsol(n), μ(n − 1)} 2

g(n + 1) = g(n) + μ(n)
s(n)

Z(n)sgn (e(n)) M + 1

Total Multiplications: M2 + M(2K + 1) + K 2 + 2K + 5

Table 9 The computational complexity of IWTDLMS, IWTDLMS-SA, VSS-IWTDLMS-SA, andMVSS-
IWTDLMS-SA

Algorithm Multiplications

IWTDLMS M2 + M(K 2 + 2K + 1) + K 3 + K 2

IWTDLMS-SA M2 + M(K + 2) + 1

VSS-IWTDLMS-SA M2 + M(2K + 1) + K 2 + 2K + 3

MVSS-IWTDLMS-SA M2 + M(2K + 1) + K 2 + 2K + 5

6 Convergence Analysis

To study the convergence analysis of the proposed methods, the weight error vector
is defined as g̃(n) = g◦ − g(n), where w◦ is an unknown system vector of the filter
coefficients and g◦ = Tw◦. By taking the squaredEuclidean normand then expectation
from both sides of (37), we have

E[‖g̃(n + 1)‖2] = E[‖g̃(n)‖2] + Δ, (48)

where

Δ = −2μE[ g̃T (n)Z(n)sgn[e(n)]√‖Z(n)sgn[e(n)]‖2 + ε
] + μ2. (49)

By defining the noise-free vector, ea(n) = e(n)−ν(n) = ZT (n)g̃(n), the numerator
of (49) becomes

g̃T (n)Z(n)sgn[e(n)] = eTa (n)sgn[e(n)]. (50)
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In (49), Δ can be approximated as [24]:

Δ = −2μE[ eTa (n)sgn[e(n)]√‖Z(n)sgn[e(n)]‖2 + ε
] + μ2

= −2μE[
(
eT (n) − νT (n)

)
sgn[e(n)]

√‖Z(n)sgn[e(n)]‖2 + ε
] + μ2

= −2μE[
(‖e(n)‖1 − νT (n)

)
sgn[e(n)]

√‖Z(n)sgn[e(n)]‖2 + ε
] + μ2

≈ −2μE[
‖e(n)‖1 − K .

√
2
π
σν

√‖Z(n)sgn[e(n)]‖2 + ε
] + μ2. (51)

If Δ < 0, (48) is stable. Therefore, from (51), the range of μ is given by

0 < μ < 2E[
‖e(n)‖1 − K .

√
2
π
σν

√‖Z(n)sgn[e(n)]‖2 + ε
]. (52)

This range guarantees the convergence of the IWTDLMS-SA, VSS-IWTDLMS-
SA, and MVSS-IWTDLMS-SA.

7 Simulation Results

We demonstrate the performance of the proposed algorithms by several computer
simulations in a system identification and acoustic echo cancellation (AEC) scenarios.
For the system identification, two unknown systems (wt ) have been used. The first
unknown impulse response is randomly selected with 16 taps (M = 16), and the
second one is the car echo path with M = 256 (Fig. 3). The input signal is an AR(1)
signal generated by passing a zero-mean white Gaussian noise through a first-order
system H(z) = 1

1−0.9z−1 . In AEC, the input signal is real speech (Fig. 3) and the
unknown system is the car echo path. An additive white Gaussian noise with variance
σ 2

v = 10−3 is added to the system output, setting the signal-to-noise ratio (SNR) to
30 dB. The Haar wavelet transform (HWT) is used in all simulations which leads to
the reduction in computational complexity due to the elements (+1 and -1) in HWT.
In all simulations, we show the normalized mean square deviation (NMSD) which is
evaluated by ensemble averaging over 30 independent trials.

Figure 4a compares the NMSD learning curves of WTDLMS and IWTDLMS
algorithms with M = 16. The value of the step size is set to 0.3, and different values
for K are chosen. As we can see, by increasing the parameter K , the convergence
speed and the steady-state NMSD values increase. Figure 4b presents the NMSD
learning curves of WTDLMS and IWTDLMS algorithms with M = 256. Again, the
IWTDLMS has a higher convergence speed thanWTDLMS algorithm. As we can see,
for large values ofM , the convergence speed of IWTDLMS is significantly higher than
that of WTDLMS.
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In the simulations, a strong interference signal is also added to the system output
with a signal-to-interference (SIR) of -30 dB. The Bernoulli–Gaussian (BG) distribu-
tion is used for modeling the interference signal, which is generated as the product of
a Bernoulli process and a Gaussian process,w(n)b(n), where b(n) is a white Gaussian
random sequence with zero mean and variance σ 2

b and w(n) is a Bernoulli process
with the probabilitymass function given as P(w) = 1−Pr forw = 0, and P(w) = Pr
for w = 1. The average power of a BG process is Pr .σ 2

b . Keeping the average power
constant, a BG process is spikier when it is smaller. It reduces to a Gaussian process
when Pr = 1 [16].
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Figure 5a shows theNMSDlearning curves ofWTDLMS, IWTDLMS, IWTDLMS-
SA, and VSS-IWTDLMS-SA when the impulsive noise is added to the system output.
The parameter M is set to 16, and the value of the step size is set to 0.01. The
results show that the IWTDLMS-SA and VSS-IWTDLMS-SA have better perfor-
mance than IWTDLMS and conventionalWTDLMS. In Fig. 5b, we present the results
for M = 256. The step size is set to 0.01. We observe that the IWTDLMS-SA and
VSS-IWTDLMS-SAhave better performance than other algorithms in impulsive noise
interference environments.

In Fig. 6a, the impulsive noise is added to the system output. The results show that
the proposed MVSS-IWTDLMS-SA and IWTDLMS-SA have better performance
than other algorithms in this environment. It is important to note that the tracking
ability ofVSS-IWTDLMS-SA isweaker than other algorithms. Figure 6bdescribes the
variation of the defined step sizes (μ(n), μsol(n), μ̄sol(n)) in VSS-IWTDLMS-SA and
MVSS-IWTDLMS-SA. In VSS-IWTDLMS-SA, the step size does not change when
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(a) (b)

Fig. 7 a The NMSD learning curves of DCT-LMS, VSS-TDlMS, VSS-APA-SA, WTDLMS, and IWT-
DLMS (M = 256), input: real speech signal. b The tracking performance of DCT-LMS, VSS-TDlMS,
VSS-APA-SA, WTDLMS, IWTDLMS, and MVSS-IWTDLMS-SA (M = 256), input: real speech signal

Table 10 The parameters in DCT-LMS, VSS-TDLMS, VSS-APA-SA, VSS-IWTDLMS-SA, and MVSS-
IWTDLMS-SA

DCT-LMS [11]

β = 0.9985 γ = 8 × 10−3 Mt = 10 ε = 2.5 × 10−2

VSS-TDLMS [6]

α = 0.99 β = 0.9 γ = 10−3 ε = 2.5 × 10−2

μmin = 4.7 × 10−3 μmax = 5 × 10−2 L = 10

VSS-TDLMS [12]

β = 0.98 γ = 0.98 ε = 2.5 × 10−2

VSS-TDLMS [26]

α = 0.995 β = 0.9 γ = 0.9 C = M × σ 2
ν ε = 2.5 × 10−2

μmax = 0.5

VSS-APA-SA [10] and VSS-IWTDLMS-SA

μL = 10−5 μ0 = μU ∈ [0.1, 0.5] ε = 0.001 α = 1 − K
c.M

c ∈ [1, . . . , 10]

MVSS-IWTDLMS-SA

μL = 10−5 μ0 = μU ∈ [0.1, 0.5] ε = 0.001 α = 1 − K
c.M

c ∈ [1, . . . , 10] β = 0.9

the impulse response of the unknown system changes. But in MVSS-IWTDLMS-SA,
the step size changes when the impulse response of the unknown system changes.

Figure 7a and 7b shows the performance of the proposed algorithms for real speech
input signal. Figure 7a compares the NMSD learning curves of WTDLMS and IWT-
DLMSwith those of the proposed algorithms in [6,11,12,26] and [10]. The parameters
in these algorithms are set according to Table 10. The results show that the IWTDLMS
has better performance than other algorithms. The tracking capability of the proposed
algorithm for real speed input is justified in Fig. 7b. Due to the good tracking perfor-
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(a) (b)

Fig. 8 a The ERLE of DCT-LMS, VSS-TDlMS, VSS-APA-SA, WTDLMS, and IWTDLMS (M = 256),
input: real speech signal. b The ERLE tracking performance of DCT-LMS, VSS-TDlMS, VSS-APA-SA,
WTDLMS, IWTDLMS, and MVSS-IWTDLMS-SA (M = 256), input: real speech signal

mance of MVSS-IWTDLMS-SA, we added the learning curve of this algorithm in
Fig. 7b. We observe that the tracking performance of MVSS-IWTDLMS-SA is better
than other algorithms.

Also, tomeasure the effectiveness of the proposed algorithms, we compute the echo
return loss enhancement (ERLE). The ERLE is obtained by evaluating the difference
between the powers of the echo and the error signal. The segmental ERLE curves for
the measured speech and echo signals are shown in Fig. 8. Figure 8a illustrates the
ERLE of the simulated algorithm in Fig. 7a. As can be seen, a good performance is
observed for IWTDLMS. Figure 8b compares the ERLE of the simulated algorithms in
Fig. 7b. This figure shows that the MVSS-IWTDLMS-SA performs well for tracking
situation.

8 Conclusion

In this paper, the IWTDLMS adaptive algorithm was established. The IWTDLMS
had better convergence speed than conventional WTDLMS in highly colored input
signals. The IWTDLMS-SA was introduced which is useful for impulsive noise inter-
ference. To improve the performance of IWTDLMS-SA, the VSS-IWTDLMS-SA
was proposed. Finally, the MVSS-IWTDLMS-SA was established which had better
tracking capability in comparison with other algorithms. We demonstrated the good
performance of the proposed algorithms through different simulation results.
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