
Circuits, Systems, and Signal Processing (2021) 40:691–718
https://doi.org/10.1007/s00034-020-01489-5

Empirical Mode Decomposition, Viterbi andWavelets
Applied to Electrocardiogram Noise Removal

Regis Nunes Vargas1 · Antônio Cláudio Paschoarelli Veiga1

Received: 29 November 2019 / Revised: 12 June 2020 / Accepted: 15 June 2020 / Published online: 3 July 2020
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
The electrocardiogram (ECG) signal is generally used as a cardiovascular disease
diagnostic tool. The accuracy of the diagnosis is directly related to the quality of the
ECG signal, which can be corrupted by several sources of noises such as, for exam-
ple, baseline wanders and power line interference. This paper proposes a new ECG
denoising methodology based on wavelets, empirical mode decomposition (EMD),
and Viterbi algorithm. The EMD decomposes the signal in intrinsic mode functions
(IMFs), then each one of these IMFs is processed by the discrete wavelet transform
through a decision process based on the Viterbi algorithm. We apply the proposed
method to a synthetic ECG signal and three real ECG signals. The simulations results
show that this novel methodology outperforms denoising schemes based on wavelets,
empirical mode decomposition, and total variation.

Keywords ECG signal · Wavelets · Empirical Mode Decomposition · Denoising ·
Viterbi algorithm

1 Introduction

Cardiovascular disease is one of the main indicators of mortality [2]. To measure the
heart activity of a person it is common to use a noninvasive method that consists of
to attach electrodes in different parts of the body and record the electrical activity of
the heart by an external device [1], thus obtaining electrocardiogram (ECG) signals
that measure cardiac activity. This type of signal usually has the amplitude between
10µV and 5 mV and frequency between 0.05 and 100 Hz [21].
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An ECG signal is composed of a P wave, QRS complex, T wave, and U wave.
Several cardiovascular diseases can bemanual or automated detected from the analysis
of the amplitude, duration, and interval between each of thesewaves [6,7,13].However,
during the acquisition process, various sources of noise can corrupt theECGsignal and,
consequently, compromise the diagnosis. Among the types of noise that can corrupt the
electrocardiogram signal are the power line interference (PLI), which comes from the
cables that carry the ECG information [18], and muscle artifacts (MA), from muscle
activity [4].

The detection and removal of noise in electrocardiogram (ECG) signals allow the
accuracy in the cardiac diagnosis. Traditional methods based on Fourier transform
not ever-present good performance when they are applied at non-stationary signals
such, for example, seismic traces and electrocardiograms [14,15]. In this scenario, the
discrete wavelet transforms (DWT) and empirical mode decomposition (EMD) appear
at powerful signal denoising tools.

Between the recent works, we can highlight the methods new improved wavelet
thresholding (NIWT) [12], the ECG signal denoising by EMD and adaptive switching
mean filter (EMD-ASMF) [19], the new power line interference removal based on the
stationary wavelet transform (PLI-SWT) [9] and empirical mode decomposition with
wavelet transform and non-local means (EMDWAVNLM-1 and EMDWAVNLM-2)
[10].

The NIWT method uses a thresholding function based on the sigmoid function
when considering the universal threshold. The EMD-ASMF uses the wavelet shrink-
age to smooth the three lower-order intrinsic mode functions, IMFs (precisely IMF1,
IMF2, and IMF3), applies the switching mean filter in the smoothed signal and then
applies a decision process that recovers the R-peaks by the Pan–Tompkins method.
The PLI-SWT uses the stationary wavelet transform shrinking and makes use of a
new thresholding function designed to work successfully in a wide variety of scenar-
ios. The EMDWAVNLM is composed of two hybrid methods (EMDWAVNLM-1 and
EMDWAVNLM-2), EMDWAVNLM-1 applies the non-local means for each IMF, and
EMDWAVNLM-2 apply the wavelet threshold for each IMF.

In this paper, we propose a new ECG denoising method called by Noise Reduction
by empirical mode decomposition, wavelets and Viterbi algorithm (EMDWAVIT).
This method applies the discrete wavelet transform (DWT) over the intrinsic mode
functions and processes their wavelet coefficients by the Viterbi algorithm.

In general, noise reduction methods propose a threshold along with a threshold-
ing function. Unlike previous techniques, the EMDWAVIT method processes the
detailed wavelet coefficients per cluster. In addition, the EMDWAVIT method takes
into account the fact that denoising is a blind technique, because, in practice, we do
not know the nature of the noise. Therefore, we can list the two major advantages of
EMDWAVIT as follows:

1. The EMDWAVIT method proposes the clustering of the wavelet coefficients, sep-
arating the noisy coefficients from those that represent the information;

2. this separation is based on the Hidden Markov Models (HMM) and the Viterbi
algorithm. Which, by definition, estimates a hidden generating process, based on
the observed data. This is exactly what happens when we obtain a noisy ECG



Circuits, Systems, and Signal Processing (2021) 40:691–718 693

signal in practice, in this case, we have at our disposal observable data, measured
through an ECG exam, but we are unable to accurately determine the nature and
magnitude of the noise that is corrupting it. That is, in practice, we need to estimate
the noise-generating process, which is hidden from the observer.

Wecompare the performance of theEMDWAVITmethodwith other sixwell-known
methods: NIWT [12], EMD-ASMF [19], 1DTVD [5], PLI-SWT [9], EMDWAVNLM-
1 and EMDWAVNLM-2 [10].

In Sect. 2, we review some basic properties about wavelets, empirical mode decom-
position, and Viterbi algorithm. In Sect. 3, we present the proposed EMDWAVIT
method and in Sect. 4 we show the simulation results. In Sect. 5 we summarize the
major conclusions of this study.

2 Basic Concepts

In this section, we approach three basic concepts used in the EMDWAVIT method:
the discrete wavelet transform (DWT) (Sect. 2.1), the empirical mode decomposition
(EMD) (Sect. 2.2) and the Viterbi Algorithm (Sect. 2.3).

2.1 DiscreteWavelet Transform

The wavelet theory consists in the approximation of functions by the linear combina-
tion of functions calledwavelets. Themother and fatherwavelets, respectively given by
ψ(·) and φ(·) are real functions respecting to: ψ, φ ∈ L2(R)∩ L1(R),

∫
R

ψ(t)dt = 0
and

∫
R

φ(t)dt = 1.
Usually, the mother wavelet is bounded and centered on the origin and ψ(·) → 0

when | t |→ ∞. Considering j, k ∈ Z these functions relate which other by the
functions ψ(t) = √

2
∑

k hkφ(2t − k) and φ(t) = √
2

∑
k gkφ(2t − k). Where gk

and hk are the respectives low-pass filter and high-pass filter coefficients respecting
to hk = (−1)kg1−k .

From there on, it is possible to build a wavelet sequence given by:

ψ j,k(t) = 2
j
2 ψ(2 j t − k),

φ j,k(t) = 2
j
2 φ(2 j t − k).

The Definition 1 formalizes the construction that maps the data from the time
domain to the wavelet domain.

Definition 1 (DWT) If y = (y0, y1, . . . , yN−1)
′ is a signal with length N , such that

N = 2J , J ∈ N. Then, the DWT of y, according its mother wavelet ψ(·), is given by:

d j,k =
N−1∑

t=0

ytψ j,k(t), (1)

where j = 0, 1, 2, . . . , J − 1 and k = 0, 1, 2, . . . , 2 j − 1.
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Fig. 1 Flowchart for the EMDWAVIT method

In practice, we calculate the DWT using a pyramid algorithm given by Meyer
[16] instead of Definition 1. This algorithm consists of an iterative application of the
high-pass and low-pass filters that return the detail wavelet coefficients set given by
{d j,k}. To minimize or remove the noise in a signal we need to decide which one of
these detail wavelet coefficients need to have their magnitude reduced or eliminated
and then, we need to apply the inverse discrete wavelet transform (IDWT) in these
previously processed coefficients.

2.2 Empirical Mode Decomposition

The empirical mode decomposition (EMD) is a method that decomposes the signal in
components called intrinsic mode functions (IMFs). The IMFs satisfy two conditions:
the difference between the number of zero-crossing and extrema need to be less or
equal to one.And, at any point, themean value defined by the upper and lower envelope
is zero. The “Sifting” process extracts the IMFs by the following steps.

Let x(t), t ∈ 1, 2, . . . , N a signal. Let xu(t) and xl(t), respectively, the upper
and lower envelope. The first step consists in to find the mean envelope m11(t) =
xu(t)+xl (t)

2 . In the second step, we define h11(t) = x(t) − m11(t). We repeat this
procedure k ∈ N times, until that h1 = h1k = h1(k−1) − m1k follows the criteria
of IMF or until an termination criteria (usually standard deviation) is satisfied. Then,
h1(t) is the first IMF.

In the third step, we define r1(t) = x(t) − h1(t) and repeat the procedure to find
h2(t) and, consequently, r2(t) = x(t) − h1(t) − h2(t). We repeat this process until
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Fig. 2 Synthetic ECG signal smoothed by EMDWAVIT method (MA)

Table 1 Synthetic ECG signal corrupted by MA (average SNR input: 5.50 dB)

Method 1DTVD EMD-ASMF EMDWAVIT NIWT PLI-SWT EMDWAVNLM-1 EMDWAVNLM-2

Average SNR
output

10.32 9.19 13.46 5.73 5.95 9.07 9.81

Average PRD 30.50 34.75 21.31 51.73 50.46 35.27 32.32

we find an monotonic function r j (t) = x(t) − ∑L
n=1 hn(t), L ∈ N. Then, we can see

that the signal x(t) can now be written as:

x(t) = r j (t) +
j∑

n=1

hn(t) (2)
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Table 2 Synthetic ECG signal corrupted by PLI (average SNR input: 14.59 dB)

Method 1DTVD EMD-ASMF EMDWAVIT NIWT PLI-SWT EMDWAVNLM-1 EMDWAVNLM-2

Average SNR
output

10.44 14.04 23.56 14.59 18.17 2.63 17.11

Average PRD 30.08 19.85 6.63 18.63 12.43 73.88 13.94

Fig. 3 Box plot for the cases that generate the PRD average values of Table 1

2.3 Viterbi Algorithm

The Viterbi algorithm appears in the context of the Hidden Markov Models (HMM).
There are two parts in this model: the observed part, {Ct }t∈N∗ , and the unobserved
part, {Zt }t∈N∗ , which together satisfy theMarkov property. EachCt value in the model
{Ct }t∈N∗ , depends on the respective state Zt in the Markov Chain {Zt }t∈N∗ , which is
evident in Definition 2.

Definition 2 Let {Ct }t∈N∗ be a stochastic process. Let C(t) = (C1, . . . ,Ct ) and Z(t) =
(Z1, . . . , Zt ) be the histories from time 1 to time t . Thus, {Ct }t∈N∗ is an HMM if the
following conditions are satisfied:
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Fig. 4 Box plot for the cases that generate the SNR output average values of Table 1

P(Zt = zt |Z(t−1) = z(t−1)) = P(Zt = zt |Zt−1 = zt−1),

t = 1, 2, . . . , (3)

and

P(Ct = ct |C(t−1) = c(t−1), Z(t) = z(t)) = P(Ct = ct |Zt = zt ),

t = 1, 2, . . . , (4)

where c(t) = (c1, . . . , ct ) is the observations sequence for the model, and z(t) =
(z1, . . . , zt ) is the hidden states sequence.

If the Markov Chain {Zt }t∈N has m states, {Ct }t∈N is an m-state HMM, and if
the hidden state Zt = i is known, then a distribution can be associated with Ct . In
this paper, we consider the Gaussian distribution and i ∈ {1, 2} (that is, a two-state
Gaussian HMM).

Estimating an HMM for a sequence of observable data involves estimating the sta-
tionary distribution and the transition probabilities of a Markov Chain, as well as the
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Fig. 5 Synthetic ECG signal smoothed by EMDWAVIT method (PLI)

parameters of the distributions associated with each state. In our case, we are working
with Gaussian distributions and estimating the means μ1, μ2 and the standard devia-
tions σ1, σ2. Here, we use the Expectation-Maximization algorithm to estimate these
parameters (see [22], for details). With these estimated parameters, it is possible to
estimate the most likely hidden sequence z(N ) of the hidden states using the Viterbi
algorithm [8].

3 EMDWAVITMethod

Here, we describe the EMDWAVIT method, which is based on the EMD, DWT, and
Viterbi algorithm. The EMDWAVIT method is applied in the following steps (Fig. 1).

Given an N -length noisy signal y (obtained from the addition of the noise e to a
clean signal x, where N = 2J , J ∈ N). In the first step we obtain the IMFs, let hn
(n ∈ {1, 2, . . . , L − 3}) the nth IMF obtained from the EMD application to y (see
Sect. 2.2). In the second step, over each hn , we apply the DWT to produce the detail
wavelet coefficients d = {dt }t∈{1,2,3,...,N−1} (see Sect. 2.1). We use the Expectation
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Fig. 6 Box plot for the cases that generate the PRD average values of Table 2

Maximization algorithm in the third step to obtain a two-state Gaussian HMM given
the observation sequence c(N−1) = d (see Sect. 2.3), where d is the detail wavelet
coefficients (ct = dt , t ∈ {1, 2, 3, . . . , N − 1}).

In the fourth step, the Viterbi algorithm [8] is applied to find the most likely
sequence z(N−1). A two-state Gaussian HMM is considered, and zt ∈ {1, 2}, t ∈
{1, 2, 3, . . . , N − 1}. In the fifth step, we generate two sets D1 = {b1i }i∈{1,2,...,N−1}
and D2 = {b2i }i∈{1,2,...,N−1} where

b1i =
{
ci , if zi = 1,
0, otherwise,

and

b2i =
{
ci , if zi = 2,
0, otherwise.
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Fig. 7 Box plot for the cases that generate the SNR output average values of Table 2

Table 3 Synthetic ECG signal corrupted by PLI and MA (average SNR input: 5.05 dB)

Method 1DTVD EMD-ASMF EMDWAVIT NIWT PLI-SWT EMDWAVNLM-1 EMDWAVNLM-2

Average SNR
output

10.26 8.81 13.13 5.29 5.45 9.03 9.34

Average PRD 30.68 36.27 22.12 54.38 53.40 35.46 34.11

Bold values represent the best performance

In the sixth step, applying the IDWT in the sets D1 and D2, respectively, we obtain
ĥn1 and ĥn2. We denote for ĥn , the smoothed signal of hn , and it’s given by

ĥn =
{
ĥn1, if MSE(ĥn1,hn) < MSE(ĥn2,hn),
ĥn2, otherwise,

where MSE is the mean squared error between two signals.
In the seventh step, we obtain the clean signal estimate x̂ by Eq. 2, changing hn by

ĥn .
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Fig. 8 Box plot for the cases that generate the PRD average values of Table 3

4 Simulation Results

In this section, we present the simulation results for the EMDWAVIT method. Sec-
tion 4.1 presents the simulation results for the synthetic ECG signal and the Sect. 4.2
presents the simulation results for real ECG signals.

4.1 Synthetic ECG Signal

In this subsection, we consider a synthetic ECG signal and, the noises represented by
the Muscle Artifacts (MA) and Power Line Interference (PLI).

The sampling frequency of the synthetic ECG signal is 256 Hz and the Heart rate is
60 beats per minute. Figure 2 presents an example of Synthetic ECG signal denoised
by the EMDWAVIT method.

We compare the EMDWAVIT performance with six well-established methods:
NIWT, EMD-ASMF, 1DTVD, PLI-SWT, EMDWAVNLM-1 and EMDWAVNLM-2.
To do this evaluation, we follow a Monte Carlo simulation.
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Fig. 9 Box plot for the cases that generate the SNR output average values of Table 3

Table 4 ANOVA considering MA and PLI noises, synthetic EGC signal

Noise type Source of variation Sum of squares df Mean squares F Sig

MA Between the groups 4225.00 6 704.10 3020 < 2e−16

Within the groups 162.00 693 0.20

Total 4387.00 699

PLI Between the groups 23113.00 6 3852.00 990 < 2e−16

Within the groups 2697.00 693 4.00

Total 25810.00 699

PLI and MA Between the groups 4471.00 6 745.20 3063 < 2e−16

Within the groups 169.00 693 0.20

Total 4640.00 699

TheMonte Carlo simulation is an approach that seeks to find a populational param-
eter based on a significant sample. In our case, we will estimate the PRD and the SNR
output performance parameters given by:
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Fig. 10 ECG signal named by code 103 smoothed by EMDWAVIT method (MA)

Table 5 Simulation results for the ECG signal named by code 103 corrupted by MA (average SNR input:
8.48 dB)

Method 1DTVD EMD-ASMF EMDWAVIT NIWT PLI-SWT EMDWAVNLM-1 EMDWAVNLM-2

Average SNR output 14.23 12.26 16.83 8.62 8.76 7.82 12.72

Average PRD 19.43 24.38 14.44 37.06 36.47 40.72 23.13

Table 6 Simulation results for the ECG signal named by code 105 corrupted by MA (average SNR input:
8.62 dB)

Method 1DTVD EMD-ASMF EMDWAVIT NIWT PLI-SWT EMDWAVNLM-1 EMDWAVNLM-2

Average SNR output 14.64 11.94 17.44 8.76 9.01 13.33 12.87

Average PRD 18.53 25.28 13.45 36.49 35.46 21.67 22.72
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Table 7 Simulation results for the ECG signal named by code 106 corrupted by MA (average SNR input:
8.06 dB)

Method 1DTVD EMD-ASMF EMDWAVIT NIWT PLI-SWT EMDWAVNLM-1 EMDWAVNLM-2

Average SNR output 13.93 12.27 15.42 8.22 8.23 8.13 12.22

Average PRD 20.17 24.34 16.97 38.82 38.74 39.29 24.50

Fig. 11 Box plot for the cases that generate the PRD average values of Tables 5, 6 and 7

PRD(x, x̂) = 100

√√
√
√

∑N
i=1(xi − x̂i )2
∑N

i=1 x
2
i

(5)

SNR(x, x̂) = 10 log10

∑N
i x2i∑N

i (xi − x̂i )2
, (6)

We generate one-hundred noises (MA and PLI). Each of these noises has added to
the synthetic ECG signal. In this way, from each clean signal, we obtain one-hundred
noisy signals. Over each of these signals, we apply the denoisingmethods and calculate
the performance parameters. We group the mean values of the PRD and SNR output
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Fig. 12 Box plot for the cases that generate the SNR output average values of Tables 5, 6 and 7

by the database and the SNR input. As grater is the SNR output value and, as lower
is the PRD value, better is the performance of the method. Tables 1 and 2 presents, in
bold values, the best performances.

The PRD measures the ability of the denoising method to reduce the noise without
loss of critical information. The SNR output is a parameter that verifies the proportion
of noise in a signal. Table 1 shows the simulation results for the synthetic signal
corrupted byMuscle Artifact (MA). The EMDWAVIT has the best performance when
compared to the NIWT, EMD-ASMF, 1DTVD, PLI-SWT, EMDWAVNLM-1 and
EMDWAVNLM-2 methods. Figures 3 and 4 show the box plot considering all the
one-hundred execution of each method that generates the mean values of the SNR
output and PRD of Table 1, we can see that the EMDWAVIT method presents the best
performance also when we consider the individual values of the PRD and SNR output.
Specifically, the maximum value of the PRD between the noise signal and the signal
smoothed by the EMDWAVIT is 24.62, it is less than 28.19 that is the minimum PRD
value obtained when we consider the other three denoising methods. As well as, the
minimum SNR output value obtained by the application of the EMDWAVIT method
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Fig. 13 PRD values obtained from each individual execution of the cases that generate the PRD average
values of the Tables 5, 6 and 7

is 12.17, which is greater than the maximum SNR output value of 10.99 obtained from
the application of the other six methods.

Figure 5 shows an example of EMDWAVIT smoothing considering the Synthetic
ECG signal corrupted by PLI.

Table 2 shows the simulations results for the synthetic signal corrupted by Power
Line Interference (PLI)

Figures 6 and 7 show the box plot considering all the one-hundred executions of
each method that generate the mean values of the SNR output and PRD of Table 2,
we can see that the EMDWAVIT method presents the best performance also when
we consider the individual values of the PRD and SNR output. Considering all of the
executions, the maximum value of the PRD for the method EMDWAVIT is 7.06. That
is less than the minimum value of 10.99 considering all the three other methods. For
the SNR output, the minimum value for the EMDWAVIT is 23.01. It is greater than
the maximum value of 19.17 considering all the three other methods. It shows that the
method EMDWAVIT also shows a better performance for each PLI simulation.

We also consider mixing these two noises. Table 3 shows the simulation results for
the synthetic signal corrupted by PLI and MA.

Figures 8 and 9 show the box plot considering all the one-hundred executions of
each method that generate the mean values of the SNR output and PRD of Table 3,
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Fig. 14 SNR output values obtained from each individual execution of the cases that generate the SNR
output average values of Tables 5, 6 and 7

Table 8 Simulation results for the ECG signal named by code 103 corrupted by PLI (average SNR input:
17.54 dB)

Method 1DTVD EMD-ASMF EMDWAVIT NIWT PLI-SWT EMDWAVNLM-1 EMDWAVNLM-2

Average SNR output 14.88 16.20 24.17 17.54 19.20 5.14 18.36

Average PRD 18.01 15.48 6.26 13.26 11.04 56.65 12.07

Bold values represent the best performance

Table 9 Simulation results for the ECG signal named by code 105 corrupted by PLI (average SNR input:
17.67 dB)

Method 1DTVD EMD-ASMF EMDWAVIT NIWT PLI-SWT EMDWAVNLM-1 EMDWAVNLM-2

Average SNR output 15.03 15.55 25.89 17.67 21.00 4.07 18.51

Average PRD 17.7 16.68 5.08 13.06 8.99 62.67 11.86

Bold values represent the best performance
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Table 10 Simulation results for the ECG signal named by code 106 corrupted by PLI (average SNR input:
17.11 dB)

Method 1DTVD EMD-ASMF EMDWAVIT NIWT PLI-SWT EMDWAVNLM-1 EMDWAVNLM-2

Average SNR output 14.80 18.15 21.55 17.11 17.76 5.11 18.08

Average PRD 18.17 12.36 9.78 13.93 12.97 56.21 12.46

Bold values represent the best performance

Fig. 15 ECG signal named by code 103 smoothed by EMDWAVIT method (PLI)

we can see that the EMDWAVIT method presents the best performance also when
we consider the individual values of the PRD and SNR output. Considering all of the
executions, the maximum value of the PRD for the method EMDWAVIT is 27.62.
That is less than the minimum value of 28.06 considering all the six other methods.
For the SNR output, the minimum value for the EMDWAVIT is 11.17. It is greater
than the maximum value of 11.03 considering all the six other methods. It shows that
the method EMDWAVIT also shows a better performance for each PLI simulation.

To ensure that there is a significant difference between method performances we
can resort to the ANOVA test, see [3,20] for details. Table 4 shows the p value less than
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Fig. 16 Box plot for the cases that generate the PRD average values of Tables 8, 9 and 10

0.05, it means that there are significant differences between the groups. It is evidence
of the results mentioned before.

4.2 Real ECG Signals

In this subsection, we consider four real-world ECG signals obtained from Physionet
MIT-BIH arrhythmia database [11,17]. The names of these signals are represented by
103, 105, and 106. Figure 10 presents an example of the 103 ECG signal denoised by
the EMDWAVIT method.

Here, we follow the same approach as in Sect. 4.1, Tables 5, 6 and 7 show the
simulation results for the MA noise, in bold values, the best performances. As we
can see the EMDWAVIT have the best performance when compared to the NIWT,
EMD-ASMF, 1DTVD,PLI-SWT,EMDWAVNLM-1 andEMDWAVNLM-2methods.
Figures 11 and 12 show the boxplot considering all the three-hundred execution of each
method that generates the mean values of the SNR output and PRD of Tables 5, 6 and
7. Here, differently from what occurs in the Sect. 4.1, the boxplot graphs do not help
enough in the performance analysis when considering all the individual executions,
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Fig. 17 Box plot for the cases that generate the SNR output average values of Tables 8, 9 and 10

since the intervals where the values are more concentrated have intersections. In this
way, we need to adopt a different visual analysis to check if the EMDWAVIT method
performs better than the other six methods, also when considering each individual
execution. Then, we adopt the graphical representation given by Figs. 13 and 14.
These images give us a better view of what happens in individual executions. Note
that we generate one-hundred noises for each one of the three real ECG signals,
we apply the methods in each one of these noisy signals. Then, each image shows
300 cases to be observed. The EMDWAVIT method is represented in black, and the
comparativemethod is represented in gray.Aswe can see, the PRDvalues presented by
the EMDWAVIT method, in each individual simulation, are less than the PRD values
of the comparative method. And, in the case of SNR output, we have that the values
presented by the EMDWAVIT method are greater than the values presented by the
comparativemethod. Therefore, it is possible to conclude that theEMDWAVITmethod
outperforms the other six methods, even when we consider each individual execution.

Tables 8, 9 and 10 shows the simulation results for the PLI. Figure 15 shows an
example of EMDWAVIT smoothing considering the 103 ECG signal corrupted by
PLI.
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Fig. 18 PRD values obtained from each individual execution of the cases that generate the PRD average
values of the Tables 8, 9 and 10

Figures 16 and 17 show the boxplot considering all the one-hundred executions
of each method that generate the mean values of the SNR output and PRD of the
Tables 8, 9 and 10. Again, differently from what occurs in the Sect. 4.1, the boxplot
graphs do not help enough in the performance analysis when considering all the
individual executions, since the intervals where the values are more concentrated
have intersections. In this way, we need to adopt a different visual analysis to check
if the EMDWAVIT method performs better than the other six methods, also when
considering each individual execution. Then, we adopt the graphical representation
given by Figs. 18 and 19 we can see that the EMDWAVIT method presents the best
performance also when we consider the individual values of the PRD and SNR output.
These images give us a better view of what happens in individual executions. Note
that we generate one-hundred noises for each one of the three real ECG signals,
we apply the methods in each one of these noisy signals. Then, each image shows
300 cases to be observed. The EMDWAVIT method is represented in black, and the
comparative method is represented in gray. As we can see, the PRD values presented
by the EMDWAVIT method, in each individual simulation, are less than the PRD
values of the comparative method. And, in the case of SNR output, we have that the
values presented by the EMDWAVIT method are greater than the values presented by
the comparative method. Therefore, it is possible to conclude that the EMDWAVIT
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Fig. 19 SNR output values obtained from each individual execution of the cases that generate the SNR
output average values of Tables 8, 9 and 10

Table 11 Simulation results for the ECG signal named by code 103 corrupted by PLI and MA (average
SNR input: 7.99 dB)

Method 1DTVD EMD-ASMF EMDWAVIT NIWT PLI-SWT EMDWAVNLM-1 EMDWAVNLM-2

Average SNR output 14.23 11.62 16.52 8.21 8.18 7.82 11.92

Average PRD 19.42 26.23 14.98 38.89 38.99 40.69 25.34

Bold values represent the best performance

Table 12 Simulation results for the ECG signal named by code 105 corrupted by PLI and MA (average
SNR input: 8.12 dB)

Method 1DTVD EMD-ASMF EMDWAVIT NIWT PLI-SWT EMDWAVNLM-1 EMDWAVNLM-2

Average SNR output 14.57 11.33 17.26 8.38 8.53 13.07 12.08

Average PRD 18.69 27.11 13.73 38.13 37.46 22.34 24.88

Bold values represent the best performance

method outperforms the other six methods, even when we consider each individual
execution.
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Table 13 Simulation results for the ECG signal named by code 106 corrupted by PLI and MA (average
SNR input: 7.57 dB)

Method 1DTVD EMD-ASMF EMDWAVIT NIWT PLI-SWT EMDWAVNLM-1 EMDWAVNLM-2

Average SNR output 13.93 11.48 14.84 7.79 7.73 7.91 11.41

Average PRD 20.15 20.68 18.16 40.82 41.05 40.29 26.89

Bold values represent the best performance

Fig. 20 Box plot for the cases that generate the PRD average values of Tables 11, 12 and 13

We also consider mixing these two noises. The Tables 11, 12 and 13 show the
simulations results for the synthetic signal corrupted by PLI and MA.

Figures 20 and 21 show the boxplot considering all the three-hundred executions
of each method that generate the mean values of the SNR output and PRD of the
Tables 11, 12 and 13. Again, differently from what occurs in the Sect. 4.1, the boxplot
graphs do not help enough in the performance analysis when considering all the
individual executions, since the intervals where the values are more concentrated
have intersections. In this way, we need to adopt a different visual analysis to check
if the EMDWAVIT method performs better than the other six methods, also when
considering each individual execution. Then, we adopt the graphical representation
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Fig. 21 Box plot for the cases that generate the SNR output average values of Tables 11, 12 and 13

given by Figs. 22 and 23 we can see that the EMDWAVIT method presents the best
performance also when we consider the individual values of the PRD and SNR output.
These images give us a better view of what happens in individual executions. Note
that we generate one-hundred noises for each one of the three real ECG signals,
we apply the methods in each one of these noisy signals. Then, each image shows
300 cases to be observed. The EMDWAVIT method is represented in black, and the
comparative method is represented in gray. As we can see, the PRD values presented
by the EMDWAVIT method, in each individual simulation, are less than the PRD
values of the comparative method. And, in the case of SNR output, we have that the
values presented by the EMDWAVIT method are greater than the values presented by
the comparative method. Therefore, it is possible to conclude that the EMDWAVIT
method outperforms the other six methods, even when we consider each individual
execution.

To ensure that there is a significant difference betweenmethod performanceswe can
resort to the ANOVA test, see [3,20] for details. Table 14 shows the p value less than
0.05, it means that there are significant differences between the groups. It is evidence
of the results mentioned before.
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Fig. 22 PRD values obtained from each individual execution of the cases that generate the PRD average
values of Tables 11, 12 and 13

The simulations were performed on a Dell computer, Intel (R) Core (TM) i7-8565U
CPU 1.80 GHz 1.99 GHz; 8 GB of RAM. The code was developed in the R language,
setting the noise generation seed to values from 1 to 100. The computational cost was
also evaluated, the execution times of each method, for denoising only one signal, are
given by 0.526871919631958 s for the EMDWAVIT method, 0.0553569793701172 s
for the 1DTVD method, 0.299518823623657 s for the EMD-ASMF method,
0.0674631595611572 s for the NIWT method, 0.205456018447876 s for PLI-SWT,
0.303828001022339 s for the EMDWAVNLM-1 and 0.274600982666016 s for the
EMDWAVNLM-2.

5 Conclusions

This paper has proposed the ECG signal denoising by the new EMDWAVIT method.
This method applies the discrete wavelet transform (DWT) over the intrinsic mode
functions and processes their wavelet coefficients by the Viterbi algorithm. Monte
Carlo simulations have demonstrated that the EMDWAVIT method outperforms other
approaches already established in the literature.
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Fig. 23 SNR output values obtained from each individual execution of the cases that generate the SNR
output average values of Tables 11, 12 and 13

Table 14 ANOVA considering MA and PLI noises for real ECG signals

Noise type Source of variation Sum of squares df Mean squares F Sig

MA Between the groups 16250.00 6 2708.40 2064 < 2e−16

Within the groups 2746.00 2093 1.30

Total 18996.00 2099

PLI Between the groups 61950.00 6 10325.00 5055 < 2e−16

Within the groups 4275.00 2093 2.00

Total 66225.00 2099

PLI and MA Between the groups 16767.00 6 2794.50 2129 < 2e−16

Within the groups 2747.00 2093 1.30

Total 19514.00 2099
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