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Abstract
Speech emotion recognition (SER) systems are often evaluated in a speaker-
independent manner. However, the variation in the acoustic features of different
speakers used during training and evaluation results in a significant drop in the accu-
racy during evaluation. While speaker-adaptive techniques have been used for speech
recognition, to the best of our knowledge, they have not been employed for emotion
recognition. Motivated by this, a speaker-adaptive DNN-HMM-based SER system is
proposed in this paper. Feature space maximum likelihood linear regression technique
has been used for speaker adaptation during both training and testing phases. The
proposed system uses MFCC and epoch-based features. We have exploited our earlier
work on robust detection of epochs from emotional speech to obtain emotion-specific
epoch-based features, namely instantaneous pitch, phase, and the strength of excita-
tion. The combined feature set improves on the MFCC features, which have been the
baseline for SER systems in the literature by +5.07% and over the state-of-the-art
techniques by +7.13 %. While using just the MFCC features, the proposed model
improves upon the state-of-the-art techniques by 2.06%. These results bring out the
importance of speaker adaptation for SER systems and highlight the complementary
nature of the MFCC and epoch-based features for emotion recognition using speech.
All experiments were carried out an IEMOCAP emotional dataset.
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1 Introduction

The emotional state of a person can be identified using data sources such as speech,
text, facial expression, brain signal (EEG), and a combination of two or more of
these [1,5,19]. Here, we focus on emotion recognition using speech because it is the
most natural way of communication and easy to collect. Speech emotion recognition
(SER) has attracted a lot of attention in the research community due to its applica-
bility in a multitude of real-life contexts, e.g., human–computer interaction systems
such as interactive movies [24], storytelling and E-tutoring applications [34], retrieval
and indexing of the video/audio files [31], improving interaction at call centers [17],
assisting psychological treatments [27], and surveillance systems [6].

Speech is produced as a combination of activities in the vocal tract system and
glottal source. Based on this, the features obtained from speech can be broadly sub-
grouped under two categories: (i) the system features that are related to the vocal tract
(e.g., mel-frequency cepstral coefficients (MFCCs), linear predictive cepstral coeffi-
cients (LPCCs), and their derivatives) and (ii) the excitation source features that are
related to the glottal source (e.g., pitch, phase of the linear prediction residual signal,
and strength of glottal closure instants). Apart from this, the prosodic features are also
widely used. They are derived from the changes in the speech attributes with respect to
time (e.g., jitter, shimmer, and duration) [37,40]. The speech attributes may be related
to both the vocal tract and glottal source. Most of the existing works in SER have
been based on the system [8,38] and prosodic features [21,26]. The combination of
system and prosodic features has been widely used for emotion recognition. For exam-
ple, Ververidis et al. [35] used suprasegmental features such as energy, F0, formant
locations, energy, dynamics of F0, and formant contours for emotion classification.
The statistical parameters of F0 such as the maximum, minimum, and median values
and the slopes of F0 contours have emotion-specific information [7,39]. Wang et al.
[38] and Nicholson et al. [26] combined the prosodic and system features for emo-
tion classification. These results show that the features (prosodic and system features)
containing complementary information can significantly improve the performance of
SER systems.

Though the pitch-based features are widely used for emotion recognition, these
features were not derived from the epoch locations. An epoch is the glottal closure
instant at which the excitation of the vocal tract is maximum. In this work, pitch and
other excitation source features have been derived from the epoch locations. Further,
the epoch-based features have been combined with the MFCC features. To the best
of our knowledge, Krothapalli and Koolagudi’s [15] work is the only exception that
combined two emotion recognition models developed using the MFCC and epoch-
based features. They developed the models using auto-associative neural networks
and support vector machines. The experiments were carried out on the IITKGP-SESC
dataset. The accuracy of the combinedmodel significantly increasedwith respect to the
individual models. The zero-frequency filtering (ZFF) method was used for detecting
the epoch locations. However, the accuracy of epoch detection using the ZFF method
is not satisfactory for emotional speech because it requires a priori pitch period to
detect the epoch locations [41]. In this work, the epoch locations are detected by the
zero-time windowing (ZTW) method [41], which is robust for emotional speech.
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The behavior of the vocal cords changes rapidly in an emotional speech. The epoch-
based features capture this behavior of the vocal cords. The MFCC and prosodic
features are computed using block processing, while the epoch-based features are
computed at each epoch location. The advantage that the epoch-based features offer
over the MFCC and prosodic features is that they are better at capturing the rapid
variations in an emotional speech. This is because the MFCC and prosodic features
capture frame-level information, whereas the epoch-based features capture informa-
tion at each epoch location. This is more fine-grained becausemultiple epoch locations
can be present within a frame.

SER systems typically perform well when the same set of speakers are used for
both training and testing phases. However, in real life, most SER systems are more
likely to encounter a new test speaker on which the system has not been trained. In
such cases, i.e., training and testing with different speakers, the performance degrades
dramatically. This is because of the anatomical and morphological variation in the
vocal-tract geometry of different speakers. To deal with this challenge, two popular
approaches exist in the literature: (i) speaker normalization [4,33] and (ii) speaker
adaptation [10]. While a few research works have used speaker normalization for
developing SER systems [4,33], to the best of our knowledge, speaker adaptation has
not been used for SER.Mariooryad andBusso [20] used various acoustic features high-
lighting their dependencies on speakers, emotions, and lexical contents. They further
normalized speakers and lexical factors for SER. On the other hand, speaker adapta-
tion has been used for speech recognition [10], but not for SER. Speaker adaptation
techniques explicitly use speaker information to develop a robust speaker-independent
SER system.

The performance evaluation of SER systems in real-life scenarios requires an appro-
priate dataset. Most of the SER systems have been developed using acted datasets.
Therefore, they fail to detect emotions in natural utterances. The emotion distributions
in the acted and natural speech do not match because an acted speech is recorded in
a restricted environment, thereby lacking the variations in natural speech. Some of
such restricted qualities are the near-constant length of the utterances, limited text,
and exaggeration of emotions. The IEMOCAP [3] dataset deals reasonably with these
constraints to incorporate naturalness. Hence, there is a significant gap in the accuracy
of SER systems when evaluated on the IEMOCAP dataset as compared to the other
acted datasets (such as [2]). Due to its naturalness, the IEMOCAP dataset is frequently
used by researchers to evaluate their works.

The most recent works on SER using the IEMOCAP dataset are [12,20,23]
In [20], various acoustic features and their dependencies across emotions, speakers,

and phonemes are analyzed using factor analysis. Further, the speaker and phoneme
factors are normalized using whitening transformation. The remaining approaches
(i.e., [12,23]) are deep-learning-based models. These deep-learning models have been
developed using either the hand-crafted features (MFCC, pitch, voice quality, etc.) or
a raw spectrogram. Both of these approaches for feature extraction produce nearly
the same accuracy. However, the hand-crafted features require significant manual
labor and knowledge expertise. In [12], a DNN model was used to extract features
from speech segments (referred to as local features). Further, utterance-level features
(referred to as global features) were constructed using the statistics of the posterior
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probabilities. These utterance-level features were fed to the extreme learning machine
(ELM) classifier. In [23], the raw spectrogram and the low-level descriptors (LLDs)
features were modeled with attentive long short-term memory (LSTM). The intuition
behind attentive LSTM is that all the frames do not contribute to emotion recognition;
greater attention is learned for the contributing frames using attentive LSTM.

Based on the above discussion, the following are the motivations for our work:

– Exploring the complementary nature of theMFCC and epoch-based features
The epoch-based features (categorized under source features) in combination with
the MFCC features have been less explored for developing SER systems. Further,
ZTW method [41] for detecting the epoch locations has not been used before for
extracting the epoch-based features. The ZTWmethod has been shown to be robust
to the variation of emotion in speech. Another reason to explore the epoch-based
features is that they are better at capturing the rapid variations in an emotional
speech because they collect information at the epoch locations, which are more
fine-grained than block processing.

– Speaker adaptation Though most of the proposed SER systems in the liter-
ature have been evaluated in a speaker-independent manner, they do not use
speaker adaptation during training or testing. On the other hand, DNN-HMM-
based speaker-adaptive technique is very popular in speech recognition systems
[10], where feature space maximum likelihood linear regression (fMLLR) is used
for speaker adaptation. However, to the best of our knowledge, speaker adaptation
has not been used for developing SER systems.

The remaining part of the paper is structured as follows: Sect. 2 describes the detec-
tion of the epoch-based features and briefly discusses the MFCC features. Section 3
discusses the proposed SER system. The description of the IEMOCAP dataset is
given in Sect. 4. The experimental setup and results are discussed in Sect. 5. Section 6
concludes the paper with future directions.

2 Features

In this section, we describe the extraction of the epoch-based features using the ZTW
method [41] and the extraction of the MFCC features. While the MFCC features can
be extracted from both the voiced and unvoiced regions, the epoch-based features are
applicable only for the voiced regions. However, to maintain consistency in features,
both of these sets of features were extracted only from the voiced region. The detection
of epoch locations is described in Sect. 2.1. This is followed by the extraction of
the epoch-based features corresponding to the epoch locations in Sect. 2.2. Finally,
the MFCC features and the complementary analysis of the MFCC and epoch-based
features are described in Sect. 2.3.

2.1 Extraction of the Epoch Locations

The following steps describe the detection of the epoch locations:
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1. The voiced segment is detected using the phase of zero-frequency filtered signal
[16].

2. The voiced speech signal is differentiated to emphasize the high-frequency com-
ponents using the formula:

y[n] = s[n] − s[n − 1] (1)

where y[n] is the differentiated signal at the nth sample, s[n] is the actual speech
signal at the nth sample, and s[n − 1] is the actual speech signal at the (n − 1)th
sample.

3. The differentiated speech signal is segmented into 3 msec frames and sampled at
the rate of 16 kHz, resulting in M = 48 samples. These are appended with N − M
(2048-48) zeros to obtain sufficient frequency resolution, where N denotes the
window length for short-time Fourier transform.

4. The time-domain signal is multiplied by the square of a window function h1
(defined below) to smoothen the spectrum.

h1[n] =
{
0 n = 0

h1[n] = 1
4sin2( πn

N )
n = 1, 2, . . . , N − 1

(2)

where N denotes the window length as defined before.
The resulting windowed signal x[n] is computed as:

x[n] = y[n] × h1[n]2 (3)

where y[n] and h1[n] are as defined in Eqs. 1 and 2, respectively.
5. The spectral features are then emphasized by taking only the numerator of the

group delay function of thewindowed signal. The obtained output is called numer-
ator group delay (NGD) spectrum and is computed as:

g[k] = XR[k]ZR[k] + XI [k]ZI [k], k = 0, 1, 2 . . . , N − 1 (4)

where X(k) = XR[k] + XI [k] is the discrete-time Fourier transform (DTFT) of
x[n] and Z(k) = ZR[k]+ZI [k] is the DTFT of z[n] = nx[n]. The NGD spectrum
is further differentiated two times to remove the trend. The resulting spectrum is
called differentiated numerator group delay (DNGD) spectrum.

6. To prominently highlight the spectral peaks, Hilbert envelope of the DNGD spec-
trum is computed. For DNGD spectrum g[k], its Hilbert envelope, denoted he[k],
is computed as:

he[k] =
√
g2[k] + g2h[k] (5)

where gh[k] is the Hilbert transformation of the DNGD spectrum g[k].
The Hilbert transformation of the DNGD spectrum is called HNGD.
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7. From each HNGD spectrum, the sum of three prominent peaks is taken. The resul-
tant output is called a spectral energy profile. The glottal closure instants in the
spectral energy profile show high SNR compared to the neighboring instants. Fur-
ther, the spectral energy profile is smoothened using the five-pointmean smoothing
filter to remove the high-frequency components.

8. The spectral energy profile is convolved with a Gaussian filter; the size of this
filter is determined using the average pitch period of the corresponding segment.
A Gaussian filter of length L is given by

G[n] = 1√
2πσ

e− n2

2σ2 , n = 1, 2, . . . , L (6)

The standard deviation σ used in the above formula is taken as 1
4
th
of the Gaussian

filter length. The resulting output g(n) is called epoch evidence [41].
9. The false peaks in the epoch evidence plot are removed using the following criteria:

(a) If two successive peaks having a difference of less than 2 ms are found, the
peak with less amplitude is removed. This is because 2 ms is the minimum
range of the pitch period.

(b) Successive actual peaks must bound a negative region between them. If a peak
does not bound a negative region with the previous actual peak, it is considered
spurious.

10. The positive peaks in the resulting epoch evidence plot represent epoch locations.

Figure 1 shows epoch detection using the ZTWmethod. The angry speech segment
and its corresponding differentiated electroglottograph (dEGG) signal are shown in
Fig. 1a, b, respectively. The spectral energy profile obtained from the HNGD spectrum
of the speech signal using the ZTW method is plotted in Fig. 1c. The epoch evidence
plot obtained after convolving the spectral energy profile with a Gaussian window is
shown in Fig. 1d. The epoch locations are shown in Fig. 1e. The ZTWmethod for the
detection of the epoch locations has been shown to be robust for emotional speech
[41].

2.2 Epoch-Based Features

The epoch-based features such as instantaneous pitch, strength of excitation, and phase
of the spectral energy profile are specific to each emotion [15]. These features have
been used in the proposed model. Instantaneous pitch and strength of excitation are
derived from epoch locations, while the phase features are derived from the spectral
energy profile. The epoch locations and spectral energy profile are obtained by the
ZTW method [41]. The advantage of this method is that the energy value at an epoch
location is actually the sum of the glottal formants. Therefore, both time information
and spectral information are retained at the epoch locations. The above-mentioned
epoch-based features are described next.
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Fig. 1 Epoch detection using the ZTWmethod. a Angry speech segment. b dEGG signal. c Spectral energy
profile obtained from the HNGD spectrum. d Epoch evidence plot. e Epoch locations

2.2.1 Instantaneous Frequency

Instantaneous period (IP) is the duration between two successive epoch locations.
Instantaneous frequency, denoted � f , is computed as the reciprocal of IP [14,25]:

� f (i) = 1

t(i) − t(i + 1)
(7)

where t(i) represents the i th epoch location at time t .

2.2.2 Strength of Excitation (SOE)

This SOE is computed as the difference between the strengths of two successive epoch
locations [9]:

�y(i) = e(i) − e(i + 1) (8)

where e(i) is the epoch strength at the i th epoch location.

2.2.3 Instantaneous Phase

The phase of the spectral energy profile is obtained using the cosine of the phase
function of the analytical signal. The spectral energy profile is used to derive the
analytical signal. After that, the phase at each of the epoch locations is used as one of
the epoch-based features.
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Fig. 2 Instantaneous pitch and SOE contours of angry (grey) and sad (black) speech signal using the
proposed method. a Instantaneous pitch contour, b SOE contour, and c Instantaneous phase contour of
angry and sad speech signals

– The analytic signal ga(n) corresponding to the spectral energy profile g(n) is given
by

ga(n) = g(n) + jgh(n) (9)

where gh(n) is the Hilbert transformation of g(n).
– The Hilbert envelope of the spectral energy profile g(n), denoted he[n], is calcu-
lated as:

he[n] =
√
g2[n] + g2h[n] (10)

where gh(n) is the Hilbert transformation of g(n).
– The cosine of the phase of the analytic signal ga(n), denoted cos�(n), is given
by

cos�(n) = Re(ga(n))

|ga(n)| = g(n)

he[n] (11)

where g(n) is the spectral energy profile derived from the speech signal using the
ZTW method and Re(ga(n)) denotes the real part of ga(n).

The instantaneous frequency and SOE values of a speech utterance by a common
speaker in different emotions are plotted in Fig. 2. Figure 2a shows the instantaneous
pitch for two emotions: angry and sad. The gray color indicates angry emotion, while
black indicates sad emotion. It is clear from Fig. 2a that the range of instantaneous
pitch varies from 250 to 400 Hz for angry emotion and 100 to 200 Hz for sad emotion.
Figure 2b shows the SOE values for two emotions: anger and sadness. The variation in
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the SOE values is higher in the case of angry emotion than sad emotion. The variation
in the SOE values is much less in the case of sad emotion. Figure 2b shows the phase
of the spectral energy profile; it is higher for sad than for angry. The probability
densities for each epoch-based feature are plotted in Fig. 3. The first four sessions of
the IEMOCAP dataset are used to plot the probability densities. Figure 3a shows the
probability density of instantaneous F0. The probability densities of neutral and sad
emotions are almost the same, but the mean and variance of the probability densities
of anger and happy emotions are different. Figure 3b shows the probability density
of strength of excitation feature. Here also, the same observations as Fig. 3a can be
made regarding the probability densities of different emotions. Figure 3c shows the
probability densities of the instantaneous phase. The probability densities of happy
and sad emotions can be easily discriminated from anger and neutral emotions. The
probability densities of anger and neutral emotions are almost the same, but the mean
and variance of probability densities of happy and sad emotions are different. The
sequential information is lost in the probability densities plot; however, each emotion
has its own temporal sequence. The sequential information of epoch-based features
can be well captured with a dynamic model like the hidden Markov model (HMM).

2.3 Complementary Analysis of MFCC and Epoch-Based Features

The MFCC features also have emotion-specific information. The mel scale is used
to mimic the behavior of the human auditory system, which gives high resolution at
lower frequencies. These features are obtained by applying discrete cosine transform
on the log power spectrum of the short-time speech signal. We combine the MFCC
features with the epoch-based features in our model for recognizing emotions. The
speech signal is processed frame-wise; the frame size is 20 ms with 10 ms overlap-
ping. Thirteen MFCC features are obtained from each frame. The MFCC features are
extracted using the method given in [30]. The recording variations are minimized by
subtracting cepstral mean and normalizing the variance of the MFCCs at the utterance
level.

Canonical correlation analysis (CCA) [13] is performed to show the complementary
nature of the MFCC and epoch-based features. The CCA is performed between the
13 MFCC and three epoch-based features. Figure 4 shows the canonical correlation
coefficients. There are three indices because the CCA gives the output dimension,
which is the minimum of the dimensions of the MFCC and epoch-based features.
The canonical correlation coefficients are very low, except for the first index. The
value of the first index is high because the first index represents magnitude in both
sets of features. The schematic diagram of the proposed feature combination and
transformation is shown in Fig. 5.

3 Proposed Emotion Recognition System

An SER system is an outcome of two principal stages. In the first stage, training is
performed using the features extracted from known emotional speech utterances. In
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Fig. 3 Probability densities of instantaneous F0, strength of excitation, and instantaneous phase are plotted
in a–c respectively

the second stage, i.e., the testing phase, the evaluation of the trained model is carried
out on unseen emotional speech utterances. The schematic diagram of the proposed
emotion recognition system is shown in Fig. 6.

We have combined the MFCC features with epoch-based features, namely instan-
taneous pitch, instantaneous phase, and strength of excitation. The epoch-based and
MFCC features contain complementary information for recognizing emotions. Hence,
the combined features significantly improve the accuracy of emotion recognition.After
combining these feature vectors, linear discriminant analysis (LDA) and maximum
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Fig. 4 Bar graph showing the
canonical correlation
coefficients between the MFCC
and epoch-based features
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likelihood linear transform (MLLT) are applied to decorrelate the feature vector; this
enhances the accuracy of the model. fMLLR technique is then used for speaker-
adaptive training (SAT); this further improves the accuracy of the model.

3.1 DNN-HMMs

We have developed the SER system using HMM. It is a dynamic modeling approach
that captures the temporal dynamic characteristics [28] of the transformed features of
the corresponding emotions. In a conventional HMM, the observation probabilities of
HMM states are estimated by GMMs (Gaussian mixture models). The GMMs used
in such conventional HMMs are statistically inefficient to model nonlinear data in the
feature space [18], whereas DNNs are capable of modeling nonlinear data. Therefore,
GMMs are replaced with a DNN to estimate the observation probabilities of observing
an input sequence at each state in the training phase. This approach is called DNN-
HMM.

3.1.1 GMM-HMM

An HMM model is defined as a quartet λ = (R, A, B, π) comprising the following
components:

(a) R = r1, r2 . . . , rQ denotes the set of Q hidden states.



Circuits, Systems, and Signal Processing (2021) 40:466–489 477

Fig. 6 Schematic diagram of the
proposed SER system
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(b) A denotes the transition probabilities for states in R. a jk ∈ A is defined as

a jk = P(qt+1 = rk |qt = r j ), 1 ≤ j, k,≤ |Q| (12)

where qt denotes the state at time t .
(c) B denotes the set of observation probabilities. b j (it ) ∈ B is defined as the prob-

ability of observing the input frame it in the state r j . B is constructed by a finite
number of mixture components L .

b j (it ) =
L∑

l=1

φ jlℵ( jt , μ jl ,C jl), 1 ≤ j ≤ |Q| (13)

where φ jl is the weight of the mixture component for the lth mixture in the state
r j and ℵ is a Gaussian function with mean vector μ jl and covariance matrix C jl

for the lth mixture component in the state jt at time t . Due to the use of a Gaussian
function, such an HMM is called GMM-HMM.
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(d) π denotes the initial state probabilities. π j ∈ π is defined as:

π j = P(q1 = r j ), 1 ≤ j ≤ |Q| (14)

where r j is the hidden state and Q is the number of hidden states.

The training and testing procedure in HMM is as follows:

1. Training Procedure Given a set of training data X , the model parameters are
obtained using the forward–backward algorithm andBaum–Welch algorithm such
that λ∗ = argmaxλP(X |λ).

2. Testing Procedure We have a model λ and a test sequence I = (i1,2 , . . . , iT ).
The testing problem is formulated as finding the optimal hidden state sequence
(q1, . . . , qT ) that has most likely attained the test sequence I . This is achieved by
the Viterbi algorithm as follows

P(λ|I ) = max
q1,...,qT

πq1

T∏
t=2

P(qt |qt−1)bqt (it ) (15)

where πq1 , P(qt |qt−1) and bqt (it ) are the initial state, transition state, and obser-
vation state probabilities, respectively.
We built N HMMs λn, (n = 1, . . . , N ) for N different emotion classes. A new
utterance I is assigned an emotional class using:

n∗ = argmax
1≤n≤N

P(λn|I ) (16)

where P(λ|In) is obtained using the Viterbi algorithm as in Eq. 15.

3.1.2 DNN-HMM

The procedure followed for training and testing in DNN-HMM is as mentioned in
[18]]. The steps in detail are as follows:

1. Training Procedure

(a) A GMM-HMM λn with Q states is trained for each emotion class using the
training occurrences of that class, where n = 1, . . . , N (N denotes the number
of emotional classes).

(b) For every utterance in the training set I = (i1, i2, . . . , iT ) for the nth emotional
class, Viterbi algorithm in Eq. 15 is applied on λn to find an optimal state
sequence (qn1 , . . . , qnt , . . . , qN

T ). A label Li (i ∈ (1, . . . , N × Q)) is assigned
to each state qnt by the state label mapping table.

(c) The training utterances, combined with the corresponding labeled state
sequences, are then fed as input to a DNN. The outputs of the DNN are the
N × Q posterior probabilities corresponding to the output units.
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2. Testing Procedure

(a) The test feature sequence I is passed by the DNN to estimate the posterior
probabilities p(L j |it ) j=1,...,N×Q as outputs. After this, the posterior proba-
bility p(qt = Snk |it ) is determined from p(L j |it ) by aligning the label L j to
the state k of the class n with the help of the state-label mapping table.

(b) The observation probability of each state, denoted p(it |qt ), is obtained using
Bayes’ theorem as follows:

p(it |qt ) = p(qt |it ) ∗ p(it )

p(qt )
, it ∈ I (17)

The prior probability p(qt ) is obtained from the occurrence of the training
set, and the probability p(it ) remains constant because the input frames are
assumed to be mutually independent.

(c) For an unseen speech utterance, the probability of each emotion model λn is
estimated using the Viterbi algorithm (as in Eq. 15). The utterance is assigned
the class whose estimated likelihood probability p(I |λn) is maximum; how-
ever, the observation probability is replaced by Eq. 17.

Four HMMs, corresponding to the four emotion classes, and a DNN were built.
In the testing phase of DNN-HMM, the posterior probability of each state is calcu-
lated using DNN instead of GMM. For this, GMM-HMM is first applied to obtain
the optimal sequence of states. Thereafter, a DNN model is developed that takes a
combination of emotion and optimal states (four emotions × five states) as output and
the training dataset as input. This DNN network predicts the states of the given frame
for testing data. The observation probability of each state is easily derived using the
DNN prediction by Eq. 17.

3.2 Speaker Adaptation

Adaptation is a necessary task for emotion recognition. In general, we train our model
with a limited dataset, but in a real environment, there may be different types of
speakers and noise. One must have a robust method to adapt the trained model in a
real environment. In our work, fMLLR transformation has been applied per speaker
to adapt the emotion variation of different speakers.

3.2.1 Review of the fMLLR Approach

Feature-space transformation, also called constrained MLLR, fMLLR, or CMLLR, is
a very popular technique in speech recognition for SAT [22].

The fMLLR transformation is performed as follows:

x̂i = Pxi + b = Wξi (18)

where
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xi is the input feature vector to be transformed,
P is the rotation matrix and b is a bias term,
W = [b P] is the d × (d + 1) transformation matrix (d is the size of the feature
vector), and
ξi = [1 xi ] is the extended feature vector.

In order to find the optimal value of W , the following likelihood function is maxi-
mized using the expectation-maximization (EM) approach:

Z(W ; X , M) =
∑
i

log(p(Wξi ; M)) (19)

where
X represents the utterances in the dataset and
M is the GMM model for which fMLLR is performed.

3.2.2 Speaker-adaptive Training and Testing

1. Training-time speaker adaptation In general, the speaker information of the
training dataset is available. This information can be effectively utilized during
training. For example, out of the ten speakers in the dataset, eight are used for
training and two for testing. Let E(n) denote the set of n emotions under consid-
eration.
A training process is as follows:

– A set of models {M(n)} for each emotion in E(n) is trained using randomly
chosen speaker, say s1 ∈ {si }, where i ∈ {1, . . . , 8}.

– Next, for a randomly chosen speaker, say s2, from the remaining set of speakers
{si }, where i ∈ {2, . . . , 8}, a set of transformations represented as {Ws2(n)}
is estimated for each emotion in {E(n)}. Then, the corresponding models in
set {M(n)} are retrained using the respective transformed feature vector, re-
estimating the parameters of the GMMmodels M(n). This process is repeated
for all the remaining speakers {si }, i ∈ {3, . . . , 8} in the training set.

2. Testing-time speaker adaptation fMLLR is also used to transform the testing set
of speakers {si }, i ∈ {9, 10} so that their emotions can be identified by the emotion
models of training-set speakers. For each emotion En in {En}, the emotion models
{M(n)} have already been built using the training-set speakers. For each testing-set
speaker {si }, i ∈ {9, 10}, {Wsi (n)} is estimated using Eq. 19. The speaker-adaptive
training and testing is performed on the LDA+MLLT transformed feature vectors.

4 Dataset

Our proposed model has been evaluated on the IEMOCAP dataset [3]. It is a multi-
modal dataset that contains audio, video, text, and gesture information of conversations
arranged in dyadic sessions. The dataset is recorded with ten actors (five male and five
female) in five sessions. In each session, there are conversations of two actors, one
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from each gender, on two subjects. The conversation of one session is approximately
five minutes long. The contents of the dataset are recorded in both scripted and spon-
taneous scenarios. The total number of utterances in the dataset are 10,039, out of
which 4,784 utterances are from the spontaneous sessions and 5,225 are from the
scripted sessions. The average length of an utterance is 4.5 seconds, and the average
word count per utterance is 11.4 words. The total recording time of the dataset is about
12 hours. The dataset is labeled as per the two popular schemes: discrete categorical
label (i.e., labeled as happy, angry, neutral, and sad) and continuous dimensional label
(i.e., activation, valence, and dominance). For our experiments, we used the speech
utterances and the corresponding discrete emotion labels.

5 Experimental Setup and Discussion of Results

We have developed a speaker-adaptive DNN-HMM-based SER system that combines
both theMFCCand epoch-based features. The proposed framework has been evaluated
on the IEMOCAP [3] dataset for four emotions: angry, happy, neutral, and sad, and
compared with state-of-the-art techniques [12,20,23].

The contributions of our work are as follows:

1. Use of the epoch-based features extracted by the ZTW method We used the
epoch-based features where the epoch locations are extracted using the zero-
time windowing (ZTW) method. This method is robust for emotional speech
[41]. Epoch-based features, namely instantaneous pitch, phase, and strength of
excitation (SOE), were used. Further, the epoch-based features were combined
with the MFCC features. The proposed approach showed (i) an improvement of
+7.13% over state-of-the-art techniques and (ii) an improvement of +5.07% over
MFCC features when speaker adaptation was used.
NoveltyWhile epoch-based features have been used in the past for SER systems,
this is the first time that the epoch-based features have been extracted using the
ZTWmethod, which has been shown to be superior to its contemporary methods,
especially for emotional speech [41].

2. DNN-HMM Model To capture the rapid variations in an emotional speech,
we have developed a DNN-HMM model because HMMs are known to cap-
ture sequential changes in emotions [32]. The combined set of features (i.e.,
MFCC+Epoch-based) produced an improvement of +5.07% over the MFCC fea-
tures when used in the proposed model.

3. Useof speaker-adaptiveDNN-HMMAspeaker-adaptiveDNN-HMMmodel has
been proposed,where the speaker adaptation is applied during both the training and
testing phases through the use of fMLLR. The proposed speaker-adaptive model,
when used with only the MFCC features, achieves an improvement of +2.06%
over state-of-the-art techniques. This further increases to +7.13% when both the
MFCC and epoch-based features are used along with the speaker adaptation.
Novelty Our proposed approach uses the fMLLR-based speaker adaptation tech-
nique, which, to the best of our knowledge, is the first use of this technique for
SER systems.
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4. Improved performance The proposed model achieved significant improvement
over state-of-the-art techniques [12,20,23]. Using the MFCC and epoch-based
features along with the speaker adaptive training, the proposed model achieved
an average accuracy of 65.93%, an improvement of +7.13% over state-of-the-art
techniques.

Three models were developed for emotion recognition: using system (MFCC)
features, using source (epoch-based) features, and by combining theMFCCand epoch-
based features. Speaker adaptation was employed to accommodate the variation in the
acoustic features of different speakers. For speaker adaptation, fMLLR was used dur-
ing both the training and testing phases. The four categorical (class) labeled emotions,
namely angry, happy, sad, and neutral, have 1103, 595, 1084, and 1708 utterances,
respectively, the total being 4490.

5.1 GMM-HMMVersus DNN-HMM

We have considered the following four emotions for experiments: angry, happy, sad,
and neutral. We used the first four sessions (consisting of eight speakers) for training
and the last session (consisting of two speakers) for testing. The sizes of the training
and testing datasets are 3583 and 952 utterances, respectively. We empirically set the
hyperparameter of DNN (i.e., the number of epochs, the number of layers, and the
number of hidden nodes in a layer). The number of utterances in the test-set speakers
ninth and tenth was 436 and 516, respectively. The test dataset is imbalanced because
the number of samples in each emotion class is different. Hence, we calculated both
weighted accuracy (WA) and unweighted accuracy (UWA). However, comparison
with state-of-the-art techniques was made using UWA. It gives equal weight to all the
classes, specifically to the minority classes.

We used MATLAB tool for feature extraction and KALDI toolkit [29] for devel-
oping the system. For the emotion recognition system developed using the MFCC
features, 13 MFCC features were extracted from each frame. We also took the deriva-
tive and double derivative of the normalizedMFCCs as features. Thus, the total number
of MFCC features extracted for each frame was 39. Cepstral mean–variance normal-
ization [36] was used at the utterance level to mitigate the recording variations.

To preserve the contextual information, we used the popular triphone model
approachwhere each frame is splicedwith the left four frames and the right four frames.
Feature transformation was applied to the features from the nine spliced frames. These
features were projected into a lower dimensional space using LDA. Further, MLLT
[10,11] was used to decorrelate the resulting features to improve the results.

The emotion recognition system was similarly developed for epoch-based features.
The three epoch-based features being used, namely instantaneous pitch, phase, and
strength of excitation, were extracted using the ZTW method. We took frame of size
20 ms, same as the MFCC features, to extract the epoch-based features. The number
of epoch-based features was different for each frame. To address the variation in the
lengths of the epoch-based feature vectors, we fixed the length as 10: the maximum
number of epochs encountered in any frame. If the size of a feature vector was less than
10, we padded the remaining length with zeros. Therefore, the total number of epoch-
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Table 1 Average SER accuracy
(%) using the MFCC features on
the IEMOCAP dataset

Features Model UWA (%)

MFCC (monophone) GMM-HMM 44.70

MFCC (triphone) GMM-HMM 47.70

MFCC (LDA+MLLT) GMM-HMM 51.25

MFCC (LDA+MLLT) DNN-HMM 54.35

Epoch-based (LDA+MLLT) DNN-HMM 50.55

The bold values denote the accuracy to highlight the best SER

based features per framewas 30 (ten epochs× 3 features per epoch).We developed the
DNN-HMMmodel for each emotion using these 30 epoch-based features. Finally, we
combined the epoch-based and MFCC features, increasing the length of the feature
vector to 69. Four HMMs, corresponding to the four emotion classes, and a DNN
were built. The DNN architecture used was 40:512 × 5:20, where 40 is the number
of transformed input features to the DNN and 512 × 5 represents 512 nodes in each
of the five hidden layers. This DNN configuration was found to be optimal after
experimenting with different-sized configurations. There were 20 output classes in
the DNN model (20=4×5, where 4 is the number of emotion classes and 5 is the
number of hidden states in HMM). These output classes were treated as ground-truth
and were obtained by GMM-HMM-based Viterbi algorithm. There were 18 Gaussian
components in the GMM-HMM model. The initial learning rate of DNN was set to
0.005, and after 25 epochs, it was reduced to 0.0005. Additional 20 epochs were
performed after this. The batch size used for training was 512.

We developed the baseline GMM-HMM system using (1) monophone training, (2)
triphone training, and (3) triphone trainingwith LDA+MLLT.We developed theDNN-
HMMmodel with LDA+MLLT transformed features. Table 1 shows the SER accuracy
using MFCC and its derivatives. We also applied LDA+MLLT transformation on
MFCCand its derivatives. The triphonemodel gives a better result than themonophone
model because it captures the contextual information. We estimated the observation
probability using DNN instead of GMM as described previously in Sect. 3.1.2. The
triphone model produces an improvement of 3% in emotion recognition accuracy
over the monophone model as shown in Table 1. Our system gives the best results in
the case of DNN-HMM. The average accuracy increases by 3.5% when the observa-
tion probability of HMM models is calculated by DNN instead of GMM as given in
Table 1.

We similarly developed the DNN-HMM model for epoch-based features. The
epoch-based features were transformed using LDA+MLLT and fed to the DNN-HMM
model. The average SER accuracy for the model developed using the MFCC features
is 54.35%. The average SER accuracy for the model developed using the epoch-based
features is 50.55%.

5.1.1 Effect of Speaker Adaptation

We employed speaker-adaptive training and testing of the DNN-HMM model. In
general, adaptation is applied during the testing phase. In this work, adaptation was
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Table 2 Average SER accuracy
(%) using the epoch-based,
MFCC, and combined
(MFCC+epoch-based) features
on the IEMOCAP dataset

Features UWA (%)

MFCC (LDA+MLLT) 54.35

Epoch-based (LDA+MLLT) 50.55

MFCC+Epoch-based (LDA+MLLT) 60.14

MFCC (LDA+MLLT+SAT) 60.86

Epoch-based (LDA+MLLT+SAT) 54.52

MFCC+Epoch-based (LDA+MLLT+SAT) 64.20

The bold values denote the SER accuracy using speaker adaptive train-
ing (SAT)

Table 3 Emotion recognition
performance on the IEMOCAP
dataset based on the MFCC
features

MFCC features (average: 60.86)

Emotion Angry Happy Neutral Sad

Angry 75.88 15.29 6.20 2.63

Happy 50.18 24.47 23.0 2.35

Neutral 8.13 3.96 67.18 20.73

Sad 0.64 1.45 22.0 75.91

Thebold values denote the accuracy of the correctly classified emotions

Table 4 Emotion recognition
performance on the IEMOCAP
dataset based on the
epoch-based features

Epoch-based features (average: 54.52)

Emotion Angry Happy Neutral Sad

Angry 67.21 10.29 17.45 5.05

Happy 18.56 32.24 31.70 17.50

Neutral 15.23 14.40 53.71 16.66

Sad 3.00 6.05 24.00 64.95

Thebold values denote the accuracy of the correctly classified emotions

applied during both the training and testing phases. There are two advantages of
speaker adaptation during the training phase: (1) it reduces the variance among training
speakers and (2) it ensures that there are enough samples present for each training
speaker. fMLLR is used for speaker adaptation. The detailed description of speaker
adaptation using fMLLR is discussed in Sect. 3.2.

There is a significant improvement in the recognition rate after applying speaker
adaptation for the MFCC, epoch-based, and MFCC+epoch-based features. As given
in Table 2, after applying fMLLR, the emotion recognition rate increases by 6.51%,
3.97%, and 5.79 % for the MFCC, epoch-based, and MFCC+epoch-based features,
respectively.

The confusionmatrix for the experiments carried out using theMFCC features with
LDA+MLLT+SAT transformation on the DNN-HMM system is shown in Table 3. It
can be observed that there is more confusion between the angry and happy emotions
because both are high arousal emotions. The sad and neutral emotions also show
confusion because both are low arousal emotions.
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The confusion matrix in Table 4 shows the recognition performance for each emo-
tion using the epoch-based features. From the experimental results, it can be concluded
that the epoch-based features discriminate better between angry and happy emotions
when compared to the MFCC features. This is due to the sequential nature of the
epoch-based features and corroborates the observation made in Sect. 2 regarding the
same. The accuracy of happy emotion is less compared to other emotions in either of
the models. We believe that this is due to the less number of happy samples compared
to other emotions in the IEMOCAP dataset.

5.2 Choosing the Fusion Scheme

In this work, the DNN network is trained using three fusion approaches, namely early,
intermediate, and late fusion scheme, as proposed in [42]. In the early fusion scheme,
the transformed MFCC and epoch-based features are combined and fed to the DNN.
In the intermediate fusion scheme, two separate layers are defined, one each for the
transformedMFCC and epoch-based features. In addition, there is a combination layer
that combines the transformed MFCC and epoch-based features after learning their
inherent characteristics. In the late fusion scheme, two separate DNN classifiers are
used for the transformed MFCC and epoch-based features. The outputs of both clas-
sifiers are posterior probabilities, which are combined as the average of the posterior
probabilities of each classifier. Five hidden layers are used for the DNN network. For
the intermediate integration scheme, the best result is obtained with one separate layer
and four combination layers.

The bar graph in Fig. 7 shows that emotion recognition accuracy is higher for the
combined (MFCC+epoch-based) set of features than each feature set alone. It can
also be seen that the intermediate fusion scheme is more reliable than the early or
late fusion scheme. Table 2 describes the SER accuracy using the models developed
using the MFCC, epoch-based, and MFCC+epoch-based features, respectively. The
combined feature set improves the accuracy of emotion recognition by 5.07% for
(LDA +MLLT + SAT) and 5.79% for (LDA +MLLT) compared to the corresponding
models developed using the MFCC features. The average performance improvement
is 5.07% over the MFCC features, which is the more accurate feature set among
the two individual sets of features. This result proves that the system and excitation
source features have complementary information for emotion recognition. Finally, the
MFCC and epoch-based features are combined and transformed using LDA+MLLT
transformation. The transformed features are fed as input to the DNN-HMM model.

We would like to point out that while we have explored early, intermediate, and late
fusion approaches, Krothapalli and Koolagudi [15], who have also combined epoch-
based and MFCC features, have only applied a late fusion approach at the model
level.

5.3 Proposed FrameworkVersus State-of-the-art approaches

We have compared our proposed framework with the existing state-of-the-art
approaches [12,20,23] evaluated on the IEMOCAPdataset. In [20], the authors showed
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Fig. 7 Emotion classification performance (%) using the epoch-based, MFCC, and combined
(MFCC+epoch-based) features on the IEMOCAP dataset

Table 5 Comparison of the proposed approach with state-of-the-art results on the IEMOCAP dataset

Model Features WA (%) UWA (%)

SVM [20] MFCC, Spectral features, Voice probability etc. 56.75 –

DNN+ELM [12] MFCC, Pitch, and their derivatives 54.3 48.00

LSTM+attention [23] Local-level descriptor, spectrogram 63.5 58.8

DNN-HMM (Proposed) MFCC 64.3 60.86

DNN-HMM (Proposed) Epoch-based 58.60 54.52

DNN-HMM (Proposed) MFCC+Epoch-based 70.5 65.93

The bold values denote the accuracy of the proposed framework

the dependency of various features with speakers, text, and emotions. Most of the fea-
tures that are used for emotion recognition vary with the variation of speakers and text.
They normalized the speaker and text factors, after which the SER accuracy improved.
In our work, speaker adaptation is applied instead of speaker normalization. A DNN-
HMMmodel is developed for emotion recognition. This model captures the temporal
sequence of emotion. This information is useful for differentiating among the same
arousal emotions. In [12], a DNN-ELM model is developed in which a DNN model
is used to extract the segment-level features. After that, the statistics of segment-level
features are used as utterance-level features for the ELM classifier. This method used
neither any technique to minimize the variance among speakers nor any model to
capture the temporal sequence of emotion.

In [23], an LSTM model is used to capture the temporal sequence of the emotion.
This work also used the attention method with the assumption that not all frames
contain the same amount of contribution for classification. However, this method also
does not use any techniques to minimize the variance among speakers.

In our framework, we used speaker adaptation to minimize the variance among
speakers. As can be seen in Table 5, both the WA and UWA values of our proposed
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framework outperform the othermethods. TheUWAaccuracy of the proposed emotion
recognition system using only MFCC features is 2.06 % more than the state-of-the-
art results. The UWA accuracy improved by 7.13% with respect to state-of-the-art
techniques [12,20,23] when the MFCC and epoch-based features are combined, as
shown in Table 5.

6 Summary and Conclusion

This paper highlights the importance of speaker adaptation and complementary nature
of the MFCC and epoch-based features. A DNN-HMM model is developed for
each emotion using the MFCC features, epoch-based features, and a combination
of MFCC+epoch-based features. The average emotion recognition rate of the pro-
posed model using only the MFCC features is 60.86%—an improvement of 2.06%
over the state-of-the-art techniques. The model developed using the MFCC features
is further combined with the model developed using the epoch-based feature vectors.
The observed accuracy of the combined model is 65.93%—an improvement of 7.13%
over the state-of-the-art approaches. Based on these results, it may be concluded that
the epoch-based features contain information complementary to the MFCC features
for the emotion classification task. Our future work is to use the LSTM network to
capture the contextual information of epoch-based features for emotion recognition.
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