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Abstract
To tackle the problem of the desired signal (DS) steering vector mismatch, especially 
in the situation of direction-of-arrival error and array perturbations, a robust inter-
ference-plus-noise covariance matrix (INCM) reconstruction method based upon DS 
removal is presented. Unlike previous studies, this paper proposes to remove the DS 
component from the training data by building a blocking matrix, which is computed 
as the inverse of the DS-plus-noise covariance matrix (DSNCM). More specifically, 
to increase the robustness against arbitrary mismatches, the DS steering vector esti-
mated as the prime eigenvector of the DS matrix, which is attained through integrat-
ing the Capon spectrum estimator over the annulus uncertainty sets of the mainlobe 
region in advance, is adopted to give a faithful blocking matrix. After that, utilizing 
the obtained blocking matrix to process the training data, the quasi INCM is com-
puted indeed. Finally, a precise INCM is reconstructed by projecting the principal 
components of the quasi INCM onto the aforesaid DSNCM. Numerical simulations 
have illustrated that the proposed adaptive beamformer can outperform the existing 
ones and gain almost optimal performance under different scenarios.

Keywords  Array signal processing · Adaptive beamforming · INCM reconstruction · 
DS removal · Annulus uncertainty set

 *	 Pan Zhang 
	 zp1339@foxmail.com

	 Zhiwei Yang 
	 yangzw@xidian.edu.cn

	 Gang Jing 
	 jg_xian@163.com

	 Teng Ma 
	 1219mateng@163.com

1	 Beijing Institute of Radio Measurement, Beijing 100854, China
2	 National Laboratory of Radar Signal Processing, Xidian University, Xi’an 710071, China

http://orcid.org/0000-0002-5215-3135
http://crossmark.crossref.org/dialog/?doi=10.1007/s00034-020-01481-z&domain=pdf


402	 Circuits, Systems, and Signal Processing (2021) 40:401–417

1  Introduction

As a basic implementation to achieve spatial filtering, adaptive beamforming has 
been applied to several areas, such as radar, sonar, remote sensing, seismology, 
wireless communication, etc. [17, 20, 21]. The classical standard Capon beam-
former (SCB) [2], as a well-known adaptive beamformer, can perform well if 
the knowledge of the desired signal (DS) steering vector is accurately estimated. 
However, this beamformer will suffer from severe performance degradation in the 
presence of the DS component in the training data, which is called the signal 
self-nulling effect, when the DS steering vector mismatches its true value due 
to direction-of-arrival (DOA) error and array imperfections [12, 23]. Thus, the 
study for improving the robustness of the SCB becomes fairly important.

During past decades, numerous robust adaptive beamforming approaches have 
been developed [3–5, 7, 10, 13, 14, 22, 27, 29, 30]. For instance, the diagonal 
loading (DL) algorithm in [10] is known as a popular technique, which adds a 
fixed identity matrix to the sample covariance matrix (SCM). Although the DL 
has been further studied in [4, 27] to decide a preferable loading factor, it is 
incapable of reducing the steering vector of the DS mismatch. To deal with this 
problem, the eigenspace-based beamformer (ESB) in [5] directly projects the DS 
steering vector onto the signal-plus-interference subspace to alleviate the mis-
match. But the subspace swap happened at low signal-to-noise ratio (SNR) case 
leads to the increased steering vector of the DS mismatch. Considering the short-
ages in the aforementioned approaches, the robust Capon beamformer (RCB) in 
[22] estimates the steering vector of the DS by maximizing the output power in a 
user-defined uncertainty set. Note that the limited performance improvement on 
the RCB can be ascribed to the insufficient constraint on the steering vector of the 
DS.

As we all know, the presence of the signal self-nulling effect at high SNR case 
can be attributed to the DS-involved SCM or training data. In other words, esti-
mating the INCM [6, 8, 11, 18, 25, 28, 31–33] or DS-free data [1, 9, 15, 16, 19, 
24] has the potential to significantly improve the robustness of the SCB. Under 
this condition, the INCM-quadratically constrained quadratically programming 
(INCM-QCQP) algorithm in [6] reconstructs the INCM with the Capon spectrum 
estimator in the spatial region outside the DS region, which can attain good per-
formance in the situation of well-calibrated array. To continue, the annulus uncer-
tainty sets-INCM (AUS-INCM) reconstruction way in [8] employs the surface 
integral instead of the curve integral used in [6] to estimate the INCM with the 
Capon spectrum estimator in the interference regions. Nonetheless, this approach 
suffers from a large amount of high dimension calculations. In [25], a novel sub-
space-based INCM (NS-INCM) estimation method provides to pre-estimate the 
interference steering vectors with the Capon spectrum estimator in the known 
small spatial regions, then utilize the projection technique to yield the enhanced 
ones. This method improves the accuracy on estimating the interference steering 
vectors but still fails to reject the interferences completely at defective array struc-
ture case. Motivated by the unsettled issues above, the middle subarray-based 
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INCM estimation (MSB-INCM) method in [11] proposes to establish a selection 
matrix to transform the training data with mutual coupling into the middle sub-
array training data without mutual coupling, and then combine the idea in the 
INCM-QCQP to reconstruct the INCM. However, the MSB-INCM is not suit-
able for other common scenarios such as the channel gain and phase uncertain-
ties and sensor position displacements. Different from the aforementioned INCM 
direct estimation algorithms, the multiple constrained L-2-norm minimization 
method in [15] removes the DS component from the SCM via building a block-
ing matrix with the presumed DS steering vector and a power adjust factor with 
small magnitude. Even though this algorithm is computationally efficient, its DS 
blocking capability at high DS power level case is unsatisfactory, which leads to 
the reduced output SINR.

In this paper, an INCM reconstruction method is devised through separat-
ing the DS component from the training data with a blocking matrix, where the 
blocking matrix is formed with the major eigenvector related to the Capon spec-
trum integral-based DS matrix. Then, the quasi INCM is calculated using the DS-
absent data we obtained. At last, the dominant eigenvectors of the quasi INCM 
are processed by the inverse of the blocking matrix, which leads to the INCM 
reconstruction.

The paper contributes to the field of adaptive beamforming in the following 
aspects,

1.	 We propose a low-complexity INCM reconstruction algorithm using blocking 
matrix construction and matrix transition, which is manifestly different from the 
existing INCM direct estimation-based beamformers.

2.	 We provide a novel steering vector of the DS estimation method through apply-
ing eigendecomposition on the reconstructed DS matrix, which is obtained by 
integrating the Capon spectrum estimator over the annulus uncertainty sets of the 
possible DS region.

3.	 We give the performance comparisons of the proposed and relevant beamformers 
using typical experiments. Apparently, the proposed robust beamforming method 
can not only tackle the signal self-nulling effect but also preserve desired anti-
interference capacity in the situation of DOA error and array perturbations.

The rest of this paper is organized as follows. In Sect. 2, the problem is formu-
lated. In Sect. 3, the proposed method is introduced in detail. Section 4 contains 
several simulations. Conclusions are given in Sect. 5.

2 � Problem Formulation

Consider a linear array with M sensors, receiving far-field narrowband signals 
including one DS and J interferences. The array sample data at the kth snapshot 
is modeled as:
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where �i, i = 0, 1,… , J and si(k), i = 0, 1,… , J represent the steering vector and 
waveform of the ith source, respectively, �(k) is Gaussian white noise. Here, the DS, 
interferences, and noise are assumed to be statistically independent at each snapshot. 
Then, the covariance matrix can be written as:

where E{⋅} and (⋅)H denote the statistical expectation and conjugate transpose, 
respectively, �s and �in denote the ideal DS matrix and INCM, respectively.

Given a weight vector � , the output SINR is always defined as:

To reach the maximum output SINR, the SCB intends to minimize the array output 
power with a fixed and undistorted response constraint on the steering vector of the 
DS. The corresponding problem of the SCB is formulated as:

with the solution �scb = �−1�0∕�
H
0
�−1�0.

Since the theoretical covariance matrix � is unavailable, it is always replaced 
by its maximum likelihood estimate (i.e., the SCM), that is:

where K denotes the number of snapshots.
As stated earlier, if the actual steering vector of the DS �0 is not precisely 

given, the performance of the SCB will severely drop, particularly at high SNR 
case, which can be attributed to the DS-contained SCM �̂.

To eliminate the DS component from the SCM �̂ , Gu et al. have provided to 
reconstruct the INCM as [6]:

where 𝛩̄s denotes the complementary region of the DS region, and �(�) stands for 
the steering vector of � . Inevitably, the INCM reconstructed as above cannot involve 
actual interference component when the array is uncalibrated.

In terms of the shortcoming in (6), Huang et al. have offered to estimate the 
INCM as [8]:

(1)�(k) = �0s0(k) +

J∑

i=1

�isi(k) + �(k)

(2)� = E{�(k)�H(k)} = �s + �in

(3)SINR =
w
H
Rsw

wHRinw
=

�2
0
||wH�0

||
2

wHRinw

(4)min
�

�H�� s.t. �H�0 = 1

(5)�̂ =
1

K

K∑

k=1

�(k)�H(k)

(6)
⌣

�in = ∫̄
𝛩s

�(𝜃)�H(𝜃)

�H(𝜃)�̂−1�(𝜃)
d𝜃
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where 𝛩̄int , �̃(𝜃) , Sint = { �̃(𝜃)| ||�̃(𝜃) − �(𝜃)|| = 𝜀} , and 𝜎̃2
n
� are the interference 

region, steering vector located in the surface Sint , surface of the uncertainty set � 
corresponding to the steering vector �(�) , and noise matrix with power estimation 
𝜎̃2
n
 , respectively. || ⋅ || represents the L-2 norm and � denotes the identity matrix. 

Undoubtedly, this INCM estimation scheme costs high complexity in covering the 
actual interference steering vectors, in view of that the region �int generally includes 
several interfering signals.

3 � Proposed Algorithm

In this section, a reconstruction-based adaptive beamforming algorithm, which aims 
at simultaneously overcoming the signal self-nulling effect at high SNR case and 
preserving the anti-interference ability under array uncalibrated or partly calibrated 
environment, is proposed through constructing a blocking matrix to remove the DS 
component from the training data, then performing some concise matrix transitions 
to attain the INCM.

3.1 � Blocking Matrix Construction

To construct the DS blocking matrix, the definition of the DS-plus-noise covariance 
matrix (DSNCM) is firstly given as:

where 𝜎̃2
0
 denotes the pre-defined DS power. Therefore, the DSNCM �sn can be 

eigendecomposed as:

where �i, i = 1, 2,… ,M denote the eigenvalues in descending order, while �i are 
the corresponding eigenvectors. Subsequently, the inverse of the DSNCM can be 
expressed as follows if the pre-defined DS power is relatively higher than that of the 
noise (i.e., 𝜎̃2

0
≫ 𝜎̃2

n
):

In view of that the conditions 𝜎̃2
0
≫ 𝜎̃2

n
 and 

∑M

i=1
�i�

H
i
= � are fulfilled, the inverse of 

the DSNCM �−1
sn

 can be further approximated as:

(7)�̄in =
1

2 ∫
𝛩int

∫
Sint

�̃(𝜃)�̃H(𝜃)

�̃H(𝜃)�̂−1�̃(𝜃)
d𝜎d𝜃 + 𝜎̃2

n
�

(8)�sn = 𝜎̃2
0
�0�

H
0
+ 𝜎̃2

n
�

(9)�sn =

M∑

i=1

�i�i�
H
i

(10)�−1
sn

=

M∑

i=1

�i�
H
i

𝜇i

=
�1�

H
1

M𝜎̃2
0
+𝜎̃2

n

+

M∑

i=2

�i�
H
i

𝜎̃2
n
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Hence, we can construct the blocking matrix as:

where the blocking matrix � currently performs the feature ��0 ≅ � with � being the 
all-zero column vector.

To confirm the performance of the blocking matrix � with considering the DS 
power 𝜎̃2

0
 selection problem, the function ||��(�)|| versus DOA under different DS 

power settings 𝜎̃2
0
∈ {10𝜎̃2

n
, 102𝜎̃2

n
, 103𝜎̃2

n
, 102trace(�̂)} is plotted in Fig.  1, where 

trace(⋅) stands for the trace of a matrix. In this example, the simulation parameters 
in Sect. 4 are used. As we can see from Fig. 1, if the DS power satisfies 𝜎̃2

0
> 102𝜎̃2

n
 , 

the performance of the blocking matrix � seems unchanged and nearly excellent, 
which means that the qualification 𝜎̃2

0
≫ 𝜎̃2

n
 is now met. Remarking that, on account 

of that the SCM �̂ always contains strong interferences and trace(�̂) > 𝜎̃2
n
 is tenable, 

we have 102trace(�̂) ≫ 𝜎̃2
n
 . Therefore, for general cases, a reasonable choice of the 

pre-defined power of the DS is given as 𝜎̃2
0
= 102trace(�̂).

3.2 � Interference‑Plus‑Noise Covariance Matrix Reconstruction

Based on the discussions above, the blocking matrix � is herein utilized to process 
the training samples �(k) as:

(11)�−1
sn

≅

M∑

i=2

�i�
H
i

𝜎̃2
n
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� − �1�
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Fig. 1   Function ||��(�)|| versus DOA in the scenario of exactly known DS steering vector, K = 80 and 
SNR = 15 dB
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It should be pointed out that the DS component �0s0(k) has been blocked or 
significantly weakened in (13), and then, the term ��0s0(k) can be omitted, which 
follows the equivalent form of (13) as:

Accordingly, the covariance matrix, which is termed as the quasi INCM, can 
be computed as:

Considering that the noise component in (15) has not been the ideal white one 
(i.e. �2

n
� ), the quasi INCM �̃in needs to be modified as:

Subsequently, the quasi INCM after modification 
⌢

�in can be eigendecomposed 
as:

where �i, i = 1, 2,… ,M denote the eigenvalues in descending order and �i stand for 
the related eigenvectors. Since the modified quasi INCM 

⌢

�in can also be represented 
as:

we can simply draw the following conclusion according to the equivalence between 
(17) and (18):

Obviously, if we left-multiply and right-multiply both sides of (19) by the inverse 
of the blocking matrix �−1 (i.e., the DSNCM �sn ) and the inverse of the conjugate 
transpose of the blocking matrix (�H)−1 , the exact interference component is recov-
ered, which leads to the INCM reconstruction as:

(13)�̃(k) = ��(k) = ��0s0(k) +

J∑

i=1

��isi(k) + ��(k)
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J∑
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1
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K∑
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�̃(k)�̃H(k) =

J∑

i=1

𝜎2
i
��i�

H
i
�H + 𝜎2

n
��H

(16)
⌢

�in = �̃in − 𝜎̃2
n
��H + 𝜎̃2

n
�

(17)
⌢

�in =

M∑

i=1

𝜆i�i�
H
i
=

J∑

i=1

�i(𝜆i − 𝜎̃2
n
)�H

i
+ 𝜎̃2

n
�

(18)
⌢

�in =

J∑

i=1

𝜎2
i
��i�

H
i
�H + 𝜎̃2

n
�

(19)
J∑

i=1

𝜎2
i
��i�

H
i
�H =

J∑

i=1

�i(𝜆i − 𝜎̃2
n
)�H

i
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It is worth stressing that the proposed DS removal-based algorithm is significantly 
distinct from that in [19], which is based on the subarray-level processes and shrinks 
the DOFs of array. In addition, the robust beamformer in [15] cannot offer satisfac-
tory DS blocking performance as ours when the input SNR level is high.

3.3 � Steering Vector of the Desired Signal Estimation

Starting from the point that the actual steering vector of the DS �0 employed in (8) 
is always hard to be known, we prepare to estimate the steering vector of the DS in 
this subsection.

On the basis of the prior knowledge of the DS region �s , the DS matrix can be 
gained by integrating the Capon spectrum estimator over the annulus uncertainty 
sets as:

where Ss = {�̃(𝜃)|||�̃(𝜃) − �(𝜃)|| = 𝜀} stands for the surface of the uncertainty set � 
corresponding to the steering vector �(�) , and the constant factor 1/2 is used to avoid 
repetitive calculations.

It should be mentioned that at the special uncertainty set case � = 0 , the estimate 
of the DS matrix �̃s in (21) is actually the preceding approach in [26]. Even though 
the principle of (21) is similar to that in [8], they still hold significant distinctions. 
The annulus uncertainty set-based Capon spectrum integration in [8] aims to obtain 
the accurate INCM, while the goal of (21) is to resolve the exact estimation on the 
DS steering vector.

The integration in (21) does not have closed form solution, so we have to replace 
it with the summation approximately as:

where �l(�i) denotes the lth steering vector at the ith grid in the DS angular region 
�s , I and L represent the number of grids in the DS angular region �s and the num-
ber of steering vectors for one grid, respectively.

Via the well-estimated DS matrix �̃s in (22), the steering vector of the DS can be 
easily estimated as:

(20)�̂in =

J∑

i=1

�−1�i(𝜆i − 𝜎̃2
n
)�H

i
(�H)−1 + 𝜎̃2

n
�

(21)�̃s =
1

2 ∫
𝛩s

∫
Ss

�̃(𝜃)�̃H(𝜃)

�̃H(𝜃)�̂−1�̃(𝜃)
d𝜎d𝜃

(22)�̃s =
1

2

I∑

i=1

L∑

l=1

�l(𝜃i)�
H
l
(𝜃i)

�H
l
(𝜃i)�̂

−1�l(𝜃i)

(23)�̃0 =
√
M

P{�̃s}

��P{�̃s}��
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where P{⋅} represents the operation which returns the principal eigenvector of a 
matrix.

3.4 � Weight Vector Calculation

Combining the steering vector of the DS �̃0 and INCM �̂in , the beamforming weight 
vector is acquired as:

Above all, the steps of the proposed DS robust removal-based INCM reconstruction 
algorithm, which is referred to as the DSRR-INCM, are summarized in Table 1. We 
can find that the computation load of the proposed algorithm mainly lies in estimat-
ing the steering vector of the DS and INCM. The computation loads of estimating the 
steering vector of the DS and INCM are O((IL + K)M2) + O(3 M3) and O((K + J+2)M2) 
+ O((3 + 2 J)M3), respectively. As a result, the overall computation load of the proposed 
method is O((IL + 2 K + J)M2) + O((6 + 2 J)M3).

4 � Simulation

A uniform linear array (ULA) with M = 8 isotropic sensors spaced half wavelength 
apart is assumed. There are one DS and two interferences impinge on the ULA from 
10°, − 25°, and 45°, respectively. The interference-to-noise ratios (INR) of two strong 
interferences are 20 dB and the presumed DOA of the DS is 7°.

To implement the proposed algorithm, the DS region �s is set as [2°, 12°], of which 
the number of grids I is fixed to 100. The DS power 𝜎̃2

0
= 102trace(�̂) is fixed, and the 

noise power 𝜎̃2
n
 is selected as the minimum eigenvalue of the SCM. Besides, for each 

�i ∈ �s , the steering vector �l(�i) is determined as:

where the uncertainty set � =
√
0.1 and phases �l

i
∈ [0, 2�), i = 0, 1,… ,M − 1 are 

selected, respectively. In order to sample at the surface Ss , we need to discretize the 
phases �l

i
, i = 0, 1,… ,M − 1 from 0 to 2� . As is acknowledged in [8], the number 

(24)�pro =
�̂−1

in
�̃0

�̃H
0
�̂−1

in
�̃0

(25)�l(�i) = �(�i) +
�

√
M
[ej�

l
0 , ej�

l
1 ,⋯ , ej�

l
M−1]

Table 1   Steps of the proposed 
algorithm 1: Calculate the sample covariance matrix �̂ with (5)

2: Estimate the steering vector of the DS �̃0 with (22) and (23)
3: Construct the blocking matrix � with (8) and (12) by replacing �0 

with �̃0
4: Reconstruct the INCM �̂in with (13), (15)–(17), and (20)
5: Obtain the adaptive weight vector �pro with (24)
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of discrete values in [0, 2�) should be greater than or equal to two, so we uniformly 
choose two values in [0, 2�) as the sample points of the phases �l

i
, i = 0, 1,… ,M − 1 

(i.e. �l
i
, i = 0, 1,… ,M − 1 equals to 0 or � ), which means that the number of steer-

ing vectors for one grid L = M2 is fixed.
For comparison purpose, the performance of the DL [10], ESB [5], RCB [22], 

INCM-QCQP [6], AUS-INCM [8], NS-INCM [25], and MCLM [15] is tested as 
well. The loading factor in the DL is set as 10𝜎̃2

n
 . The upper norm bound in the RCB 

is taken as 0.3 M. In addition, the complementary region of the DS region 𝛩̄s in the 
INCM-QCQP is chosen as [− 90°, 2°)∪(12°, 90°], of which the number of grids is 
fixed to 500. Moreover, for the AUS-INCM, the interference region �int is selected 
as [− 27°, − 17°]∪[37°, 47°], of which the numbers of grids is fixed to 200, the 
uncertainty set and sample points in the surface around the steering vector located 
in the region of the interferences are set the same as that in the DSRR-INCM. The 
region of incoming signals in the NS-INCM is [2°, 12°]∪[− 27°, − 17°]∪[37°, 47°], 
of which the number of grids is fixed to 300. The power adjustment factor in the 
MCLM is selected as min{0.02,M∕trace(�̂)} . The optimal SINR (OPT) is calcu-
lated as SINRopt = �2

0
�H
0
�−1

in
�0 with �2

0
 being the true power of the DS. Each result in 

this section is an average of 300 Monte-Carlo simulations.

4.1 � Performance Under Different DS Power Pre‑definitions

In this subsection, we explore the influence of different DS power pre-defini-
tions, i.e., 𝜎̃2

0
∈ {10𝜎̃2

n
, 102𝜎̃2

n
, 103𝜎̃2

n
, 102trace(�̂)} , on the output performance 
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of the DSRR-INCM. Figures  2 and 3 exhibit the beampattern versus DOA and 
output SINR versus input SNR, respectively. It is observed that in Fig. 2, if and 
only if 𝜎̃2

0
=103𝜎̃2

n
 and 𝜎̃2

0
= 102trace(�̂) are utilized, the proposed DSRR-INCM 

has desired and stable beampattern with deeper nulls than others and thus owns 
great interference rejection ability. In line with the consequence in Fig. 2, we can 
view from Fig.  3 that the DSRR-INCM with pre-defined DS powers 𝜎̃2

0
=103𝜎̃2

n
 

and 𝜎̃2
0
= 102trace(�̂) performs best among other DS power settings. That is, the 

offered algorithm can hold excellent performance for large dynamic SNR chang-
ing scenarios when 𝜎̃2

0
> 102𝜎̃2

n
 is satisfied. Noting that, on account of that the 

SCM permanently comprises strong interferences and trace(�̂) > 𝜎̃2
n
 is tenable, 

the pre-defined DS power can be directly set as 𝜎̃2
0
= 102trace(�̂) to make the pro-

posed beamformer applicable for general cases.

4.2 � Mismatch Due to DOA Error

In this example, the DOA error is just considered. Figure  4 shows the average 
SINR of different approaches against SNR. It is apparent that the INCM recon-
struction-based methods, including the INCM-QCQP, AUS-INCM, NS-INCM, 
and DSRR-INCM, can achieve almost idea performance at both low and high 
SNR cases due to the effective estimate of the INCM. However, the ESB and 
RCB cannot work well at high SNR case because of the signal self-nulling effect. 
Although the MCLM can maintain mainbeam, the reduced anti-interference per-
formance resulted from the unsatisfactory DS elimination still leads to output 
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SINR loss. Moreover, the SINR versus number of snapshots is depicted in Fig. 5. 
Again, the proposed DSRR-INCM can offer desired output SINR in the situation 
of small training samples.
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Fig. 4   SINR versus SNR in the scenario of DOA error, K = 80
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4.3 � Mismatch Due to DOA and Sensor Position Errors

The third example is carried out under both DOA and sensor position errors, where 
each sensor is set to be far away from its theoretical position, to obey uniform distri-
bution of [− 0.05, 0.05] measured in wavelength. Following the second example, the 
SINR versus SNR is exhibited in Fig. 6. Obviously, the DSRR-INCM outperforms 
other compared approaches, which can be owing to the DS blocking-based INCM 
reconstruction procedure and uncertainty set-based DS steering vector estimation. 
It should be mentioned that at SNR > 18 dB case, the small output SINR drop of the 
devised DSRR-INCM can be attributed to the insufficient samples in the annulus 
uncertainty sets in estimating the DS steering vector. Additionally, the SINR ver-
sus number of the snapshots is plotted in Fig. 7, we can observe that the proposed 
method shows enough robustness when number of snapshots is limited.

4.4 � Mismatch Due to DOA and Gain and Phase Errors

The fourth example is executed in the scenario of DOA and sensor gain and phase 
errors, where the sensor gain error and phase error are subjected to the normal dis-
tributions in [− 0.5 dB, 0.5 dB] and [− 5°, 5°], respectively. Following the second 
and third examples, the SINR versus SNR and SINR versus number of snapshots 
are displayed in Figs.  8 and 9, respectively. Clearly, the ESB, RCB, MCLM, and 
INCM direct estimation methods, including the INCM-QCQP, AUS-INCM, and 
NS-INCM, cannot remain superior performance when SNR is high or size of train-
ing samples is finite as compared to the proposed algorithm, which can be ascribed 
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to our novel DS removal-based INCM reconstruction design. However, due to the 
inaccurate estimate of the DS steering vector, the SINR reduction of the DSRR-
INCM at SNR > 15 dB case should not be missed. Our future work will focus on 
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improving the DS steering vector estimation accuracy, to further develop the pro-
posed beamformer.

5 � Conclusion

A DS robust removal-based INCM reconstruction method is introduced in this 
paper, whose main purpose is to combat the problem of the DS steering vector mis-
match. Particularly, the steering vector of the DS is first estimated by realizing the 
DS matrix with the Capon spectrum estimator and annulus uncertainty set. Sec-
ondly, the construction of the blocking matrix is completed via the well-estimated 
DS steering vector and pre-defined power, which results in the estimate of the quasi 
INCM by processing the training samples with the blocking matrix. Finally, through 
projecting the prime eigenvectors related to the quasi INCM onto the inverse of 
the blocking matrix, the INCM reconstruction is achieved indeed. Representative 
experiments have validated the robustness improvement of the proposed method, 
especially when both DOA error and array imperfections exist and the training data 
contains the DS component.

Compliance with Ethical Standards 

Conflict of interest  The authors declare that they have no conflict of interests.

10 20 30 40 50 60 70 80 90 100

6

6.5

7

7.5

8

8.5

9

Number of Snapshots

S
IN

R
/d

B

OPT
ESB
RCB
INCM-QCQP
AUS-INCM
NS-INCM
MCLM
DSRR-INCM

Fig. 9   SINR versus number of snapshots in the scenario of DOA and sensor gain and phase errors, 
SNR = 0 dB



416	 Circuits, Systems, and Signal Processing (2021) 40:401–417

References

	 1.	 K.M. Buckley, L.J. Griffths, An adaptive generalized sidelobe canceller with derivative constraints. 
IEEE Trans. Antennas Propag. 34(3), 311–319 (1986)

	 2.	 J. Capon, High-resolution frequency-wave number spectrum analysis. Proc. IEEE 57(8), 1408–1418 
(1969)

	 3.	 L. Chang, C.C. Yeh, Performance of DMI and eigenspace-based beamformers. IEEE Trans. Anten-
nas Propag. 40(11), 1336–1347 (1992)

	 4.	 L. Du, J. Li, P. Stoica, Fully automatic computation of diagonal loading levels for robust adaptive 
beamforming. IEEE Trans. Aerosp. Electron. Syst. 46(1), 449–458 (2010)

	 5.	 D.D. Feldman, L.J. Griffiths, A projection approach for robust adaptive beamforming. IEEE Trans. 
Signal Process. 42(4), 867–876 (1994)

	 6.	 Y.J. Gu, A. Leshem, Robust adaptive beamforming based on interference covariance matrix recon-
struction and steering vector estimation. IEEE Trans. Signal Process. 60(7), 3881–3885 (2012)

	 7.	 F. Huang, W. Sheng, X. Ma, Modified projection approach for robust adaptive array beamforming. 
Signal Process. 92(7), 1758–1763 (2012)

	 8.	 L. Huang, J. Zhang, X. Xu, Z.F. Ye, Robust adaptive beamforming with a novel interference-plus-
noise covariance matrix reconstruction method. IEEE Trans. Signal Process. 63(7), 1643–1650 
(2015)

	 9.	 N.K. Jablon, Adaptive beamforming with the generalized sidelobe canceller in the presence of array 
imperfections. IEEE Trans. Antennas Propag. 34(8), 996–1012 (1986)

	10.	 J. Li, P. Stoica, Z. Wang, On robust Capon beamforming and diagonal loading. IEEE Trans. Signal 
Process. 51(7), 1702–1715 (2003)

	11.	 Z.H. Li, Y.S. Zhang, Q.C. Ge, Y.D. Guo, Middle subarray interference covariance matrix recon-
struction approach for robust adaptive beamforming with mutual coupling. IEEE Commun. Lett. 
23(4), 664–667 (2019)

	12.	 B. Liao, S.C. Chan, K.M. Tsui, Recursive steering vector estimation and adaptive beamforming 
under uncertainties. IEEE Trans. Aerosp. Electron. Syst. 49(1), 489–501 (2013)

	13.	 B. Liao, C.T. Guo, L. Huang, Q. Li, H.S. So, Robust adaptive beamforming with precise main beam 
control. IEEE Trans. Aerosp. Electron. Syst. 53(1), 345–356 (2017)

	14.	 J.P. Lie, W. Ser, C.M.S. See, Adaptive uncertainty based iterative robust Capon beamformer using 
steering vector mismatch estimation. IEEE Trans. Signal Process. 59(9), 4483–4488 (2011)

	15.	 F.L. Liu, R.Y. Du, J. Wu, Q.P. Zhou, Z.X. Zhang, Y.J. Cheng, Multiple constrained l2-norm minimi-
zation algorithm for adaptive beamforming. IEEE Sens. J. 18(15), 6311–6318 (2018)

	16.	 K.W. Lo, Improving performance of real-symmetric adaptive array by signal blocking. IEEE Trans. 
Aerosp. Electron. Syst. 31(2), 821–830 (1995)

	17.	 S. Mohammadzadeh, S. Kukrer, Robust adaptive beamforming with improved interferences sup-
pression and a new steering vector estimation based on spatial power spectrum. Circuits Syst. Signal 
Process. 38, 4162–4179 (2019)

	18.	 J.H. Qian, Z.S. He, T. Liu, N. Huang, Robust beamforming based on steering vector and covariance 
matrix estimation. Circuits Syst. Signal Process. 37, 4665–4682 (2018)

	19.	 M. Rahmani, M.H. Bastani, S. Shahraini, Two layers beamforming robust against direction-of-
arrival mismatch. IET Signal Process. 8(1), 49–58 (2014)

	20.	 I.S. Reed, J.D. Mallett, L.E. Brennan, Rapid convergence rate in adaptive arrays. IEEE Trans. Aer-
osp. Electron. Syst. 10(6), 853–863 (1974)

	21.	 H. Ruan, R.C. de Lamare, Robust adaptive beamforming based on low-rank and cross-correlation 
techniques. IEEE Trans. Signal Process. 64(15), 3919–3932 (2016)

	22.	 P. Stoica, Z. Wang, J. Li, Robust Capon beamforming. IEEE Signal Process. Lett. 10(6), 172–175 
(2003)

	23.	 S.A. Vorobyov, A.B. Gershman, Z.Q. Luo, Robust adaptive beamforming using worst-case perfor-
mance optimization: a solution to the signal mismatch problem. IEEE Trans. Signal Process. 51(2), 
313–324 (2003)

	24.	 X.P. Yang, Z.A. Zhang, T. Zeng, T. Long, T.K. Sarkar, Mainlobe interference suppression based on 
eigen-projection processing and covariance matrix reconstruction. IEEE Antennas Wirel. Propag. 
Lett. 13, 1369–1372 (2014)

	25.	 X.L. Yuan, L. Gan, Robust adaptive beamforming via a novel subspace method for interference 
covariance matrix reconstruction. Signal Process. 130, 233–242 (2017)



417Circuits, Systems, and Signal Processing (2021) 40:401–417	

	26.	 X.L. Yuan, L. Gan, Robust algorithm against large look direction error for interference-plus-noise 
covariance matrix reconstruction. Eletron. Lett. 52(6), 448–450 (2016)

	27.	 M. Zhang, A. Zhang, Q. Yang, Robust adaptive beamforming based on conjugate gradient algo-
rithms. IEEE Trans. Signal Process. 64(22), 6046–6057 (2016)

	28.	 Y.P. Zhang, Y.J. Lin, M.G. Gao, Robust adaptive beamforming based on the effectiveness of recon-
struction. Signal Process. 120, 572–579 (2016)

	29.	 X.J. Zhang, Z.S. He, B. Liao, X.P. Zhang, Z.Y. Cheng, Y.X. Li, A2RC: an accurate array response 
control algorithm for pattern synthesis. IEEE Trans. Signal Process. 65(7), 1810–1824 (2017)

	30.	 X.J. Zhang, Z.S. He, B. Liao, X.P. Zhang, W.L. Peng, Robust quasi-adaptive beamforming against 
direction-of-arrival mismatch. IEEE Trans. Aerosp. Electron. Syst. 54(3), 1197–1207 (2018)

	31.	 Z.Y. Zhang, W. Liu, W. Leng, A.G. Wang, H.P. Shi, Interference-plus-noise covariance matrix 
reconstruction via spatial power spectrum sampling for robust adaptive beamforming. IEEE Signal 
Process. Lett. 23(1), 121–125 (2016)

	32.	 Z. Zheng, W.Q. Wang, H.C. So, Y. Liao, Robust adaptive beamforming using a novel signal power 
estimation algorithm. Digital Signal Process. 95, 102574 (2019)

	33.	 X.Y. Zhu, X. Xu, Z.F. Ye, Robust adaptive beamforming via subspace for interference covariance 
matrix reconstruction. Signal Process. 167, 233–242 (2020)

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published 
maps and institutional affiliations.


	Adaptive Beamforming via Desired Signal Robust Removal for Interference-Plus-Noise Covariance Matrix Reconstruction
	Abstract
	1 Introduction
	2 Problem Formulation
	3 Proposed Algorithm
	3.1 Blocking Matrix Construction
	3.2 Interference-Plus-Noise Covariance Matrix Reconstruction
	3.3 Steering Vector of the Desired Signal Estimation
	3.4 Weight Vector Calculation

	4 Simulation
	4.1 Performance Under Different DS Power Pre-definitions
	4.2 Mismatch Due to DOA Error
	4.3 Mismatch Due to DOA and Sensor Position Errors
	4.4 Mismatch Due to DOA and Gain and Phase Errors

	5 Conclusion
	References




