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Abstract
Some properties of the optimal representation of numbers are investigated. This rep-
resentation, which is to the base-e, is examined for coding of integers. An approxi-
mate representation without fractions that we call WF is introduced and compared 
with base-2 and base-3 representations that are next to base-e in efficiency. Since 
trees are analogous to number representation, we explore the relevance of the statis-
tical optimality of the base-e system for the understanding of complex system behav-
ior and of social networks. We show that this provides a new theoretical explanation 
for the nature of the power law exhibited by many open complex systems. In spe-
cific, we show that the power law distribution most often proposed for such systems 
has a form that is similar to that derived from the optimal base-e representation.

Keywords Optimal number representation · Power laws · Complex system 
dynamics · Zipf distribution

1 Introduction

Novel representation schemes for numerals are important in communication engi-
neering and computer science applications [14], especially when one wishes to rep-
resent data as efficiently as possible [19]. They are also important in understand-
ing complex systems as manifested in behaviors such as the first digit phenomenon 
[11, 12], power laws and series models in social networks [15–17], protein–protein 
interaction networks [6], physical systems for space itself is a representation scheme 
[18], transportation networks [9], city and firm sizes [1, 5, 8], and financial networks 
[23].

We begin with number representation. Let us consider coding of numbers to an 
arbitrary base r. In general, we should be able to write the expansion for a number x 
in the form:
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where an are integers so that an is zero for a sufficiently large n, and 0 ≤ an < r. In 
general, this expression applies to any kind of r, even non-integer [7] and irrational 
[3, 22].

The polynomial representation of Eq.  (1) may be viewed as a tree. Thus, for 
example, the tree for the representation for the number 43 to base 3 is derived 
by successive division as follows: 43 = 14 × 3 + 1; 14 = 4 × 3 + 2; 4 = 1 × 3 + 1; 
1 = 0 × 3 + 1.

Therefore, 43 (base 3) = 1 × 33 + 1 × 32 + 2 × 31 + 1 = 1 1 2 1, which is 
obtained by taking the remainders in the reverse order. This tree is shown in 
Fig. 1, where the nodes are read from left to right.

Note that the number of branches at each node is 3, but only the named branch 
is shown. If one were to gather all these branches and fold them on top of each 
other correctly, we will have a single-layered structure with the overlapped num-
ber of branches for 0, 1, and 2, respectively. One expects that aggregate num-
bers under each of these branches are equal and so we can assign them the same 
probability.

Now, consider the efficiency of representation based on information of the 
symbols [19]. The information I(x) associated with the symbol x (which is a num-
ber less than the base r) is given by:

where P(x) is the probability of occurrence of the symbol x. Equation (2) gives the 
information in bits if it uses a logarithm to base 2, and in nats if base e is used.

Clearly, the capacity of a base representation to carry information goes up as 
the size of the base increases. But the increase in information must be squared 
off against the extra burden entailed by the use of the larger set (which corre-
sponds to a greater number of branches at each node). For binary, the capacity is 
ln 2 = 0.693 nats (= 1 bit), whereas for e, it is 1 nat (= 1. 443 bits); for base 3, the 
figure is 1.099 nats (= 1.585 bits); and for base 10, it is 2.303 nats (= 3.322 bits).

The probability of the use of each of the r symbols may be taken to be the 
same and equal to 1∕r , and the information associated with each symbol is log r . 
The efficiency of the coding scheme per symbol is

(1)x =

∞∑

n=−∞

anr
n

(2)I(x) = − logP(x)

Fig. 1  Tree structure of the 
ternary representation of 43
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Theorem 1 The optimal base for number representation is e.

Proof To find the value of r for which it is a maximum, we take the derivative of 
E(r) with respect to r and equate that to zero. This yields the condition that ln r = 1 , 
from which we conclude that the optimal base is e, with E(e) = 0.368 nats or 0.531 
bits.

The fact that we define efficiency based on information content means that the opti-
mality is true only in a probabilistic sense. This indicates that comparison of base-e 
number representation to standard base-2, base-3, or decimal representations for inte-
gers alone (which is a small subset of the real numbers), or any specific example, may 
not always show superior results.

Table 1 below provides E(r) for some of the values of r that range from 2 to 10.
The efficiency is quite close to the maximum for r = 3 (a value of 0.528 bits as com-

pared to the optimal value for e which is 0.531 bits), with the next best value coming 
at the bases 2 and 4 (where it is 0.500 bits). The efficiency at r = 3 is superior to that at 
r = 2 by 5.6% (for details, see [11, 12, 17]. After this, the values decline monotonically 
as shown in Fig. 2.

In this article, we show how the base-e system works and compare it to the bases of 
2 and 3, which are closest to it in efficiency. Given that e is irrational and therefore the 
representations for integers in base-e are not going to be efficient, we further present an 
approximate representation that makes it easier to do a clear comparison with base-2 
and -3 representations. If it is accepted that Nature chooses optimal schemes, then the 
base-e representation should show up in physical space and in complex systems, such 
as social networks or city size, and we provide evidence that supports this hypothesis. 
We further show that the power law distribution often proposed for complex systems is 
related closely to the optimal base-e representation.

2  The Base‑e system

The base-e system represents the number using powers of e and coefficients, 
di, i = … 2, 1, 0,−1,−2,… , that are integers less than e, that is 0, 1, and 2 in the most 
economical manner. Clearly, owing to the nature of e, the representation of integers 
will involve decimal expansions.

(3)E(r) =
ln r

r

Table 1  Efficiency of coding for 
certain bases

B 2 E 3 4 5 8 10

E(r) nats 0.347 0.368 0.366 0.347 0.322 0.260 0.230
E(r) bits 0.500 0.531 0.528 0.500 0.465 0.375 0.331
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For easy reference, the various powers of e are:

n − 5 − 4 − 3 − 2 − 1 0 1 2 3 4 5

en .0007 .018 .050 .135 .368 1 2.718 7.389 20.086 54.598 148.413

Just as 10, 100, 1000, and so on are turning points (exponentials) for base 10, 
the turning points for base-e (powers of e) after the numbers are rounded off are 
3, 7, 20, 55, 148, 403, 1897,.. and so on.

An interesting aspect of the base-e system is that it maps all numbers to irra-
tional points on the real line. In this, it represents the dual to schemes with inte-
ger bases that map corresponding points to rational numbers.

In the consideration of codes for integers, the question of the degree of accu-
racy comes in. The superiority of the base-e representation is true when we con-
sider all real numbers, but here we only wish to compare representations for 
integers.

In Table 2, we map integers from 1 to 20 to the base-e representation accurate to 
four “decimal” places. With the added constraint on least error for number of chosen 
decimal points, one can assert that a unique representation is defined.

Here is the explanation for how number 8 has two forms 22.1110 and 
100.1120 in Table 3. In principle, one of these will be superior to the other in 
how close it is to the integer based on the number of decimal points that are 

(4)x = dndn−1 … d2d1d0 ⋅ d−1d−2 … d−m

x = endn + en−1dn−1 +…+ ed1 + d0 + e−1d−1 + e−2d−2 +…

Fig. 2  Efficiency of number bases, 2 through 10
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chosen. Given the choice of four decimal points, 22.1110 equals 7.989, whereas 
100.1120 equals 7.992; therefore, the latter representation is superior.

It is clear that base-e representations of numbers for integers from 1 to 20 are 
much less efficient than base-2 or 3 systems. Consider the �-approximation of 
the base-e representation as

with the condition that

when � = 0.5, the number is correct to the nearest integer value, and the mapping 
will be called the WF (for “without fraction”) representation.

(5)x =

n∑

i=−m

aie
i

|
||||
x −

n∑

i=−m

aie
i
|
||||
< 𝜀

Table 2  The base-e coding for 
numbers 1 through 20, accurate 
to four “decimal” places

N Base-e, to four “decimal” places Base-e, 
exact 
value

1 1 1
2 2 2
3 10.0200 2.99
4 11.0200 3.99
5 12.0200 4.99
6 20.1110 5.99
7 21.1110 6.99
8 22.1110

100.1120
7.99

7.99
9 101.1120 8.99
10 102.1120 9.99
11 110.2101 10.99
12 111.2101 11.99
13 112.2101 12.99
14 121.0102 13.99
15 122.0102 14.99
16 201.0110 15.96
17 202.0110 16.96
18 210.1100 17.99
19 211.1100 18.99
20 212.1100 19.99
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3  Base‑e (WF) Representation

We have already mentioned that the optimality is to be understood statistically 
when all the points on the real line are chosen, but one would like to see it opera-
tionally for small integers.

We do so by leaving out the fractions and choosing the number closest to the 
integer being represented as is done in quantization in signal theory [19]. This 
WF (“without fraction”) representation is mathematically:

with the condition that

This actual error between x and its WF representation can be either negative or 
positive just as is the case in quantization.

Now, in Table 4, we compare the WF representation with representations for 
bases 2 and 3.

(6)x ≈

n∑

i=0

aie
i

|
||||
x −

n∑

i=0

aie
i
|
||||
< 0.5

Table 3  The WF representation 
and true value

N Base-e, without fraction (WF) True value

1 1 1
2 2 2
3 10 2.718
4 11 3.718
5 12 4.718
6 21 6.436
7 22 7.436
8 101 8.389
9 102 9.389
10 110 10.107
11 111 11.107
12 112 12.107
13 120 12.825
14 121 13.825
15 122 14.825
16 201 15.778
17 202 16.778
18 211 18.496
19 212 19.496
20 220 20.214
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For numbers 1 through 20, we see the lengths of the representational sequences 
for bases e and 3 are identical excepting for the number 8.

The total number of characters needed is 51 for base-e, 74 for base-2, and 50 for 
base-3.

Total cost for base-e: 51 × ln e = 51 nats
Total cost for base-2: 74 × ln 2 = 51.282 nats
Total cost for base-3: 50 × ln 3 = 54.93 nats
Thus, for the WF case for integers 1 through 20, base-e is superior to both the 

bases of 2 and 3. But as shown in an earlier paper [16], the efficiency of the bases 
will depend on the nearness to powers of the base and there will be numbers less 
than the turning point of the base where that base may be superior to the others.

4  Random Trees and Optimal Branching

We now consider trees in natural systems where in contrast to the representation 
of a single number as in the previous sections we look for all possible outputs 
associated with the system. The study of natural systems has shown a good match 
with heavy-tailed distributions such as Pareto distribution or the power law [24]. 
Such systems are approximately scale-free or self-similar. Examples of these 
include social networks and collaboration networks [13], many kinds of com-
puter networks, and the internet and the web graph of the World Wide Web [20]. 

Table 4  Comparison of base-e 
(WF) coding against bases 2 
and 3

N Base-e, WF Base-2 Base-3

1 1 1 1
2 2 10 2
3 10 11 10
4 11 100 11
5 12 101 12
6 21 110 20
7 22 111 21
8 101 1000 22
9 102 1001 100
10 110 1010 101
11 111 1011 102
12 112 1100 110
13 120 1101 111
14 121 1110 112
15 122 1111 120
16 201 10,000 121
17 202 10,001 122
18 211 10,010 200
19 212 10,011 201
20 220 10,100 202



497Circuits, Systems, and Signal Processing (2021) 40:490–500 

Preferential attachment models have been proposed as mechanisms to explain 
such distributions but what follows is a new approach to the problem.

In a complex system, the branching lines from each node will be a random 
function [20]. When the branches are folded over, let the probabilities be repre-
sented by P(xi) for the number of aggregated branches that can take values of i 
that vary from 1 to n. The entropy, H(X), of the system will be:

In the best case, each of these branches will have the same probability and the 
mapping is most efficient. We have already seen from Eq.  (3) that the optimal 
branching number is given by e.

For unconstrained random trees, the probability of events in ranked order is 
proportional to 1∕n , where n is the rank. If a counting process is uniformly dis-
tributed over the range {1, …, S}, with random values of S, then the sum satisfies 
the Newcomb–Benford Law [10], P(n) = logr

(
1 +

1

n

)
 , where n is the leading 

digit (n  ε {1,2,…, r-1}). When r = e, we have:

If the higher order terms are ignored, we have

where the k in the numerator is introduced to satisfy the constraint that the probabil-
ity should add to 1. This is Zipf’s distribution [2, 21, 25].

Definition . Let a counting event be a function of some aggregated property in a ran-
dom tree with r branches at each level.

Theorem 2 . The number of counts N(n + 1) at level n + 1 is rN(n).

Proof . The proof is elementary because at each level there is a r-fold branching.

Now, consider optimal branching, which by Theorem  1 is e-fold. The total 
number of branches will be limited by constraints associated with the physical 
system, and let us call the maximum value of the count associated with the event 
of interest to be Max.

One can read the growing values directly or read them in reverse. In the direct 
expansion of the tree, we have starting with an initial count of A:

(7)H(X) = −
∑

i

P(xi) logP
(
xi
)
.

(8)P(n) = ln
(
1 +

1

n

)

(9)=
1

n + 1
+

1

2(n + 1)2
+

1

3(n + 1)3
+

1

4(n + 1)4
+…

(10)P(n) ≈
k

n
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where Max is the maximum count associated with the variable. Written in the 
reverse order, the sequence is:

Let k be the variable associated with location of the values of expression (11), 
starting with 1 and then 2, 3,…

Since the count expands by a factor of e in each branching, it will be the highest 
at the nodes at the bottom of the tree. When traversing the tree backwards, the count 
at each step will be decreased by a factor of e. Therefore, we can assert:

Theorem 3 For optimal branching in natural systems, when the aggregated counts 
are written in ranked order, the probability at rank k + 1 is proportional to ke−1.

This means that the scaling law is:

which is a heavy-tailed distribution.
Experiments have shown (e.g., [4]) that many phenomena follow the following 

power law approximately for large values of k:

where γ is a parameter whose value is typically in the range 2 < γ < 3. The main 
characteristic of this distribution is its heavy-tailed nature, and there is considerable 
variety in the nature of the law.

As shown in Table 5, the values of (12) and (13) evolve in a similar fashion. For 
comparison, we have chosen γ = 2.5.

The values of the distribution in the new expression of (12) fall even faster than in 
(13), as it is an exponential function.

5  Saturated Power Law

Physical constraints will saturate the growth of the nodes down the random tree. If 
α is the saturation parameter (α < 1), then in the growth of the tree e will be replaced 
by αe. Finally, instead of formula (12) we obtain:

A → Ae → Ae2 → Ae3 → … → Max

(11)Max → Maxe−1 → Maxe−2 → Maxe−3 …

(12)p(k) ∼ e−(k−1)

(13)p(k) ∼ k−�

Table 5  Comparison of two 
heavy-tailed distributions of 
(12) and (13)

K 1 2 3 4 5 6

p(k) ∼ e−(k−1) 1 0.368 0.135 0.050 0.018 0.007
p(k) ∼ k−� 1 0.178 0.064 0.031 0.018 0.011
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Equation  (12) may be seen as a special case of (14) when � = 1.  The 
p(x) ∼ e−(k−1) as shown in Fig. 3.

The parameter in the saturated power law would vary based on the constraints 
associated with the natural system.

6  Conclusions

Some properties of the optimal base-e representation were described, and for inte-
gers an approximate representation without fractions that we call WF was intro-
duced. Comparisons of the WF representation with those of bases-2 and 3 were 
made. Since trees are analogous to number representation, we explored the applica-
bility of the base-e system to understanding complex system behavior. We showed 
that this provides a new explanation for the power law exhibited by a natural system.

The power law derived in this paper is heavy-tailed like the ones that have been 
widely discussed in the literature on complex systems.
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