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Abstract
This paper presents the output-constrained control algorithm for non-affinemulti-agent
systems (MASs) with actuator faults and unknown dead zones. The error transforma-
tion method is employed to keep initial connectivity patterns in the non-affine MASs
for consensus tracking control. The radial basis function neural networks are utilized
to estimate the unknown nonlinear functions. Furthermore, the Nussbaum function is
used to overcome partially unknown control direction problem. To address the problem
of the constrained control, a state transformation technique is presented. In addition, the
fault-tolerant consensus tracking protocol is designed to reduce the effects of actuator
faults and dead zones. Furthermore, it is shown that the consensus tracking errors are
cooperatively semi-globally uniformly ultimately bounded. Finally, the effectiveness
of the proposed approach is illustrated by some simulation results.

Keywords Non-affine multi-agent systems · Actuator faults · Dead zones ·
Output-constrained control

1 Introduction

The cooperative control of multi-agent systems (MASs) has received much atten-
tion in the last decade [20,42,52]. It has extensive applications in many fields, such
as unmanned air vehicles [35], autonomous systems [40] and distributed sensor net-
works [25]. For the MASs, researchers mainly study the consensus issues, which can
be divided into leaderless consensus and leader-follower consensus [49]. Researchers
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are especially interested in how to coordinate group behavior arising in the MASs,
and many meaningful results have been obtained in [8,11,18,34,38]. The consensus
problem of continuous-time MASs with discontinuous information transmission was
studied in [38]. Consensus protocol was designed in [11] for a group of agents with
quantized communication links and limited data rate. In [18], the consensus problem
in continuous-time MASs with switching topology and time-varying delays was con-
sidered. In [34], an adaptive control method was studied to realize the cooperative
tracking of uncertain MASs.

It is well known that system faults in a dynamic system can take many forms,
such as actuator faults and sensor faults. The actuator plays a crucial role in the
cooperative tracking problem of MASs [28]. If it undergoes certain failures, it can
cause unsatisfactory performance and lead to catastrophic accidents. Hence, many
results have solved the problem of actuator faults to increase security and reliability
of systems, and a series of meaningful results have been presented. The problem
of observer-based adaptive fuzzy fault-tolerant optimal control for SISO nonlinear
systemswas considered in [15]. The problem of fault detection for fuzzy semi-Markov
jump systemsbasedon interval type-2 fuzzy approachwas studied in [43]. Theproblem
of flight tracking control against actuator faults based on linear matrix inequality
method and adaptive control method was proposed in [3]. The adaptive fuzzy fault-
tolerant control methodwith error constrain was presented in [13] to solve the problem
of fault for non-triangular structure nonlinear systems. The active fault-tolerant control
problem was studied in [26] for nonidentical high-order MASs with the network
disconnections.

On the other hand, the control direction is usually unknown for the control design
in many application requirements [2,30,37]. Many controllers have been designed for
MASs with unknown control direction in the past few years. In most of the existing
works, the controller design relys on the information of control direction of each agent.
Nussbaum in [27] presented an efficient method to deal with the problem of unknown
control direction. The adaptive consensus problem of MASs with unknown identical
control directions was studied in [1]. The problem of neural control with unknown
control directions was studied for uncertain non-affine nonlinear MASs in [29]. In
[36], the consensus problem was solved for uncertain nonlinear MASs with unknown
control directions. For time-varying delay systems in [12], an output-feedback adaptive
neural network control method was presented to overcome the problem of unknown
control directions.

Motivated by the aforementioned discussions, the output-constrained control prob-
lem is considered in this paper. First, the error-transformation method is presented
to keep initial connectivity patterns in the non-affine MASs. Secondly, the agent
state transformation technique is proposed to convert the original MASs to an uncon-
strained one, where the outputs do not have any restrictions. The Nussbaum function
is introduced to overcome partially unknown control direction problem. Further, the
fault-tolerant tracking controller is presented to compensate the effects of actuator
faults and dead zones. Finally, simulation results demonstrate the effectiveness of the
proposed control strategy. Compared with some existing results, the contributions are
summarized as follows
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1. An error transformation method is presented to preserve initial connectivity pat-
terns of non-affine MASs by using nonlinear error transformation surfaces.

2. Compared with the results in [7,16,44], the controller designed in this paper can
solve the unknown dead-zone and actuator faults problems simultaneously.

3. Unlike the existing results [17,24,50], an output-constrained control algorithm is
presented for non-affine MASs. The actuator faults, unknown control directions
and unknown dead-zones are considered in this paper. The designed control algo-
rithm can guarantee system stability and ensure that the output constraint cannot
be violated during operation.

The remaining of the paper is arranged below. In Sect. 2, some preliminaries are
presented. The controller is designed and the stability analysis is described in Sect. 3.
The numerical simulation is provided in Sect. 4, and the conclusion is shown in Sect. 5.

2 Preliminaries

2.1 Basic Graph Theory

By regarding the followers and the leaders as nodes, the directed graph is denoted by
a directed graph ζ = (V, E,A), where V = {v1, v2, ..., vN }, the edge set E ⊆ V × V
and the adjacency matrix A = [ai j

] ∈ R
N×N . ai, j > 0, if (i, j) ∈ E, and ai, j = 0

otherwise. For node i and node j , if node i can receive the information sending from
node j , then (i, j) ∈ E, and node j is called a neighbors of node i . The interaction
relationships among the leader and followers are noted bymatrixB = diag [b1, ..., bn].
The Laplacian matrix is defined as L = D − A, where L = [

li j
] ∈ R

N×N is defined

as lii =
N∑

i �= j
ai, j and li j = −ai j , i �= j . D = diag{d1, . . . , dN } is diagonal matrix,

and the in-degree is defined as di =
N∑

j=1, j �=i
ai, j . The node i is called the neighbor of

node j when the edge ( j, i) exists. The more details can be found in [9] and references
therein.

2.2 Problem Formulation

The system model of the i th agent is

⎧
⎪⎨

⎪⎩

ẋi,l = xi,l+1, l = 1, ..., n − 1

ẋi,n = fi (xi , κi (ui , t)) + ωi (t)

yi = xi,1

(1)

where xi,l ∈ R, ui ∈ R are the state and control input, respectively, fi (·) is an unknown
function, and κi (·) is the actuator input–output characteristic.
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Assumption 1 Functions ∂ fi (xi ,κi )
∂κi

, i = 1, 2, ..., n are bounded, and 0 < fmin ≤∣∣
∣ ∂ fi (xi ,κi )

∂κi

∣∣
∣ ≤ fmax.

Assumption 2 ωi (t) is an unknown modeling error and |ωi (t)| ≤ ωiM , where ωiM is
an unknown positive constant.

Assumption 3 The function κi (ui , t) = σi (t)ui +μi (t) is a nonlinearity model, where
the time-varying function is σi (t) ∈ [σmin, σmax], and |μi (t)| ≤ μiM , σmin, σmax and
μiM are unknown positive constants, i = 1, 2, ..., n.

Remark 1 Similar to [6], it is assumed that some agents’ control directions ∂ fi (xi ,κi )
∂κi

are unknown but identical in this paper.

Remark 2 Assumptions 1–3 are introduced from [6]. Based on these assumptions and
the mean value theorem [4], we can get a new dynamic model.

TheRBFNNsare utilized to the approximate unknown functions,where fi (xi , 0) =
WT

i Si (xi ) , and the dynamic model can be described by

⎧
⎪⎨

⎪⎩

ẋi,l = xi,l+1

ẋi,n = WT
i Si (xi ) + gi (t)ui + hi (t)

yi = xi,1

(2)

where

gi (t) = ∂ fi (xi , κi )

∂κi

∣∣∣∣
κi=κ0i

σi (t)

hi (t) = ∂ fi (xi , κi )

∂κi

∣∣∣∣
κi=κ0i

μi (t) + ωi (t) (3)

with κ0
i = ςiκi , 0 < ςi < 1. Hence, it can be verified that 0 < gmin ≤ |gi (t)| ≤ gmax

and |hi (t)| ≤ hiM with gmin = fminσmin, gmax = fmaxσmax, and hiM = fmaxμiM +
ωiM .

The state constraint interval is given as follows

x(t) < xi,1 < x̄(t), i = 1, 2, ..., n (4)

where x(t) and x̄(t) are boundary functions.

2.3 NussbaumGain Technique

The Nussbaum-type function N (·) satisfies the following properties

⎧
⎨

⎩

lim
R→+∞ sup 1

R

∫ R
0 N (�)d� = +∞

lim
R→+∞ inf 1

R

∫ R
0 N (�)d� = −∞ (5)



118 Circuits, Systems, and Signal Processing (2021) 40:114–135

The Nussbaum functions are commonly chosen as �2 cos(�), �2 sin(�) and
− j exp(�2

/
2)(�2 + 2), where � is a real variable, and j is a positive constant.

Lemma 1 [27] V (t) and �(t) are defined on
[
0, tχ

)
. If there exist continuously dif-

ferentiable functions ϑi (t), one has

V (t) ≤
∫ t

0

N∑

i=1

(gi (χ)N (ϑi (χ)) + β−1
i )ϑ̇i (χ)dχ + ϕ (6)

where ϑ̇i (t), V (t), and
∫ t
0

N∑

j=1
(gi (χ)N (ϑi (χ)) + β−1

i )ϑ̇i (χ)dχ are bounded on
[
0, tχ

)
, and ϕ is a constant.

2.4 Agent State Transformation

In this paper, according to the literature [6], the agent state transformation technique
is described as

zi,1 = M(xi,1, x, x̄), i = 1, 2, ..., n (7)

where M(·) is an increasing function, and

⎧
⎪⎨

⎪⎩

lim
xi,1→x̄

zi,1 = +∞
lim

xi,1→x+ zi,1 = −∞ (8)

Next, define Yi,l = [xi,1, xi,2, ..., xi,l , x, ẋ, ..., x (l), x̄, ˙̄x, ...x̄ (l)]T , l = 1, 2, ...,m.

The derivative of zi,1 is

żi,1 = Hi,1(Yi,1) + qi ẋi,1 = Hi,1(Yi,1) + qi xi,2 � zi,2 (9)

where qi = ∂zi,1
∂xi,1

and

Hi,1 = ∂zi,1
∂x

ẋ + ∂zi,1
∂ x̄

˙̄x (10)

for i = 1, 2, ..., n.

Then, differentiating zi,2, it gives

żi,2 = Hi,2(Yi,2) + qi ẋi,2 = Hi,2(Yi,2) + qi xi,3 � zi,3 (11)

where

Hi,2 = ∂Hi,1

∂Yi,1
Ẏi,1 +

(
∂qi
∂x

ẋ + ∂qi
∂x

˙̄x + ∂qi
∂xi,1

xi,2

)
xi,2 (12)
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Similarity, we have

żi,p = Hi,p(Yi,p) + qi ẋi,p = Hi,p(Yi,p) + qi xi,p+1 � zi,p+1 (13)

and

Hi,p = ∂Hi,p−1

∂Yi,p−1
Ẏi,p−1 +

(
∂qi
∂x

ẋ + ∂qi
∂x

˙̄x + ∂qi
∂xi,1

xi,2

)
xi,p (14)

Finally, differentiating zi,n yields

żi,n = Hi,n(Yi,n) + qi ẋi,n
= Hi,n(Yi,n) + qi (W

T
i Si (xi ) + gi (t)ui + hi (t)) (15)

Then, the resulting system is given as follows

⎧
⎪⎨

⎪⎩

żi,l = zi,l+1

żi,n = Hi,n(Yi,n) + qi (W
T
i Si (xi ) + gi (t)ui + hi (t))

yi = zi,1

(16)

The actuator fault model is

uF
i, j (t) = ki, j,oui, j (t) + ūi, j,o(t), t ∈ [t si, j,o, tei, j,o]

κi, j,hūi, j,o(t) = 0 (17)

where ki, j,o ∈ [0, 1], t si, j,o, tei, j,o are unknown constants. ūi, j,o(t) is an unknown fault,
where j = o = 1, 2, ...,m, and 0 ≤ t si, j,1 ≤ tei, j,1 ≤ t si, j,2 ≤ tei, j,2 ≤ ... ≤ +∞.

We define

κi, j (t) =
{

κi, j,o
1

if t ∈ [t si, j,o, tei, j,o]
if t ∈ [tei, j,h, t si, j,o+1]

ūi, j (t) =
{
ūi, j,o(t)
0

if t ∈ [t si, j,o, tei, j,o]
if t ∈ [tei, j,h, t si, j,o+1] (18)

The actuator failures can be expressed as

uF
i, j (t) = κi, j,oui, j (t) + ūi, j,o(t) (19)

Assumption 4 The ūi, j is an unknown positive constant and satisfies
∣
∣ūi, j (t)

∣
∣ ≤ ūi, j .

In this paper, the dead zone is defined as

ui, j (t) = D(
i, j (t))

�

⎧
⎨

⎩

mi, j,p(
i, j (t) − oi, j,p),
0,
mi, j,l(
i, j (t) + oi, j,l),


i, j (t) ≥ oi, j,p
−oi, j,l < 
i, j (t) < oi, j,p

i, j (t) ≤ −oi, j,l

(20)
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where D(
i, j ) is the dead zone actuator input. The unknown constants mi, j,r , oi, j,r ,
mi, j,l and oi, j,l are positive.

The dead zone is given as follows

ui, j (t) = mi, j (t)
i, j (t) + ξi, j (t) (21)

where

mi, j (t) =
{
mi, j,p,

mi, j,l ,


i, j (t) ≥ 0

i, j (t) ≤ 0

(22)

and

ξi, j (t) =
⎧
⎨

⎩

−mi, j,poi, j,p,
−mi, j (t)vi, j (t),
mi, j,loi, j,l ,


i, j (t) ≥ oi, j,p
−oi, j,l < 
i, j (t) < oi, j,p

i, j (t) ≤ −oi, j,l

(23)

From (23), we have

∣
∣ξi, j (t)

∣
∣ ≤ ξ̄i, j (t)

ξ̄i, j (t) = max{mi, j,poi, j,p,mi, j,loi, j,l} (24)

Then, it follows that

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

żi,k = zi,k+1

żi,n = Hi,n(Yi,n) + qiW
T
i Si (xi ) + qi gi (t)κi, jmi, j (t)
i, j (t)

+ qi gi (t)κi, jξi, j (t) + qi gi (t)ūi, j + qi hi (t)

yi = zi,1

(25)

2.5 Radial Basis Function Neural Networks

The RBFNNs will be utilized to estimate nonlinear functions with the following form

g (Z) = W ∗T S (Z) + � (Z) ,∀Z ∈ �Z ⊂ R
m, |� (Z)| ≤ ε (26)

where � (Z) is the approximation error, S (Z) = [S1 (Z) , S2 (Z) , ..., SK (Z)]T is the
basis function vector, and k > 1. Si (Z) denotes the Gaussian basis function as follows

Si (Z) = exp

[

− (Z − ιi )
T (Z − ιi )

M2
i

]

(27)

where ιi = [
ιi1, ιi2, . . . , ιiq

]T is the center vector, and Mi is the width of the Gaussian
function.
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The ideal weight matrix W ∗ is designed as

W ∗ = arg min
W∈Rk

{
sup
Z∈�

∣∣∣g (Z) − WT S (Z)

∣∣∣
}

(28)

where W ∈ R
k .

Lemma 2 [31] Choose S (x̄c) = [S1 (x̄c) , S2 (x̄c) , . . . , Sk (x̄c)]T , where x̄c =
[x1, . . . , xc]T is the RBF NNs basis function vector. For any positive integer, the fol-
lowing inequality can be obtained

‖S (x̄c)‖2 ≤ ∥∥S
(
x̄ p
)∥∥2 (29)

where c ≤ p.

3 Control Law Design and Stability Analysis

Based on dynamic surface control technology [32,41], the new nonlinear error trans-
formation surfaces si,1 and si,k are presented as follows

si,1 =
N∑

j=1

ai, j ln

(
1 + ei, j
1 − ei, j

)
+ bi ln

(
1 + ei,0
1 − ei,0

)

si,k = zi,k − ᾱi,k

Li,k = ᾱi,k − αi,k

(30)

where k = 2, ..., N and i = 1, ..., N . ei, j = (zi−z j )
R , ei,0 = (zi−y0)

R , and Li,k is the
boundary layer error. ai, j is the weighting parameter described as

ai, j =
{
āi, j ,
0,

∣∣yi (0) − y j (0)
∣∣ < R

otherwise

āi, j =
{
R,

0,

∣∣yi − y j
∣∣ < R

otherwise
(31)

and aii = 0. bi is defined as

bi =
{
b̄i ,
0,

∣∣yi (0) − y j (0)
∣∣ < R

otherwise

b̄i =
{
R,

0,
|yi − y0| < R
otherwise

(32)

and τi,k ˙̄αi,k + ᾱi,k = αi,k, where τi,k > 0 and ᾱi,k(0) = αi,k(0). ᾱi,k are the signals
obtained by the first-order filters.
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Theorem 1 For the MASs (25) with dead zones, actuator faults and unknown control
directions, under Assumptions 1–3, the virtual control signals, the adaptive laws and
the actual controller, all the signals in the closed-loop system are cooperatively semi-
globally ultimately bounded (CSGUUB). The agent outputs remain within the time-
varying constraints for all time.

By using the consensus error ei, j = (yi−y j )
R , one has

ėi, j = (si,2 + Li,2 + αi,2 − z j,2)

R
(33)

ėi,0 = (si,2 + Li,2 + αi,2 − ẏ0)

R
ṡi,k = si,k+1 + Li,k+1 + αi,k+1 − ˙̄αi,k

ṡi,n = żi,n − ˙̄αi,n (34)

where k = 2, ..., n − 1.
Step 1 For k = 1, the derivative of si,1 is given as follows

ṡi,1 = (φi + ψi )(ẏi ) − φi ẏ j − ψi ẏ0 (35)

where φi =
N∑

j=1
ai, j

2
R(1−e2i, j )

and ψi = bi
2

R(1−e2i,0)
are bounded parameters.

We consider the following Lyapunov candidate function

Vi,1 = 1

2
s2i,1 + 1

γi,1
W̃ T

i,1W̃i,1 + 1

�i,1
θ̃Ti,1θ̃i,1 (36)

where mi,1, γi,1, and �i,1 are positive designed constants.
Differentiating Vi,1, one has

V̇i,1 = si,1ṡi,1 − W̃i,1r
−1
i,1

˙̂Wi,1 − θ̃Ti,1�
−1
i,1

˙̂
θi,1

= si,1[φi ẏi + ψi ẏi − φi ẏ j − ψi ẏ0]
−θ̃Ti,1�

−1
i,1

˙̂
θi,1 − W̃i,1r

−1
i,1

˙̂Wi,1

= si,1[(φi + ψi )(ẏi ) − φi ẏ j − ψi ẏ0]
−θ̃Ti,1�

−1
i,1

˙̂
θi,1 − W̃i,1r

−1
i,1

˙̂Wi,1

= si,1[(φi + ψi )(si,2 + Li,2 + αi,2)

+Pi,1(αi,1)] − (φi + ψi )
2s2i,1

−θ̃Ti,1�
−1
i,1

˙̂
θi,1 − W̃i,1r

−1
i,1

˙̂Wi,1

where θ̂i, j is the estimation of θ∗
i, j with θ̃i, j = θ∗

i, j − θ̂i, j . Ŵi, j is the estimation of

Wi, j with W̃i, j = W ∗
i, j − Ŵi, j , i = j = 1, . . . , N . The unknown nonlinear function

Pi,1
(
αi,1

)
is given as follows
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Pi,1
(
αi,1

) = −φi x j,2 − ψi ẏ0 + (φi + ψi )
2s2i,1

where αi,1 =
[

zi,1, si,1,
N∑

j=1
ai, j x j,1,

N∑

j=1
ai, j x j,2, bi ei,0, bi ẏ0

]T
.

Construct the virtual variable αi,2 as follows

αi,2 = 1

φi + ψi

[
−�i,1si,1 − P̂i,1(αi,1

∣∣
∣Ŵi,1 )

]

− 1

φi + ψi
θ̂i,1 tanh

(
si,1
εi,1

)
(37)

and the property 0 ≤ ∣∣si,1
∣∣− si,1 tanh(

si,1
εi,1

) ≤ 0.2785εi,1 is used.

The adaptive laws θ̂i,1 and Ŵi,1 are defined as

˙̂
θi,1 = �i,1si,1 tanh

(
si,1
εi,1

)
− �i,1ξi,1θ̂i,1 (38)

˙̂Wi,1 = γi,1�i,1si,1 − γi,1σi,1Ŵi,1 (39)

where �i,1 > 0 and γi,1 > 0 are tuning gains, ξi,1 > 0 and σi,1 > 0 are constants,

and �i,1 = ∂ P̂i,1(αi,1)

∂Ŵi,1
. Substituting (37)–(39) into (36), it gives

V̇i,1 ≤ −�i,1s
2
i,1 + (φi + ψi )si,1(si,2 + Li,2)

− (φi + ψi )
2s2i,1 + θ̃i,1

(
si,1 tanh

(
si,1
εi,1

)

−
˙̂
θi,1

�i,1

)

+ W̃ T
i,1

(

�i,1si,1 − Ŵi,1

γi,1

)

+ 0.2785εi,1θ̄i,1
≤ −�i,1s

2
i,1 + (φi + ψi )si,1(si,2 + Li,2)

+ ξi,1θ̃i,1θ̂i,1 − (φi + ψi )
2s2i,1

+σi,1W̃
T
i,1Ŵi,1 + 0.2785εi,1θ̄i,1 (40)

where �i,1 > 0 and εi,1 > 0.
Step k The derivative of si,k is given as follows

ṡi,k = si,k+1 + Li,k+1 + αi,k+1 − ᾱi,k (41)

Define

Vi,k = Vi,k−1 + 1

2
s2i,k + 1

γi,k
W̃ T

i,k W̃i,k + 1

�i,k
θ̃Ti,k θ̃i,k (42)
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Vi,k is derived as

V̇i,k = V̇i,k−1 + si,k ṡi,k − θ̃Ti,k�
−1
i,k

˙̂
θi,k − W̃i,kr

−1
i,k

˙̂Wi,k

= si,k(si,k+1 + Li,k+1 + αi,k+1 − ᾱi,k)

−θ̃Ti,k�
−1
i,k

˙̂
θi,k − W̃i,kr

−1
i,k

˙̂Wi,k (43)

Construct the virtual variable αi,k+1 as

αi,k+1 = −�i,ksi,k − θ̂i,k tanh

(
si,k
εi,k

)
+ αi,k − ᾱi,k

τi,k
(44)

and the property 0 ≤ ∣∣si,k
∣∣− si,k tanh

(
si,k
εi,k

)
≤ 0.2785εi,k is used.

The adaptive parameter ˙̂
θi,k is designed as

˙̂
θi,k = �i,ksi,k tanh

(
si,k
εi,k

)
− �i,kξi,k θ̂i,k (45)

The adaptive parameter ˙̂Wi,k is designed as

˙̂Wi,k = γi,k�i,ksi,k − γi,kσi,k Ŵi,k (46)

where �i,k > 0 and γi,k > 0 are tuning gains, ξi,k > 0 and σi,k > 0 are constants,
and �i,k = 1

∂Ŵi,k
.

By using (44)–(46), we get

V̇i,k ≤ V̇i,k−1 + si,k(si,k+1 + Li,k+1 + αi,k+1 − ᾱi,k)

−θ̃i,k

(

si,k tanh

(
si,k
εi,k

)
−

˙̂
θi,k

�i,k

)

+W̃ T
i,k

(

�i,ksi,k − Ŵi,k

γi,k

)

+0.2785εi,k θ̄i,k

≤ −
k∑

l=1

�i,l s
2
i,l +

k−1∑

l=2

si,l(si,l+1 + Li,l+1)

+
k∑

l=1

�i,l θ̃i,l θ̂i,l +
k∑

l=1

γi,l W̃
T
i,l Ŵi,l

+(φi + ψi )si,1(si,2 + Li,2)

−(φi + ψi )
2s2i,1 +

k∑

l=1

0.2785εi,l θ̄i,l (47)
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where �i,k and εi,k are positive constants.
Step n Based on (34), we get

ṡi,n = żi,n − ˙̄αi,n (48)

Define Vi,n as

Vi,n = V̇i,n−1 + 1

2
s2i,n + 1

γi,n
W̃ T

i,nW̃i,n + 1

2
h̃i,n�

−1
i,n h̃i,n (49)

The derivative of Vi,n is

V̇i,n = V̇i,n−1 + si,n[Hi,n + qi (gi (t)(κi, j (mi, j (t)
i, j (t)

+ ξi, j (t)) + ūi, j ) + hi (t)) − ˙̄αi,n

+qiW
T
i,n Si (xi )] − h̃i,n�

−1
i,n

˙̂hi,n
− W̃ T

i,nr
−1
i,n

˙̂Wi,n

= V̇i,n−1 + si,n[Hi,n + qi gi (t)κi, jmi, j (t)
i, j (t)

+ qi gi (t)κi, jξi, j (t) + qi gi (t)ūi, j

+ qi hi (t) − ˙̄αi,n + qiW
T
i,n Si (xi )]

− h̃i,n�
−1
i,n

˙̂hi,n − W̃ T
i,nr

−1
i,n

˙̂Wi,n

= V̇i,n−1 + si,nHi,n + si,nqi gi (t)κi, jmi, j (t)
i, j (t)

− si,n ˙̄αi,n + si,ngi (t)κi, jξi, j (t) + si,nqi gi (t)ūi, j

+ si,nqi hi (t) + si,nqiW
T
i,n Si (xi ) − h̃i,n�

−1
i,n

˙̂hi,n
−W̃ T

i,nr
−1
i,n

˙̂Wi,n (50)

The control law 
i, j is given as


i, j = βi q
−1
i N (ϑi )�i (51)

where βi > 0. The ϑi is a variable, and the derivative of ϑi is given by

ϑ̇i = k−1
i,1βi si,n�i (52)

Furthermore, �i is given as

�i = Hi,n + qiW
T
i,n Si (xi ) − ˙̄αi,n + si,nq2i ĥ

2
i,n∣

∣si,n
∣
∣ qi ĥi + exp(−ϒi t)

(53)

where ϒi > 0, and Ŵi,n, ĥi,n are the estimates of Wi,n, hi,n .
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Utilizing (52) and (53), it follows that

V̇i,n ≤ V̇i,n−1 + si,nqi gi (t)κi, jmi, j (t)βi q
−1
i N (ϑi )�i

− si,n ˙̄αi,n + si,ngi (t)κi, jξi, j (t) + si,nqi gi (t)ūi, j

+ si,nqi hi (t) + si,nqiW
T
i,n Si (xi ) + si,nHi,n

− W̃ T
i,nr

−1
i,n

˙̂Wi,n − h̃i,n�
−1
i,n

˙̂hi,n
≤ V̇i,n−1 + si,n[(gi (t)κi, jmi, j (t)βi N (ϑi ) + 1)�i − �i ]

− si,n ˙̄αi,n + si,ngi (t)κi, jξi, j (t) + si,nqi gi (t)ūi, j

+ si,nqi hi (t) + si,nqiW
T
i,n Si (xi ) + si,nHi,n

− W̃ T
i,nr

−1
i,n

˙̂Wi,n − h̃i,n�
−1
i,n

˙̂hi,n

Further, notice that − s2i,nq
2
i ĥ

2
i,n

|si,n|qi ĥi,n+exp(−ϒi ,t)
≤ − ∣∣si,n

∣∣ qi ĥi,n + exp(−ϒi t). It follows

that

V̇i,n ≤ si,nqi W̃
T
i,n Si (xi ) + ∣∣si,n

∣∣ qi h̃i,n + exp(−ϒi t)

+ ki,1(gi (t)κi, jmi, j N (ϑi ) + β−1
i )ϑ̇i

+ si,nqi gi (t)ūi, j + si,nqi gi (t)κi, jξi, j (t)

− h̃i,n�
−1
i,n

˙̂hi,n − W̃i,nr
−1
i,n

˙̂Wi,n (54)

According to Young’s inequality and Lemma 2, it has

si,nqi gi (t)κi, jξi, j (t) ≤ si,nmq2i g
2
i (t)

2
+ si,nκ2

i, jξ
2
i, j (t)

2

si,nqi gi (t)ūi, j ≤ si,nq2i g
2
i (t)

2
+ si,nū2i, j

2
(55)

Design

˙̂Wi,n = γi,n
∣∣si,n

∣∣ qi Si (Zi ) (56)

˙̂hi,n = �i,n
∣∣si,n

∣∣ qi (57)

Utilizing (55)–(57), one has

V̇i,n ≤ ki,1(gi (t)κi, jmi, j N (ϑi ) + β−1
i )ϑ̇i + exp(−ϒi , t)

+si,nq
2
i g

2
i (t) + si,n

(
κi, jξ

2
i, j + ū2i, j
2

)

−
n−1∑

l=1

�i,l s
2
i,l +

n−1∑

l=2

si,l(si,l+1 + Li,l+1)
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+
n−1∑

l=1

�i,l θ̃i,l θ̂i,l +
n−1∑

l=1

γi,l W̃
T
i,l Ŵi,l

+
n−1∑

l=1

0.2785εi,l θ̄i,l + (φi + ψi )si,1(si,2 + Li,2)

−(φi + ψi )
2s2i,1 (58)

Define

V =
N∑

i=1

k−1
i,1Vi,n (59)

and we can obtain

V̇ ≤
N∑

i=1

n−1∑

l=1

k−1
i,1

(
−�i,l s

2
i,l + �i,l θ̃i,l θ̂i,l + γi,l W̃

T
i,l Ŵi,l

)

+
n−1∑

l=1

k−1
i,1 (φi + ψi )si,1(si,2 + Li,2)

−
N∑

i=1

k−1
i,1 (φi + ψi )

2s2i,1 +
N∑

i=1

n−1∑

l=1

k−1
i,1 0.2785εi,l θ̄i,l

+
N∑

i=1

n−1∑

l=1

k−1
i,1 si,l(si,l+1 + Li,l+1)

+
N∑

i=1

[

k−1
i,1 si,n(q

2
i g

2
i (t) + κi, jξ

2
i, j + ū2i, j
2

)

]

+
N∑

i=1

(gi (t)κi, jmi, j N (ϑi ) + β−1
i )ϑ̇i

+
N∑

i=1

k−1
i,1 exp(−ϒi , t) (60)

ByapplyingYoung’s inequality, W̃ T
i,k Ŵi,k ≤ 1

2

(
W̄ 2

i,k −
∥∥∥W̃i,k

∥∥∥
2
)

, and
∣∣∣θ̃i,k

∣∣∣ θ̄i,k−
θ̃2i,k ≤ 1

2 (θ̄
2
i,k − θ̃2i,k), we have

V̇ ≤ −
N∑

i=1

n−1∑

l=1

k−1
i,1�i,l s

2
i,l +

N∑

i=1

[
1

2
k−1
i,1

(
s2i,2 + L2

i,2

)
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+
N∑

i=1

n−1∑

l=1

k−1
i,1

(
1

2
s2i,l+1 + s2i,l + 1

2
L2
i,l+1

)]

+
N∑

i=1

[

k−1
i,1 si,n

(

q2i g
2
i (t) + κi, jξ

2
i, j + ū2i, j
2

)]

+
N∑

i=1

[
k−1
i,1 exp(−ϒi , t) + (gi (t)κi, jmi, j N (ϑi )

+ β−1
i )ϑ̇i

]
+ ϕ (61)

and

ϕ =
N∑

i=1

[
n∑

i=1

(
�i,l

2
θ̄2i,l + γi,l

2
W̄ 2

i,l + 0.2785εi,l θ̄i,l

)]

Similar to [41], choosing positive constants �i,1 = �∗
i,k, �i,k = 3

2 + �∗
i,k, �i,n =

1
2 + �∗

i,n and integrating both sides of (62), we have

V (t) ≤ V (0) −
∫ t

0

N∑

i=1

κi, j (gi (χ)mi, j N (ϑi (χ))

+β−1
i )ϑ̇i (χ)dχ +

N∑

i=1

1

ki,1ϒi

−
∫ t

0

N∑

i=1

N∑

i=1

k−1
i,1�i,l s

2
i,l(χ)dχ

+
∫ t

0

N∑

i=1

[
1

2
(s2i,2(χ)dχ + L2

i,2(χ)dχ)

+
∫ t

0

N∑

i=1

n−1∑

l=1

(
1

2
s2i,l+1(χ)dχ + s2i,l(χ)dχ

)

+ 1

2

∫ t

0

N∑

i=1

n−1∑

l=1

L2
i,l+1(χ)dχ

+
∫ t

0

N∑

i=1

(
ki, jξ2i, j + ū2i, j

2

)

dχ

+
∫ t

0

N∑

i=1

si,n(q
2
i g

2
i (χ)dχ + ϕ (62)
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Through above analysis, we can conclude that ϑi (t), V (t), and
∫ t
0 κi, j (gi (χ)mi, j

N (ϑi (χ)) + β−1
i )ϑ̇i (χ)dχ are bounded on t ∈ [0, tχ

)
, and the initial value V (0) is

bounded.

Remark 3 Compared with the existing results in [14,39], an error transformation tech-
nique is considered to generate an equivalentMAS. In addition, the controller designed
in this paper can deal with the unknown dead-zone and actuator faults problems simul-
taneously.

4 Simulation Results

The following simulation example is used to verify the effectiveness of the designed
control method. We consider a MASs with four pendulums [36], whose dynamics are
governed as

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ẋi,1 = xi,2

ẋi,2 = − g

li
sin(xi,1) − ki

mi
xi,2 + χi

mi l2i
+ �i , i = 1, 2, 3, 4

yr = 0.05 sin (5t + 4.9)

(63)

where xi,1 is the anticlockwise angle. g is the gravitational acceleration. li = 4 is the
length of the rod, ki = 0.2 is the friction coefficient, and mi = 2 is the mass of the
bob. The torque χi is described as

χ1 =
⎧
⎨

⎩

−1.2(u1 − 0.2),
0,
−0.8(u1 + 0.2),

u1 ≥ 0.2
−0.2 < u1 < 0.2
u1 ≤ −0.2

χ2 = −u2

χ3 =
⎧
⎨

⎩

(1 − 0.3 sin(u3)) (u3 − 0.2) ,

0,
(0.8 − 0.2 cos(u3))(u3 + 0.1),

u3 ≥ 0.2
−0.1 < u3 < 0.2
u3 ≤ −0.1

χ4 = u4 (64)

The fault model is given as

uF
1.1 =

{
u1.1

0.5u1.1
if t ∈ [2E, 2E + 1]
if t ∈ [2E + 1, 2E + 2]

uF
1.2 =

{
0.3u1.2

0
if t ∈ [2E, 2E + 1]
if t ∈ [2E + 1, 2E + 2]

uF
2.1 =

{
u2.1

0.6u2.1
if t ∈ [2E, 2E + 1]
if t ∈ [2E + 1, 2E + 2]

uF
2.2 =

{
u2.2

0.2 + 0.2 sin(t)
if t ∈ [0, 1)
if t ∈ [1,∞)

(65)
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where E = 0, 1, ..., N .

Apparently, the matrices of A and L can be written as

A =

⎡

⎢⎢
⎣

0 1 0 0
1 0 1 1
0 0 0 0
0 0 1 0

⎤

⎥⎥
⎦ , L =

⎡

⎢⎢
⎣

1 −1 0 0
−1 3 −1 −1
0 0 0 0
0 0 −1 1

⎤

⎥⎥
⎦ (66)

From Fig. 1, we know B = diag(1, 0, 1, 0). The simulation results are shown
by Figs. 2, 3, 4, 5 and 6 and the correlative design parameters are chosen as k1 =
0.1, k2 = 0.1, k3 = 0.1, k4 = 0.1, e1,1 = 10.1, e2,1 = 10.1, e3,1 = 10.1,
e4,1 = 10.1, β1,2 = 0.75, β2,2 = 0.22, β3,2 = 0.82, β4,2 = 0.81, �1,1 = 1.1,
�2,1 = 1.1, �3,1 = 1.1, �4,1 = 1.1, q1,1 = 20.1, q2,2 = 70.2, q3.2 = 1, q4,2 =
1, ζ1,1 = 30, ζ2,1 = 12.1, ζ3,1 = 44.1, ζ4,1 = 18, ε1,1 = ε2,1 = ε3,1 = ε4,1 = 1,
o1,1,p = 0.4, o1,1,l = 0.5, m1,1,p = 1.1, m1,1,l = 1.4, o2,1,p = 1.1, o2,1,l = 4.1,
m2,1,p = 0.8, m2,1,l = 1.1, o3,1,p = 6.1, o3,1,l = 1.6, m3,1,p = 0.9, m3,1,l = 1.3,
o4,1,p = 6.1, o4,1,l = 1.6, m4,1,p = 0.9, and m4,1,l = 1.3. The external disturbances
are given as �1 = 0.2 cos(5t), �2 = 0.1 cos(10t), �3 = 0.2 sin(10t), and �4 =
0.1 sin(5t). x = −0.6 exp(−t) − 0.1 and x̄ = 0.4 exp(−0.8t) + 0.2 are constraints,
and M(xi,1, x, x̄) = 2 ln((xi,1 − x)(x̄ − xi,1)) + xi,1 is a transformation function.

Fig. 1 Topology of
communication graph
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Fig. 2 The trajectories of system states
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Fig. 3 The trajectories of outputs
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Fig. 4 The trajectories of actuator faults
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Fig. 5 The trajectories of dead zones inputs
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The trajectories of constraints on agent outputs as shown in Fig. 2, and the consensus
tracking trajectories are shown in Fig. 3. In Fig. 4, the trajectories of actuator failures
with unknown dead zones are plotted. Figure 5 shows the trajectories of dead zone
input, and Fig. 6 shows the trajectories of control input.

5 Conclusions

This paper has presented a state transformationmethod to solve the constrained control
problem for MASs in non-affine form. A fault-tolerant consensus tracking protocol
has been designed to solve the problems of actuator faults and dead zones. The RBF
NNs have been utilized to estimate the unknown nonlinear functions. The results
indicate that the controller guarantees all the signals are bounded, and all follower’s
outputs can follow the leader’s outputs. Finally, simulation results have been utilized to
show the effectiveness of proposed consensus control scheme. In our future research,
based on the NNs approximation property, we will extend the results of this paper to
the event-triggered control [51,53], digital twin-driven control [10,22], sampled-data
control [47,48] and some intelligence algorithms [5,19,21,23,33,45,46,54] for MASs.
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