
Vol.:(0123456789)

Circuits, Systems, and Signal Processing (2020) 39:6191–6230
https://doi.org/10.1007/s00034-020-01457-z

Blind Image Deblurring via the Weighted Schatten p‑norm 
Minimization Prior

Zhenhua Xu1  · Huasong Chen2 · Zhenhua Li1

Received: 18 November 2019 / Revised: 12 May 2020 / Accepted: 15 May 2020 / Published online: 22 May 2020 
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
In this paper, we propose a new image blind deblurring model, based on a novel 
low-rank prior. As the low-rank prior, we employ the weighted Schatten p-norm 
minimization (WSNM), which can represent both the sparsity and self-similarity of 
the image structure more accurately. In addition, the L0-regularized gradient prior 
is introduced into our model, to extract significant edges quickly and effectively. 
Moreover, the WSNM prior can effectively eliminate harmful details and maintain 
dominant edges, to generate sharper intermediate images, which is beneficial for 
blur kernel estimation. To optimize the model, an efficient optimization algorithm 
is developed by combining the half-quadratic splitting strategy with the generalized 
soft-thresholding algorithm. Extensive experiments have demonstrated the valid-
ity of the WSNM prior. Our flexible low-rank prior enables the proposed algorithm 
to achieve excellent results in various special scenarios, such as the deblurring of 
text, face, saturated, and noise-containing images. In addition, our method can be 
extended naturally to non-uniform deblurring. Quantitative and qualitative experi-
mental evaluations indicate that the proposed algorithm is robust and performs 
favorably against state-of-the-art algorithms.
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1 Introduction

Blind image deblurring has become an important research topic in the field of 
image processing and computer vision. It is a challenging and interesting problem 
and has been applied widely in various fields, including biomedicine, aerospace, 
and public safety. A common type of blurring is motion blurring, which is caused 
by the motion of an object relative to the camera during the exposure time.

When the motion blurring is uniform and spatially invariant, the relationship 
between the latent sharp image L and the observed blurred image B can be estab-
lished by using the following model:

where *, k , and n represent the convolution operator, blur kernel, and additive noise, 
respectively. According to (1), we need to restore both L and k , with the blurred 
image B as the only input. This problem is challenging and ill-posed because there 
are an infinite number of different solution sets ( L , k ), each of which can correspond 
to the same B . In addition, the effect of noise makes blind image restoration more 
difficult. Therefore, additional constraints on L and k are required to ensure that the 
final optimized solution is close to the true solution.

1.1  Previous Work

In recent decades, many scholars have carried out in-depth research on blind 
deblurring and have proposed numerous fruitful blind deblurring methods [2–4, 
7, 11, 14, 18, 19, 21, 22, 25–28, 32, 33, 35–45, 49, 51, 52]. These methods can be 
classified into three mainly categories: explicit edge prediction strategies, image 
statistical priors, and deep-learning-based methods.

1.1.1  Explicit Edge Prediction

Because strong edges have a significant beneficial effect for blur kernel estima-
tion, many methods based on explicit edge prediction have been proposed. Joshi 
et al. [18] directly detected and predicted latent sharp edges to improve blur ker-
nel estimation. Cho et al. [4] used a combination of bilateral filtering, shock fil-
tering, and edge gradient thresholding to predict salient edges. Xu and Jia [49] 
developed an effective salient edge selection strategy and proposed a two-phase 
kernel estimation framework. Subsequently, Pan et al. [37] proposed a self-adap-
tive edge selection algorithm. Although explicit edge prediction methods are 
valid for image blind recovery, they rely heavily on heuristic filters. These meth-
ods are likely to amplify noise and over-sharpen images, and salient edges are not 
always present in natural images.

(1)B = L ∗ k + n,
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1.1.2  Prior Based on Image Statistics

To mitigate the negative impact of heuristic filters on the selection of strong edges, 
numerous methods based on image statistical priors have been proposed. To match 
natural image gradient, which obeys a heavy-tailed distribution, Fergus et  al. [11] 
applied a Gaussian mixture model and performed kernel estimation through a vari-
ational Bayesian framework. Shan et al. [42] connected two piecewise functions to 
approximate the image gradient distribution. Levin et al. [25, 26] elaborated on the 
limitations of the naive maximum a posteriori method, which is conducive to the 
generation of delta kernels and blurred images, and an effective maximum marginal 
optimization algorithm was proposed. Krishnan et  al. [21] proposed the normal-
ized sparsity prior and provided a new L1/L2 regularization function to estimate the 
kernel.

To enhance the search for strong edges, Xu et al. [51] proposed a generalized L0 
sparse gradient prior, which can extract strong edges quickly and efficiently. Inspired 
by this work, many methods utilize L0 regularization to enhance the sparsity of 
image gradients, and incorporate various image priors to improve the kernel estima-
tion. Pan et al. [35] further adopted the L0-regularized priors of intensity and gradi-
ent to deblur text images. Li et al. [27] applied L0 regularization of image gradient 
and kernel intensity. Interestingly, Pan et al. [38] observed that the dark channel of 
a clear image is sparser than the blurred image, and L0 regularization can be per-
formed on the dark channel to improve the restoration performance further. How-
ever, not all images have obvious dark channels. Therefore, Yan et al. [52] proposed 
an extreme channel prior, which integrates the dark channel and bright channel pri-
ors of the image. Recently, Li et al. [28] used the effective combination of a con-
volutional neural network (CNN) and the L0-regularized gradient for blind deblur-
ring. Chen et al. [3] developed a local maximum gradient prior and combined it with 
L0-regularized gradient to obtain good results, but this method is sensitive to noise.

Most of the above methods focus only on the relationship between adjacent pairs 
of pixels, or the simplicity of pixel intensity, or both. However, they ignore that the 
salient structure is dependent on a larger range of pixels. Using these methods can-
not restore images with complex geometries completely and effectively. To avoid 
such restrictions, image patch-based methods have been proposed for image restora-
tion [10, 14, 31, 32, 43, 44, 55]. Zoran et al. [55] proposed a Gaussian mixture prior, 
which learns from natural image patches and restores images using patch likeli-
hoods. Sun et al. [43] learned two types of patch priors, to model image edge primi-
tives: natural images and synthetic structures. Michaeli et al. [32] used internal patch 
recurrence property for kernel estimation, because cross-scale internal patches were 
repeated in clear images and significantly reduced in blurred images. Guo et al. [14] 
proposed an adaptive edge-based patch prior to reconstruct salient edges and other 
features. Tang et al. [44] used external patch priors, combined with the sparse rep-
resentation method for kernel estimation. In general, a patch-based prior can cover 
more pixels than an image gradient or intensity prior can. Therefore, patch-based 
priors are more beneficial for complex structure extraction and noise suppression.

To extend the effectiveness of patch-based priors further, low-rank matrix 
approximation (LRMA) methods, based on non-local similarity patches, have 
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been extensively studied and successfully applied to many vision tasks, such as 
image or video denoising [9, 13, 16, 48], non-blind deblurring [8, 30, 53], blind 
deblurring [7, 40], and other tasks [1, 9, 12, 17, 29, 48, 53]. LRMA methods can 
be classified into two categories: nuclear norm minimization (NNM) methods and 
low-rank matrix factorization methods. In this paper, we mainly study the former 
type as a regularization term. Although conventional NNM has been used widely 
in image restoration, it still has some limitations. To pursue convex solutions, 
standard NNM penalizes each singular value equally. However, this is unreasona-
ble and limits its flexibility to deal with various practical problems. Because each 
singular value of the matrix represents a different meaning and importance, they 
need to be processed separately.

To promote the flexibility and effectiveness of NNM, the weighted nuclear 
norm minimization (WNNM) model was proposed by Gu et  al. [12, 13]; this 
model assigns a different weight to each singular value. WNNM imposes less 
penalty on larger singular values than on smaller ones, thereby retaining the main 
structure of the image more rationally. Subsequently, Ma et al. [30] used WNNM 
and total variation regularization to perform non-blind deblurring of the images. 
Ren et al. [40] exploited the WNNM low-rank prior to perform blind deblurring.

Inspired by Schatten p-norm minimization ( 0 ≤ p ≤ 1 ) sparse optimization 
algorithms [34, 56] and WNNM [13], a novel low-rank prior—weighted Schatten 
p-norm Minimization (WSNM)—was proposed by Xie et al. [48], who applied it 
to background subtraction and image denoising. When considering different rank 
components, WSNM has more flexibility than WNNM and can approximate the 
original LRMA problem better. It is worth noting that WNNM is only a special 
case of WSNM, in which p = 1 . Zha et al. [53] further developed the alternative 
direction multiplier method to solve the WSNM model, and applied this method 
to non-blind restoration.

In blind image deblurring, low-rank priors have inherent essential advantages. 
They favor sharp images over blurred images [7] and produce sharper interme-
diate latent images for kernel estimation, by eliminating harmful subtle details 
while preserving the main structures [40]. Although two low-rank-based meth-
ods [7, 40] have been proposed for blind deblurring, both of them have some 
limitations. The method of [7] combines explicit salient edge extraction with con-
ventional NNM for kernel estimation. The explicit edge extraction of the method 
of [7] utilizes a conventional structure–texture decomposition strategy and heu-
ristic filtering, which significantly increases the complexity of the algorithm. In 
addition, because of the negative influence of heuristic filtering and the inflex-
ible NNM, the effect of restoration is reduced. The method of [40] employs the 
WNNM of image intensity and gradient to recover the image. However, because 
of the low-rank minimization of the gradient, the computational complexity of 
the algorithm is greatly increased. Moreover, this method employs only the low-
rank prior in the finest layer pyramid, reducing the role of the low-rank prior in 
the entire blind restoration. In addition, the WNNM prior of this method still 
lacks sufficient flexibility and accuracy, compared with the latest WSNM prior.
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1.1.3  Method Based on Deep Learning

Recently, many deblurring methods [2, 22, 28, 33, 41, 45] based on CNNs have 
been proposed. However, because of the variability and complexity of real-world 
blurred images, compared with conventional optimization-based methods, most 
existing CNN-based methods have difficulty in restoring real-world blurred images 
effectively, especially the large-scale motion blur. Therefore, the closely related opti-
mization-based methods are mainly introduced in the introduction.

1.2  Motivation and Proposed Approach

The motivation for our work is twofold. First, in view of the latest research work, 
low-rank priors show obvious advantages and great potential for image restoration. 
However, existing low-rank blind deblurring methods [7, 40] still have some limita-
tions. Therefore, we can develop better blind deblurring methods based on the latest 
low-rank priors. Second, several state-of-the-art blind deblurring algorithms adopt 
a strategy that effectively combines the L0-regularized gradient prior with differ-
ent image priors, to further improve kernel estimation. However, these image pri-
ors have limitations, which reduce the universality and effectiveness of the methods. 
Therefore, we can develop a more pervasive, sparse, and efficient prior to replace the 
existing image priors.

Based on the above two aspects, we propose a new blind deblurring method by 
extending the application of the flexible WSNM prior and the L0-regularized gradi-
ent prior. Our main contributions are summarized as follows:

1. We propose a new image blind deblurring model based on the low-rank prior and 
L0-regularized gradient prior. The L0-regularized gradient prior can extract the 
main edges quickly. Our low-rank prior can further effectively eliminate harmful 
subtle details, while preserving the main edges. To implement low-rank regulari-
zation effectively, a more accurate and flexible Schatten p-norm minimization 
(i.e., WSNM) is employed.

2. To solve our model effectively, an iterative optimization algorithm, based on 
the half-quadratic splitting (HQS) strategy and the generalized soft-thresholding 
(GST) algorithm, is developed.

3. The validity of the WSNM prior is demonstrated by extensive experiments. Our 
low-rank prior enhances the sparsity and self-similarity of the intermediate latent 
image, thereby improving kernel estimation.

4. Our algorithm achieves outstanding results on both natural images and domain-
specific images. In addition, our method can be extended naturally to non-uniform 
deblurring.

The remainder of this paper is organized as follows. Section  2 describes the 
WSNM prior employed in our model. Section  3 shows the proposed model and 
derives a numerical optimization algorithm, based on HQS and GST, to solve the 
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non-convex regularization terms. Section 4 shows that our algorithm can be effec-
tively extended to non-uniform deblurring. Section  5 presents experimental com-
parisons with other state-of-the-art methods. Section 6 analyzes and discusses the 
effectiveness of the proposed algorithm. Section 7 concludes the paper.

2  Weighted Schatten p‑norm Minimization Prior

To enhance the low-rank prior, inspired by Schatten p-norm minimization [34, 56] 
and WNNM [13], Xie et al. [48] proposed a weighted Schatten p-norm minimiza-
tion (WSNM) model:

where X and Y  are the desired low-rank approximation matrix and degraded obser-
vation matrix, respectively. The first term in (2) is the F-norm data fidelity term, and 
the second term is the low-rank regularization term. ‖X‖

w,Sp
 represents the weighted 

Schatten p-norm of matrix X ∈ ℜm×n , and is defined as

where 0 ≤ p ≤ 1 , w is a nonnegative weight vector, w =
{
w1,… ,wmin(n,m)

}
 and 

wi ≥ 0 , and �i is the ith singular value of X . ‖X‖w,Sp to the power of p is

where Δ and W are diagonal matrices composed of all values of �i and wi , respec-
tively. Because ‖X‖p

w,Sp
 contains the weight vector w and the non-convex Schatten 

p-norm, problem (2) is difficult to solve effectively. To obtain the optimal solution, 
we introduce the following theorem:

Theorem  1 Let Y = U
∑

VT be the singular value decomposition (SVD) of 
Y ∈ ℜm×n , 

∑
= diag(�1,… , �r) , and r = min(m, n) ; then the optimal solution to 

problem (2) is X = UΔVT , where Δ = diag(�1,… , �r) , and a singular value �i of X 
can be obtained by solving the following problem:

(The detailed proof can be found in [48].) Therefore, solving problem (2) can be 
transformed to solving problem (5); the GST algorithm [56] can solve problem (5) 
as follows:

(2)min
X

‖Y − X‖2
F
+ ‖X‖p

w,Sp
,

(3)‖X‖w,Sp =
��min{n,m}

i=1
wi�

p

i

� 1

p

,

(4)‖X‖p
w,Sp

=
�min{n,m}

i=1
wi�

p

i
= tr(WΔp),

(5)

⎧⎪⎨⎪⎩

min
�i

r∑
i=1

�
(�i − �i)

2 + wi�
p

i

�

s.t. �i ≥ 0, �i ≥ �j, for i ≤ j

.
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where t represents the number of iterations. The weights wi are in non-descending 
order: 0 ≤ w1 ≤ ⋯ ≤ wr . This means that larger singular values represent the main 
components and should be penalized less, whereas smaller values represent harmful 
details and noise and should be penalized more. Therefore, the preservation of the 
main data components can be guaranteed. More details can be found in [48, 56]. In 
blind deblurring, this weight setting is favorable for preserving significant edges for 
kernel estimation.

3  Model and Optimization

Based on the above introduction and analysis, we propose a novel image blind deblur-
ring model, which is based on the WSNM prior and L0-regularized gradient prior, 
and develop an effective optimization algorithm to estimate the kernels. Our model is 
defined as follows:

where � , � , and � are the weight parameters corresponding to each term. 
∇ = (∇h,∇v) is the gradient operator; ∇v and ∇h denote the vertical and horizontal 
directions of the gradient operator, respectively.

The first term in (7) denotes data fidelity, which constrains the convolution of the 
clear image L with the blur kernel k to be close to the blurred image B . The second 
term constrains the estimated kernel to obtain a stable solution. The third term is the 
L0 regularization gradient prior, which preserves the large gradients and removes the 
harmful fine structures. The last term is the WSNM prior, which uses the low-rank 
characteristic of non-local self-similarity patches to eliminate further harmful micro-
textures and noise. R(L) is defined as

Image L ∈ ℜN is divided into d overlapping patches li , of size 
√
n ×

√
n , 

i = 1,… , d . For each example patch li , the m most similar patches are collected 
through an S × S search window, and the m similar patches are stacked into the matrix 
Li ∈ ℜn×m , of which the columns are composed of m vectorized similar patches, such 
as Li =

{
li1, li2,… , lim

}
 , and lim is the mth similar patch of the ith group Li . Because the 

m similar patches have consistent geometric structures, their permutation combination 
results in matrix Li with a low-rank property, and our model (7) can be reformulated as

(6)�i = GST(�i,wi, p, t),

(7)min
L,k

‖L ∗ k − B‖2
2
+ �‖k‖2

2
+ �‖∇L‖0 + �R(L),

(8)R(L) =

d∑
i=1

‖‖Li‖‖pw,Sp .

(9)min
L,k

‖L ∗ k − B‖2
2
+ �‖k‖2

2
+ �‖∇L‖0 + �

d�
i=1

��Li��pw,Sp .
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Problem (9) involves solving for two unknown variables, L and k . To optimize 
(9), we divide it into two subproblems (of L and k ) to minimize alternately, where 
the subproblem for L is

and the subproblem for k is

3.1  Intermediate Latent Image L Estimation

Because subproblem (10) includes both the L0-regularized gradient and WSNM 
terms, which are non-convex, performing the calculation directly is difficult. We 
adopt the HQS strategy [50] and the GST algorithm [56] to optimize these two non-
convex terms.

First, we adopt the HQS strategy, where u and g =
(
gh, gv

)
 are introduced as two 

new auxiliary variables; u and g correspond to the latent image L and image gradient 
∇L , respectively. Subproblem (10) can be reformulated as

where � and � are positive regularization parameters. We can solve (12) by alter-
nately minimizing L , u , and g , to avoid solving the non-convex L0 gradients and the 
weighted Schatten p-norm directly.

We fix u and g , to solve the intermediate latent image L by optimizing the follow-
ing objective function:

This is a least squares optimization problem, and its closed solution can be effec-
tively solved by the fast Fourier transform (FFT) method:

where F(⋅) and F−1(⋅) denote FFT and inverse FFT, respectively, F(⋅) denotes the 
complex conjugate operator, and FG = F(∇h)F(gh) + F(∇v)F(gv).

Fixing u and L , we can solve g by

(10)min
L

‖L ∗ k − B‖2
2
+ �‖∇L‖0 + �

d�
i=1

��Li��pw,Sp ,

(11)min
k

‖L ∗ k − B‖2
2
+ �‖k‖2

2
.

(12)min
L,g,u

‖L ∗ k − B‖2
2
+ �‖∇L − g‖2

2
+ �‖L − u‖2

2
+ �‖g‖0 + �

d�
i=1

��ui��pw,Sp ,

(13)min
L

‖L ∗ k − B‖2
2
+ �‖∇L − g‖2

2
+ �‖L − u‖2

2
.

(14)L = F−1

(
F(k)F(B) + �FG + �F(u)

F(k)F(k) + �F(∇)F(∇) + �

)
,

(15)min
g

�‖∇L − g‖2
2
+ �‖g‖0.
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Because (15) is a pixel-wise minimization problem, it can be directly solved by 
[50] to obtain g:

Fixing g and L , we can solve u by

However, the second term is severely non-convex. This problem has complex 
structures and is difficult to optimize directly. To solve (17) more efficiently, we 
make the following assumptions, based on [53, 54].

Theorem  2 Define L, u ∈ ℜN , Li, ui ∈ ℜn×m , and error vector e = L − u ; e(j) is 
each element of e and j = 1,… ,N. Suppose that e(j) satisfies the independent zero-
mean distribution and that its variance is �2. Then, for any 𝜀 > 0 , the following 

property describes the relationship between ‖L − u‖2
2
 and 

d∑
i=1

��Li − ui
��2F:

where P(∙) denotes the probability, and R = d × n × m.

Proof Each e(j) is assumed to be an independent zero-mean distribution with vari-
ance �2 , i.e., Var[e(j)] = �2 and E[e(j)] = 0 . Therefore, each e(j)2 is also independ-
ent, and the mean of each e(j)2 is

By invoking the law of large numbers in probability theory, for any 𝜀 > 0 , 
lim
N→∞

P
����

1

N

∑N

j=1
e(j)2 − 𝜎2��� <

𝜀

2

�
= 1 , i.e.,

Further, we let � and � denote the concatenation of all groups Li and ui , 
i = 1,… , d , respectively, and denote the error of each element of � − � by e(r) , 
r = 1, 2,… ,R . Suppose e(r) also follows an independent zero-mean distribution 
with variance �2.

Therefore, a process similar to that mentioned above is applied to e(r)2 to obtain 
lim
R→∞

P
����

1

R

∑R

r=1
e(r)2 − 𝜎2��� <

𝜀

2

�
= 1 , i.e.,

(16)g =

�
∇L, ‖∇L‖2 ≥ �

�

0, otherwise.

(17)min
u

�‖L − u‖2
2
+ �

d�
i=1

��ui��pw,Sp .

(18)lim
N→∞
R→∞

P

�������
1

N
‖L − u‖2

2
−

1

R

d�
i=1

��Li − ui
��2F

������
< 𝜀

�
= 1,

(19)E[e(j)2] = [E[e(j)]]2 + Var[e(j)] = �2, j = 1, 2,… ,N.

(20)lim
N→∞

P

�����
1

N
‖L − u‖2

2
− 𝜎2

���� <
𝜀

2

�
= 1.
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Considering (20) and (21) together, we prove (18).□

Therefore, according to Theorem  2, in each iteration we obtain an equation of 
high probability (approaching 1):

From (17) and (22), we obtain the following equation:

According to (2), (5), and (6), the optimal solution of (23) can be obtained by the 
GST algorithm [56], as follows:

where �ij(Li) is the jth singular value of the stacked similar patch matrix Li , the defi-
nition of �ij(ui) is similar to that of �ij(Li) , and � = �R∕�N . Because large singu-
lar values contain the main structure of the image, they should be penalized less, 
whereas small ones mainly contain the harmful detail and should be penalized more. 
Therefore, referring to [48], we define the weight wij as

where � is a very small constant and m is the number of similar patches. Because 
�ij(ui) is unknowable before estimating ui , we follow [40, 48] and initialize �ij(ui) as

Each singular value of ui can be calculated from (24) to form ui = UΔVT , where 
Δ = diag

(
�i1(ui),… , �ir(ui)

)
 , r = min(n,m) , i = 1,… , d , and s denotes the size of 

the blur kernel. Finally, all values of ui are aggregated, to reconstruct u.
In addition, we add a stopping criterion to the internal iterative process, to 

enhance the fast convergence of our algorithm:

where x is the number of internal iterations and tol = 10−5.

(21)lim
R→∞

P

{||||
1

R

∑d

i=1
‖‖Li − ui

‖‖2F − 𝜎2
|||| <

𝜀

2

}
= 1.

(22)1

N
‖L − u‖2

2
=

1

R

d�
i=1

��Li − ui
��2F.

(23)min
u

‖L − u‖2
2
+

�

�

d�
i=1

��ui��pw,Sp = min
u

d�
i=1

�
��Li − ui

��2F +
�R

�N
��ui��pw,Sp

�
.

(24)�ij(ui) = GST
(
�ij(Li), �wij, p, t

)
,

(25)wij =
2
√
2m

(�
1∕ p

ij
(ui) + �)

,

(26)�ij(ui) =
√

max(�2
ij
(Li) − ms2, 0).

(27)‖‖‖L
(x) − L(x−1)

‖‖‖2
/‖‖‖L

(x)‖‖‖2 < tol,
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3.2  Blur Kernel k Estimation

After obtaining the intermediate latent image L , subproblem (11) can be used 
directly to calculate the closed solution by FFT. However, (11) is based on image 
intensity, and the direct solution cannot yield good results [4, 26, 35, 51]. There-
fore, image gradients are used to estimate the blur kernel k , and this method is more 
effective. We reformulate (11) to

The objective function (28) can be solved directly by FFT:

After obtaining the blur kernel k , the negative elements of k are set to 0, and 
normalization is performed. In the concrete implementation, similar to other state-
of-the-art algorithms [4, 38, 51], a coarse-to-fine multiscale framework based on the 
image pyramid [4] is adopted in the whole deblurring process; this enables our algo-
rithm to facilitate large-scale blur kernel estimation. We alternately solve L and k 
at each layer of the pyramid and then perform up-sampling, using the estimated k 
as the initial value for the next layer of the pyramid. Algorithm 1 presents the main 
steps of the proposed deblurring algorithm at each layer of the pyramid.

(28)min
k

‖∇L ∗ k − ∇B‖2
2
+ �‖k‖2

2
.

(29)k = F−1

(
F(∇L)F(∇B)

F(∇L)F(∇L) + �

)
.
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3.3  Non‑blind Deconvolution

When using our blind deblurring algorithm (Algorithm  1) to restore the final latent 
image, the image details may be lost. Therefore, after obtaining the final blur kernel, 
various state-of-the-art non-blind deconvolution algorithms can be used to restore the 
final latent image. In this paper, the sparse deconvolution algorithm [24] is adopted, 
unless otherwise stated.
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4  Extension to Non‑uniform Deblurring

The proposed deblurring method can be easily extended to non-uniform deblurring, 
where the blur kernel is spatial-variant. Based on the geometric model of camera 
motion [47], we can model the blurred image B as the sum of all the different views in 
the scene:

where t is the number of each view, Ht is a homography matrix, and kt is the weight 
corresponding to the tth view, with kt ≥ 0 and 

∑
t kt = 1 . Similarly to [47], (30) can 

be rewritten as

where K =
∑

t ktHt , A = [H1L,H2L,… ,HtL] , and k = [k1, k2,… , kt]
T . We can solve 

non-uniform blur by alternatively minimizing

and

Similarly to the case of uniform deblurring, (32) can be rewritten as

For (34), we use the same optimization strategies as (15) and (17) to solve for g and 
u.

The minimization problem for L is

Obviously, (35) cannot be solved directly by FFT. Because the blur kernels are simi-
lar in a small region, we use local uniform blur to approximate non-uniform blur. Based 
on the fast forward approximation method [15], the blurred image is divided into Q 
overlapping patches. The matrix K can be expressed as

Cr(⋅) denotes the operator that crops the rth patch from the image, C−1
r
(⋅) denotes 

the operator that replaces the patch in the reconstructed image, and diag(⋅) denotes 
a diagonal matrix. The matrix Mr is a window function that has the same size as L . 

(30)B =
∑
t

ktHtL + n,

(31)B = KL + n = Ak + n,

(32)min
L

‖KL − B‖2
2
+ �‖∇L‖0 + �

d�
i=1

��Li��pw,Sp

(33)min
k

‖Ak − B‖2
2
+ �‖k‖2

2
.

(34)min
L,g,u

‖KL − B‖2
2
+ �‖∇L − g‖2

2
+ �‖L − u‖2

2
+ �‖g‖0 + �

d�
i=1

��ui��pw,Sp .

(35)min
L

‖KL − B‖2
2
+ �‖∇L − g‖2

2
+ �‖L − u‖2

2
.

(36)K =

Q∑
r=1

C−1
r
(F−1(diag(F(ar)))F(Crdiag(Mr))),
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In addition, ar = CrJrk denotes the blur kernel of the rth patch, and the elements of 
each matrix Jr are simply a rearrangement of the elements of Ht [46].

Based on (36), the optimized solution of (35) can be calculated quickly by fre-
quency-domain convolutions and correlations. For the blur kernel optimization 
problem (33), we use the method of [46] to estimate the kernel. The main difference 
between the proposed method and that of [46] is that we do not employ a bilateral 
filter and shock filter to predict significant edges. This is because the effective com-
bination of WSNM and L0-regularized gradient priors can eliminate harmful struc-
tures and obtain the intermediate latent images with sharp edges.

5  Experimental Results

We evaluated our method on three natural image datasets [20, 25, 43] and real-world 
images and compared it with state-of-the-art methods. We also evaluated our method 
on specific domain datasets, such as text [35], face [23], and saturated images [23] 
and compared it with related specially designed methods. In addition, we evaluated 
the robustness of our algorithm to blurred images with Gaussian noise. Finally, we 
tested non-uniform blurred images and other types of blurred images.

In all experiments of the uniform deblurring, we empirically set the param-
eter values of the proposed algorithm as follows: � = 0.005 , � = 0.004 , � = 40 , 
�max = 105 , �max = 0.06 , p = 0.9 , and Tmax = 5 ; we collected 9 × 9 non-local similar 
patches through a 30 × 30 search window by using the block matching algorithm 
[6], and the overlap of adjacent example patches was set to one pixel. For a fair com-
parison, the other methods were tested with the default parameters of the authors’ 
original code. Our numerical experiments were performed in MATLAB R2017a on 
a desktop computer with Intel Core i7-8770 CPU at 3.20 GHz and 32 GB RAM.

5.1  Natural Images

5.1.1  Dataset of Levin et al.

First, we performed a quantitative evaluation on the dataset of Levin et  al. [25], 
which comprises 32 images generated from four grayscale images and eight uniform 
blur kernels. The sizes of the kernels ranged from 13 × 13 to 27 × 27 . We compared 
the proposed method with other state-of-the-art methods [4, 7, 11, 26, 28, 38–40, 
43, 49] and uniformly adopted the non-blind method [24], to ensure a fair compar-
ison. We adopted three measurement criteria to evaluate the recovery results: the 
cumulative error ratio [25], the peak signal-to-noise ratio (PSNR), and the structural 
similarity index (SSIM). The error ratio is

(37)r =
‖‖Lt − L‖‖22
‖‖Lt − Lk

‖‖22
,



6205Circuits, Systems, and Signal Processing (2020) 39:6191–6230 

where Lt , L , and Lk represent the ground-truth sharp image, the recovered latent 
image, and the deblurred image obtained by the ground-truth kernel deconvolution, 
respectively. When the error ratio r is reduced, the recovered image is closer to the 
ground-truth sharp image. According to [25], when r ≤ 2 , the deconvolution result 
is usually visually plausible.

We first compared our method quantitatively with our method without WSNM. 
Figure 1 shows the average PSNR and average SSIM of four images with eight ker-
nels. Our method achieved a higher PSNR and SSIM, on average. Figure 2a shows 
that our method achieved a higher success rate for each error ratio. It is worth not-
ing that, when our method omits WSNM, it contains only the L0 gradient term, 
which is equivalent to the method of [51]. Compared with other competing methods, 
our method achieved the highest PSNR and SSIM values, on average, as shown in 
Table  1. Figure  2b shows that our method also achieved the highest success rate 
when the error ratio was 2.
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Fig. 1  Quantitative evaluation of our method and our method without WSNM on the dataset of [25]. a 
Comparison of average PSNR. b Comparison of average SSIM. The rightmost column shows the average 
PSNR and average SSIM of all images
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Fig. 2  Comparison of cumulative error ratios of various methods on the dataset of [25]. a Comparison of 
our two methods. b Comparison of our method with other competing methods
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For a better comparison, Fig.  3 visually shows an example image and the 
results recovered by different methods. Our method estimated the accurate blur 
kernel and recovered comparable, or even better, image quality. However, the ker-
nel estimated by our method without WSNM produced interruption in the upper 
right part of the image. Table 2 shows that our method achieved the highest PSNR 
and the second-best SSIM for the image of Fig. 3.

Table 1  Comparison of average PSNR (dB) and average SSIM of the results of deblurring, using various 
methods, on the dataset of [25]

The PSNR and SSIM of each image are the average values of the image with eight kernels. The right-
most column shows the average values of all images

Algorithm im1 im2 im3 im4 Average

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Fergus et al. [11] 29.86 0.8871 27.83 0.8424 29.15 0.9083 25.60 0.7121 28.11 0.8375
Cho and Lee [4] 29.66 0.8219 29.33 0.8327 31.52 0.9092 29.01 0.8470 29.88 0.8527
Levin et al. [26] 31.39 0.8944 28.82 0.8552 29.34 0.9297 27.79 0.8685 29.34 0.8870
Xu and Jia [49] 29.62 0.8990 29.41 0.8879 28.86 0.8640 27.59 0.8416 28.87 0.8731
Sun et al. [43] 33.37 0.9115 31.31 0.8759 31.13 0.9244 29.42 0.8971 31.31 0.9022
Perrone et al. [39] 32.39 0.9025 31.01 0.8710 32.56 0.9294 29.19 0.8956 31.29 0.8996
Ren et al. [40] 31.77 0.8790 29.69 0.8308 31.21 0.9157 28.38 0.8625 30.26 0.8720
Dong et al. [7] 32.16 0.8971 30.74 0.8647 31.64 0.9277 29.90 0.9055 31.11 0.8987
Pan et al. [38] 32.59 0.9040 30.95 0.8744 30.98 0.9043 29.65 0.8987 31.04 0.8953
Li et al. [28] 32.74 0.9019 30.78 0.8749 30.82 0.9025 30.13 0.9053 31.12 0.8961
Ours 32.43 0.8975 31.23 0.8731 31.97 0.9342 30.02 0.9095 31.41 0.9035

(a) Blurred image (b) Fergus et al. [11] (c) Cho and Lee [4] (d) Sun et al. [43]   (e)  Perrone et al. [39]

(f) Ren et al. [40] (g) Dong et al. [7] (h) Li et al. [28] (i) Ours without WSNM    (j) Ours

Fig. 3  Visual comparison on an example image from the dataset of [25]
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5.1.2  Dataset of Sun et al.

Second, we conducted a quantitative evaluation on the benchmark dataset of Sun 
et  al. [43], which produced 640 blurred images from 80 natural images and eight 
kernels. Our method was compared with seven optimization-based methods [4, 21, 
26, 38, 39, 43, 49] and two CNN-based methods [2, 28]. To ensure fairness, we 
uniformly used the non-blind deconvolution method [55] to recover the final results 
and employed the error ratio criterion for evaluation. According to [32], if the error 
ratio r ≤ 5 , the final recovery result is satisfactory. Figure 4a shows that our method 
yielded a higher success rate than our method without WSNM, for every error ratio. 
Figure 4b shows that our method achieved a higher success rate than the other meth-
ods for r ≥ 2.

We then chose two challenging images for comparison. They have fewer sig-
nificant edges but contain more small details, which is not conducive to blur ker-
nel estimation. As shown in Figs. 5 and 6, our method estimated the most accu-
rate blur kernel, yielding the most pleasing recovered images. However, the other 
methods estimated either poor blur kernels or kernels containing noise, resulting 
in serious ringing artifacts. It is worth noting that the kernel estimated by our 
method without WSNM produced a serious deviation in both images. The reason 
is that the main advantage of L0 gradient is the extraction of significant edges. 
When there are fewer edges or complex structures in the image, the L0 gradient 
prior cannot extract edges very well. However, the WSNM prior in our model 

Table 2  Comparison of PSNR (dB) and SSIM values of the deblurring results corresponding to Fig. 3

“W/O WSNM” denotes our method without WSNM

[11] [4] [43] [39] [40] [7] [28] W/O WSNM Ours

PSNR 30.25 29.43 27.20 32.49 32.15 32.75 27.88 27.78 32.81
SSIM 0.9256 0.8850 0.8942 0.9459 0.9300 0.9342 0.8834 0.8985 0.9350
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Fig. 4  Comparison of cumulative error ratios of various methods on the dataset of [43]. a Comparison of 
our two methods. b Comparison of our method with other competing methods
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can use the low-rank property of locally similar patches to remove harmful small 
details, so that useful information can be better preserved for kernel estimation. 
Table 3 also shows that our method produced the highest PSNR and SSIM values 
in the deblurring results of both Figs. 5 and 6.

Fig. 5  Visual comparison on an example image from the dataset of [43]

Fig. 6  Visual comparison on another example image from the dataset of [43]. Part of the recovered 
image is enlarged for comparison

Table 3  Comparison of PSNR (dB) and SSIM values of the deblurring results corresponding to Figs. 5 
and 6

“W/O WSNM” denotes our method without WSNM

[21] [4] [49] [43] [2] [38] [28] W/O WSNM Ours

Figure 5
 PSNR 15.58 22.77 28.41 27.09 28.49 22.56 29.51 21.13 31.93
 SSIM 0.4277 0.7427 0.8265 0.7794 0.7666 0.5845 0.8361 0.6419 0.8422

Figure 6
 PSNR 20.77 23.97 23.52 31.43 31.16 33.25 32.31 20.33 33.44
 SSIM 0.7606 0.8467 0.8457 0.9070 0.9044 0.9304 0.9201 0.6977 0.9308



6209Circuits, Systems, and Signal Processing (2020) 39:6191–6230 

5.1.3  Dataset of Köhler et al.

Third, we tested the proposed algorithm against other advanced methods [4, 7, 11, 
15, 21, 28, 38, 40, 42, 46, 49, 52] on the real dataset [20], which contains 48 blurred 
images generated from 12 blur kernels and four images. The mean structural simi-
larity index (MSSIM) and PSNR were selected as the evaluation metrics. The result 
of each restoration was compared to 199 sharp images taken along the camera tra-
jectory, and the highest PSNR and MSSIM values were calculated.

Figure 7 shows that our method achieved a higher PSNR and MSSIM, on aver-
age, than our method without WSNM. The average PSNR and MSSIM differences 
between the two methods were 0.533 dB and 0.025, respectively. This proves that 
the WSNM prior can improve the deblurring performance of real images. Table 4 
shows that our method achieved a competitive MSSIM and the highest PSNR val-
ues, on average, compared to other state-of-the-art methods.

Figure  8 illustrates a challenging visual example with severe motion blur. Our 
method produced the best visual results. Although two methods [28, 38] achieved 
acceptable deblurring results, the result of the method of [38] has severe ringing 
artifacts, and the result of the method of [28] is over-smooth. The deblurring results 
of the other two low-rank methods show severe distortion. Table 5 shows that our 
method obtained the highest PSNR and MSSIM values in the deblurring results of 
Fig. 8.

5.1.4  Other Real‑World Images

We further compared our approach with two other low-rank methods on real-world 
images. We used the same non-blind method [24] to ensure fairness. As shown in 
Fig. 9, the method of [40] estimated the kernel with large error and produced a poor 
quality image. The kernel estimated by the method of [7] contained substantial noise, 
resulting in obvious artifacts in the restored images, whereas our method recovered 
a clearer result. It is worth noting that our method without WSNM estimated an 
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Fig. 8  Visual comparison of deblurring results using a severely blurred image on the benchmark dataset 
of [20]

Table 5  Comparison of PSNR (dB) and MSSIM values of the deblurring results corresponding to Fig. 8

[4] [42] [46] [49] [40] [7] [38] [28] Ours

PSNR 22.61 21.99 20.88 22.78 19.55 18.84 26.26 28.25 29.07
MSSIM 0.8406 0.6291 0.6222 0.8057 0.7207 0.6160 0.8623 0.8719 0.9083

Fig. 9  Visual comparison of our method with other low-rank methods on a real-world image

Fig. 10  Visual comparison of our method with other low-rank methods on another real-world image
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incorrect blur kernel. Figure 10a shows an example of large-scale motion blur. Our 
method is the only one that recovered good visual effects; the images recovered by 
the other methods have serious biases.

5.2  Domain‑Specific Images

5.2.1  Text Images

Text images mostly contain two tones (white and black) that do not comply with the 
heavy-tailed distribution of natural images; processing them is a daunting task for 
most deblurring methods. Our approach was compared with the other methods [7, 
21, 26, 28, 35, 38, 40, 52] on the text dataset of [35], consisting of 15 images and 
eight kernels. It is worth noting that the method of [35] was designed specifically 
for text images. We employed the same non-blind approach [24] to ensure fairness. 
Table 6 shows that our method yielded the highest PSNR, on average, whereas our 
method without WSNM yielded a lower value. Figure 11 shows a typical case, for 
which our method recovered the best quality image, whereas most other methods 
produced severe artifacts and blur residues. Table 7 shows the PSNR values of all 
the images compared in Fig. 11.

Figure 12 shows another challenging image from [35], on which the deblurring 
result of our method yielded the best visual effect. Among the other methods, only 
the result of method [35] was acceptable. In particular, our method without WSNM 
produced a poor result.

5.2.2  Face Images

Face images contain fewer edge structures, so they are not conducive to blur kernel 
estimation. Our method was compared with other methods [7, 26, 28, 38, 40, 43, 49, 
52] on the face dataset of Lai et al. [23], which contains 20 blurred images gener-
ated from four kernels and five images. The same non-blind deconvolution algo-
rithm [24] was used to restore the results. The average PSNR values of the deblur-
ring results are shown in Table  8; our method achieved the highest PSNR value, 
on average. Figure 13 shows that our method recovered clearer face structures and 
background details than others. However, our method without WSNM produced 
serious distortions in the face. The PSNR values for the deblurring results in Fig. 13 
are shown in Table 9.

In addition, we selected a real face-blurred image for intuitive comparison. As 
shown in Fig. 14, our method produced the best result, whereas our method without 
WSNM restored the result with great error, especially in the eye region.

5.2.3  Saturated Images

The recovery of saturated images is a challenging problem. This is because saturated 
pixels greatly affect the selection of significant edges, making it difficult for conven-
tional methods to obtain good results. We performed comparative experiments using 
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Fig. 11  Visual comparison on an example image from the text dataset of [35]. Part of the recovered 
image is enlarged for comparison

Table 7  Comparison of PSNR (dB) values of the deblurring results corresponding to Fig. 11

[26] [21] [40] [7] [35] [38] [52] [28] Ours

PSNR 21.35 15.28 25.51 19.14 14.40 16.28 15.71 14.55 28.90

Fig. 12  Visual comparison on another challenging image from [35]. The results were obtained by the 
same non-blind method [35]
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a saturated image dataset of Lai et al. [23], which produced 20 blurred images by 
convolution of four kernels and five images. To ensure fairness, the same non-blind 
algorithm [5] was adopted. Table 10 shows that our method achieved a better PSNR, 
on average, than the algorithm of [36], which was designed specifically for satu-
rated pixels. Our method without WSNM achieved a lower average value. Figure 15 
shows a visual comparison of the deblurring results on a challenging example. The 
deblurring result of our method obviously has fewer artifacts and clearer details; 
Table 11 shows that our method achieved the highest PSNR value.

Table 8  Comparison of average 
PSNR (dB) of the results 
deblurred using various methods 
on the face dataset of [23]

The PSNR of each image is the average value of the image with 
four kernels. The rightmost column shows the average values of all 
images. “W/O WSNM” denotes our method without WSNM

Algorithm im1 im2 im3 im4 im5 Average

Levin et al. [26] 18.03 21.87 16.84 17.20 16.10 18.01
Xu and Jia [49] 26.48 26.68 25.97 22.72 25.06 25.38
Sun et al. [43] 25.83 27.26 25.78 23.10 22.82 24.96
Ren et al. [40] 25.04 22.97 24.58 23.75 20.13 23.29
Dong et al. [7] 23.69 27.84 24.17 23.02 17.61 23.26
Pan et al. [38] 26.89 31.89 27.76 25.81 22.56 26.98
Yan et al. [52] 26.91 31.15 28.09 25.71 23.57 27.08
Li et al. [28] 26.85 29.56 27.70 25.62 21.06 26.16
W/O WSNM 26.70 28.13 27.50 25.32 24.25 26.38
Ours 26.97 29.92 27.10 25.53 25.99 27.10

Fig. 13  Visual comparison on an example image from the face dataset of [23]

Table 9  Comparison of PSNR (dB) values of the deblurring results corresponding to Fig. 13

“W/O WSNM” denotes our method without WSNM

[26] [49] [43] [40] [7] [52] [28] W/O WSNM Ours

PSNR 19.68 24.96 27.38 21.08 25.90 25.00 25.40 23.86 29.11



6216 Circuits, Systems, and Signal Processing (2020) 39:6191–6230

5.2.4  Blurred Images with Gaussian Noise

Noise has a significant impact on the restoration of blurred images. We compared 
our approach with other advanced methods [28, 35, 38, 52] involving the L0 gradi-
ent prior on blurred images with Gaussian noise. We added Gaussian noise, with a 
variance ranging from 1 to 10, to the images in the dataset of Levin et al. [25] and 
performed comparative experiments. The same non-blind deconvolution algorithm 
[24] was employed. As Fig.  16a shows, at different noise levels, our method pro-
duced better results than the other methods, in terms of average PSNR. Figure 16b 

Fig. 14  Visual comparison on a real face-blurred image. The results were obtained by the same non-
blind method [24]

Table 10  Comparison of 
average PSNR (dB) of the 
results deblurred using various 
methods on the saturated dataset 
of [23]

The PSNR of each image is the average value of the image with 
four kernels. The rightmost column shows the average values of all 
images. “W/O WSNM” denotes our method without WSNM

Algorithm im1 im2 im3 im4 im5 Average

Levin et al. [26] 13.11 13.15 13.22 13.17 19.13 14.36
Ren et al. [40] 14.83 19.39 12.35 14.35 22.11 16.61
Dong et al. [7] 12.78 13.64 11.42 12.74 17.46 13.61
Pan et al. [38] 14.86 21.59 13.15 14.78 23.95 17.67
Yan et al. [52] 14.68 21.99 13.32 14.42 24.10 17.70
Li et al. [28] 14.66 21.97 12.95 14.32 24.39 17.66
Pan et al. [36] 16.05 21.24 12.75 14.81 23.95 17.76
W/O WSNM 14.00 20.90 12.76 14.29 23.19 17.03
Ours 14.64 21.92 13.54 15.17 24.02 17.86
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shows that our method without WSNM achieved a lower average PSNR value. The 
comparison data in Fig. 16 demonstrate that our WSNM prior is robust to Gaussian 
noise. This is mainly because the WSNM prior is based on local similar patches, the 
influence of noise on the similar patch structure is relatively small, and the WSNM 
penalty for singular values reduces the influence of noise further. In contrast, the 
other algorithms are based on pixel intensity, and weak noise will seriously affect 
the intensity of pixels.

Fig. 15  Visual comparison on an example image from the saturated images dataset of [23]

Table 11  Comparison of PSNR 
(dB) values of the deblurring 
results corresponding to Fig. 15

[26] [40] [7] [52] [28] [36] Ours

PSNR 13.13 14.33 11.19 12.41 12.40 12.27 15.88
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Fig. 16  Quantitative evaluation of blurred images with Gaussian noise. a Comparison of average PSNR 
of various methods. b Comparison of average PSNR of our two methods
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Figure  17a shows an example of a blurred image with a noise level of 5. Fig-
ure 17 shows that our method achieved the best visual effect, but there are still some 
noise points in the kernel of the estimation. Our method also obtained the highest 
PSNR and SSIM values, as shown in Table 12. When the noise level is close to 10, 
all methods failed to recover the image well. This is mainly caused by two factors: 
one is that these blind deblurring methods cannot estimate the blur kernel effectively 
in the case of severe noise, and the other is that the non-blind method is also sensi-
tive and not robust to severe noise. For future work, we will delve more deeply into 
the restoration of images with severe noise, develop effective blind and non-blind 
methods for severe noise, and integrate deblurring and denoising into one recovery 
framework.

5.3  Non‑uniform Images

In this section, we show that our method can be extended naturally to deblurring 
non-uniformly blurred images. The proposed method was compared with the other 
advanced non-uniform deblurring methods [15, 35, 47, 49, 51]. Figure 18 shows that 
our method estimated the exact kernels and obtained the best restoration results. In 

Fig. 17  Visual comparison on a blurred image with a noise level of 5

Table 12  Comparison of PSNR 
(dB) and SSIM values of the 
deblurring results corresponding 
to Fig. 17

“W/O WSNM” denotes our method without WSNM

[28] [38] [52] W/O WSNM Ours

PSNR 24.90 25.15 22.40 26.15 27.71
SSIM 0.6107 0.6244 0.5099 0.7029 0.7325

Fig. 18  Visual comparison on a non-uniform blurred image (best viewed on high-resolution display)



6219Circuits, Systems, and Signal Processing (2020) 39:6191–6230 

Fig. 19, our method achieved results that were comparable to, or even better than, the 
results of the other methods.

5.4  Other Types of Blurred Images

The proposed method is designed mainly for types of motion blur. We quantitatively 
evaluated other types of blur, such as Gaussian blur, out-of-focus blur, and average 
blur. For a fair comparison, we uniformly employed sparse deconvolution [24] for final 
non-blind restoration. Figures 20, 21, and 22 show that our method could accurately 
estimate these types of blur kernels, and finally recover high-quality images. Table 13 
shows that our method achieved the highest PSNR and SSIM values on the three types 
of deblurring images.

Fig. 19  Visual comparison on another non-uniform blurred image (best viewed on high-resolution dis-
play)

Fig. 20  Visual comparison on a Gaussian-blurred image. Barbara image blurred by a Gaussian blur ker-
nel with a size of 23 × 23 and a standard deviation of 3



6220 Circuits, Systems, and Signal Processing (2020) 39:6191–6230

6  Analysis and Discussion

In this section, we further analyze and discuss the effectiveness of the proposed 
method, the effect of similar patch sizes, computational complexity and execution 
time of the algorithm, the sensitivity of the main parameters, and the limitations 
of our algorithm.

6.1  Effectiveness of the Proposed Method

Numerous experimental comparisons, reported in Sect.  5, have proved that our 
method has excellent deblurring performance. In this section, we select two fur-
ther challenging examples for deblurring comparison, to verify the effectiveness 
of the algorithm.

Fig. 21  Visual comparison on an out-of-focus blurred image. Cameraman image blurred by an out-of-
focus blur kernel with a radius of 7

Fig. 22  Visual comparison on an average blurred image. House image blurred by an average blur kernel 
with a size of 11 × 11

Table 13  Comparison of PSNR 
(dB) and SSIM values of the 
deblurring results corresponding 
to Figs. 20, 21, and 22

Algorithm “Barbara” “Cameraman” “House”

PSNR SSIM PSNR SSIM PSNR SSIM

Pan et al. [35] 22.61 0.6178 22.50 0.6949 28.38 0.7997
Yan et al. [52] 23.59 0.6425 23.38 0.7377 28.81 0.8081
Li et al. [28] 23.63 0.6448 23.34 0.7359 29.06 0.8097
Our 23.69 0.6461 23.61 0.7393 29.23 0.8120
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Figure 23 shows that our method estimated the exact blur kernel and achieved 
a pleasant restoration result, whereas the other two low-rank methods estimated 
poor kernels, causing the restoration results to contain serious artifacts and resid-
ual blur. Figure 24a shows a blurred image with few edge contours, so that it is 
difficult for general optimization methods to extract the main edges. Our method 
estimated the most accurate kernel and yielded the best recovery results. The 
results of other advanced methods all contained some artifacts. Tables 14 and 15 
show that our method achieved the highest PSNR values for the images in both 
Figs. 23 and 24. When only one prior is employed in our model, the blur kernel 
estimation fails, and residual blur is apparent in the restored image. This proves 

Fig. 23  Visual comparison of the results deblurred using three low-rank methods. The results were 
obtained by the same non-blind method [47]

Fig. 24  Visual comparison of the results deblurred using different methods. The results were obtained by 
the same non-blind method [24]. Part of the recovered image is enlarged for comparison

Table 14  Comparison of PSNR 
(dB) values of the deblurring 
results corresponding to Fig. 23

Ren et al. [40] Dong et al. [7] Ours

PSNR 17.88 14.10 20.12

Table 15  Comparison of PSNR (dB) values of the deblurring results corresponding to Fig. 24

“W/O L0” denotes our method without L0 gradient. “W/O WSNM” denotes our method without WSNM

[43] [40] [7] [38] [52] [28] W/O L0 W/O WSNM Ours

PSNR 25.91 22.35 32.90 26.17 35.51 27.00 29.04 24.75 38.62
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that the two priors can complement each other in the process of blind deblurring, 
thereby performing better kernel estimation. The results shown in Fig.  24 also 
clarify that the WSNM prior has better universality and effectiveness than other 
image priors [28, 38, 52] combined with the L0 gradient. In the following, we fur-
ther analyze the role of each prior in our model separately.

6.1.1  Effectiveness of WSNM Prior

The two methods (with and without the WSNM prior) in our model have been com-
pared experimentally on five datasets [20, 23, 25, 35, 43], and the method with the 
WSNM prior has achieved better results, proving that the WSNM prior can improve 
the deblurring effect.

Figure  25 shows a challenging example from [20], comparing the intermedi-
ate latent images of our method (with and without WSNM) and two well-known 
methods [35, 38] involving L0 gradient. As shown in Fig. 25b–e, our method (with 
WSNM) estimated the most exact kernel and achieved the highest PSNR and 
MSSIM, as shown in Table 16, whereas our method without WSNM and the method 
of [35] estimated the kernels with large errors, resulting in poor recovery results. 
Figure 25h, i shows that, as the number of iterations increases, the use of WSNM 
effectively promoted the formation of sharper intermediate latent images, thereby 
improving kernel estimation. Figure 25g, i shows that, although the method of [38] 
ultimately yielded good recovery results, our method produced sharp intermediate 
latent images and precise kernels more quickly.

To better illustrate the validity of the WSNM prior, we used the NNM, WNNM, 
and WSNM priors, both alone and with our method, to compare their performance 
on the dataset of [25]. To ensure fairness, we used the same patch size and number 
of patches. Figure 26 shows that the method with only WSNM achieved a higher 
average PSNR and success rate than the methods with only NNM or only WNNM. 
Similarly, our method with WSNM achieved better results than our methods with 
either NNM or WNNM. This is mainly because NNM only penalizes each singular 
value uniformly. WNNM has penalties that differ according to the importance of 
different singular values, but WNNM is just a special case of WSNM. As a result, 
WSNM can penalize singular values more reasonably and flexibly, thereby better 
eliminating harmful details and retaining significant edges. However, the method 
with only the WSNM prior does not achieve excellent deblurring results on the data-
set of [25]. This is mainly because the WSNM prior cannot extract edges for kernel 
estimation directly. Therefore, it is not appropriate to perform deblurring tasks using 
WSNM alone.

6.1.2  Effectiveness of L0‑regularized Gradient Prior

Currently, because of the strong sparse property of the L0 regularization, several 
deblurring methods [28, 35, 38, 52] with a L0-regularized gradient have been 
developed. In the comparisons performed in the numerous experiments reported 
above, our method demonstrated superior deblurring performance, compared with 
these methods. This is because they are mainly based on simple pixel intensity 
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Fig. 25  Comparison of the deblurred images and intermediate results with those of the other methods. 
b–e Deblurring results of the corresponding methods. f–i Intermediate latent results of the corresponding 
methods; the number of iterations increases from left to right

Table 16  Comparison of PSNR 
(dB) and MSSIM values of the 
deblurring results corresponding 
to Fig. 25

“W/O WSNM” denotes our method without WSNM

Pan et al. [35] Pan et al. [38] W/O WSNM Ours

PSNR 18.68 27.05 21.95 27.96
MSSIM 0.6165 0.9025 0.6306 0.9060
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[28, 35] or extreme channels (dark and bright) [38, 52]. When blurred images 
have complex structures or lack sufficient extreme channel pixels, these methods 
cannot perform the task of deblurring well. As shown in Fig. 25f, i, our approach 
is better and forms a sharp intermediate latent image more rapidly.

In our method, the L0 gradient prior is used mainly for the extraction of strong 
edges, and the WSNM prior eliminates further harmful details and better pre-
serves the main edges, thereby providing a powerful guarantee for the main edge 
extraction performed in the next iteration. Numerous experiments have proved 
that, if only the L0-regularized gradient is used, this method is unable to deblur 
effectively when the blurred image is complex or lacks sufficient strong edges. In 
addition, Fig.  26 shows that satisfactory results cannot be obtained without the 
L0-regularized gradient. Therefore, the combination of the two priors (L0-regular-
ized gradient and WSNM) can perform the deblurring task better than either of 
them alone.

To further illustrate the effectiveness of the L0 gradient, we adopted differ-
ent norms for image gradients in our algorithm, for comparison on the dataset 
of [25]. Figure 27a shows that the combination of the L0 gradient prior and the 
WSNM prior achieved the best results. This proves that the L0 constraint is more 
suitable for our model than the other norm constraints.

6.2  Effect of Similar Patch Size

Because WSNM involves a search for similar patches, the size of the patch is an 
important factor. We evaluated different patch sizes on the dataset of [25]. Fig-
ure 27b shows that, within a certain range, the patch size had little effect on the 
average PSNR; this proves that our algorithm is insensitive to patch size, within 
a reasonable range. With a patch size of 9 × 9 , the average PSNR obtained was 
relatively high; therefore, to ensure fairness, we used a 9 × 9 patch size in all 
experiments.
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Fig. 26  Quantitative evaluation on the dataset of [25]. a Comparison of average PSNR. b Comparison of 
cumulative error ratio
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6.3  Computational Complexity and Execution Time

A comparison of the execution times of our method, with and without the low-rank 
prior, is shown in Table 17. The dominant computational cost of the proposed algo-
rithm is the calculation of the WSNM prior, that is, the calculation of the intermedi-
ate auxiliary variable u in Algorithm 1. This step mainly involves a search for simi-
lar patches, and the SVD and GST operation of the group structure Li ∈ ℜn×m . We 
assume that the number of pixels is N , and the average time to search for m similar 
patches for each example patch li ∈ ℜ

√
n×

√
n is TS . The complexity of the SVD and 

GST operations for each similar group Li is O(nm2) . Therefore, the complexity of 
the low-rank prior is O(N(nm2 + TS)) . The other steps of Algorithm 1, such as the 
calculation of intermediate latent images and kernel estimation, can be accelerated 
by FFTs and inverse FFTs.

We also measured the execution time of other competing algorithms [7, 26, 38, 
40, 51, 52] on blurred images with different sizes, as shown in Table 17. The execu-
tion time of our method was greater than that of the methods of [26, 38, 51, 52]. 

(a) (b)

Fig. 27  Quantitative evaluation on the dataset of [25]. a Comparison of cumulative error ratios under dif-
ferent norm constraints. The red curve shows that our method with L0 gradient achieved the best results. 
b Comparison of average PSNR of different similar patch sizes (Color figure online)

Table 17  Comparison of 
execution time (in s). All 
methods are implemented in 
MATLAB unless otherwise 
specified

Algorithm 255 × 255 600 × 600 800 × 800

Xu et al. (C++) [51] 1.78 5.20 9.49
Levin et al. [26] 13.32 108.14 190.72
Pan et al. [38] 73.58 408.96 709.54
Yan et al. [52] 10.44 73.77 138.72
Ren et al. [40] 282.29 1002.36 1600.30
Dong et al. [7] 280.54 1606.45 2821.38
Ours without WSNM 4.58 22.13 40.34
Ours 139.12 754.77 1264.29
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However, compared with the other two low-rank methods [7, 40], the execution 
time of our algorithm was much less. Because we adopted the L0 gradient prior, our 
method can quickly extract the main edges, so that only a fewer external iterations, 
involving WSNM operations, are required to maintain further significant edges.

6.4  Main Parameter Analysis

Our model (7) includes the three regularized weight parameters � , � , and � , and the 
p in Schatten p-norm minimization. We analyzed the sensitivity of these parameters 
in our algorithm, on the dataset of [25], by changing each parameter and fixing the 
others.

We evaluated the sensitivity of the three weight parameters � , � , and � by measur-
ing the accuracy of estimated kernels using the kernel similarity criterion. As shown 
in Fig.  28a–c, our algorithm was insensitive to the setting of weight parameters 
within a certain range.

Because of the uncertainty and complexity of blur kernels in the real world, we can 
choose different p ( 0 ≤ p ≤ 1 ) for optimal solution, according to the actual situation. 
However, we must set p uniformly, to ensure fairness of comparison. As shown in 

(a) (b)

(c) (d)

Fig. 28  Sensitivity analysis of the main parameters � , � , � , and p in our algorithm
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Fig. 28d, a higher average PSNR value was obtained when p = 0.9 . Therefore, we set 
p = 0.9 in all the experiments.

6.5  Limitations

Our method is inefficient when dealing with blurred images with nonlinear rela-
tions, because our hypothetical model (1) is based on linear convolution. For exam-
ple, blurred images caused by out-of-focus or dynamic scene object motion in the real 
world are usually severely nonlinear and non-uniform. The existing algorithms primar-
ily use depth estimation or image segmentation to recover images. As shown in Figs. 29 
and 30, the blurred regions of the two example images are still blurred after deblurring. 
The next task is to design a robust dedicated algorithm for such highly nonlinear and 
non-uniform blurred images.

Fig. 29  A out-of-focus blurred image in the real world and our restoration result

Fig. 30  A dynamic scene blurred image and our restoration result
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7  Conclusions

In this paper, we present a new blind restoration model based on the low-rank 
prior and L0-regularized gradient prior. We adopt the flexible non-convex 
weighted Schatten p-norm minimization as our low-rank prior. In the coarse-
to-fine multiscale framework, we propose an efficient optimization algorithm to 
perform blur kernel estimation, which combines the HQS strategy with the GST 
algorithm. Experimental analysis shows that the WSNM prior in our model can 
further promote the accurate estimation of the kernel, while ensuring the spar-
sity and continuity of the estimated kernel and improving the robustness of our 
method. In addition, our method does not require additional complex kernel esti-
mation or a salient edge prediction strategy. Moreover, our method can be natu-
rally extended to non-uniform deblurring. Extensive experiments show that our 
method has achieved excellent visual effects in blurred images of various specific 
scenarios. The results of qualitative and quantitative evaluations indicate that the 
proposed method performs favorably against other state-of-the-art methods.
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