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Abstract
This paper presents a Gaussian-based distributed speech presence probability (DSPP)
estimator which is applied in fully connected wireless acoustic sensor networks
(WASNs). In WASNs, we are primarily interested in optimally utilizing all available
information of recorded signals. In this work, under the Gaussian statistical assump-
tion of signals, each node computes the DSPP using its own local signals along with
the compressed signals from other nodes. We evaluate the effect of DSPP estimation
on noise reduction from both the simulated and the real recorded signals. The perfor-
mance of the proposed DSPP estimator is compared to that of local SPP estimation,
where each node only uses its noisy signals, and to that of centralized SPP estimation,
where each node uses all recorded noisy signals of the whole network. It is shown that
the proposed method exhibits good performance, while the computational complexity
is considerably reduced.

Keywords Speech presence probability · Wireless acoustic sensor networks ·
Distributed noise reduction algorithms · Gaussian statistical properties

1 Introduction

Accurate estimation of speech presence probability (SPP) is required in many speech-
related applications [4,5,8,14,19,22,28,30,33]. In general, a significant improvement
in noise reduction from speech is achieved by considering the speech presence
uncertainty [4,5,8,22,28,30]. In [8], in each time-frequency unit (TFU), using the
SPP, a combination of single-channel Wiener and multi-frame minimum variance
distortion-less response filter was proposed, leading to speech quality improvement.
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By incorporating the conditional SPP in the speech distortion weighted multi-channel
Wiener filter in [30], an adaptive parameter was introduced, providing a good trade-off
between signal distortion and noise reduction.

In addition, the accurate estimation of SPP is important in the update of the noise
correlation matrix [4,14,19,33]. In [4], a time-varying frequency-dependent parameter
based on the SPP was considered, introducing a recursive smoothing technique for
noise power spectral density (PSD) estimation. It was shown that the proposedmethod
is able to obtain low estimation error in the case of nonstationary and low signal-
to-noise ratio (SNR) environments. A soft SPP-dependent minimum mean square
error (MMSE)-based technique was proposed in [14], which presents an appropriate
estimation of the noise PSD in the case of nonstationary environments. In [19], it was
shown that by applying a two-dimensional hidden Markov model and incorporating
the spectro-temporal (ST) correlation in the estimation of SPP, an improved PSD
estimation of noise could be achieved.

So far, several attempts have been made to improve the SPP estimation accuracy
[9–11,13,15,29,32,33]. In [13], the authors proposed to consider the ST correlation
and fixed a priori SNR,1 and a priori SPP,2 to obtain a more accurate SPP estimation.
Indeed, to reduce random fluctuations, they employed a smoothed observation over
neighbor TFUs, achieving SPP close to one when speech is present, and close to zero
when speech is absent. In [15], it was shown that by averaging over the a posteri-
ori SNR3 in the Cepstrum domain and incorporating the fixed priors, a significant
reduction of noise leakage and speech distortion could be obtained in both cases of
stationary and nonstationary noises.

Most of the previous works have been focused on computing the SPP based on
the Gaussian statistical properties of speech signal; however, other distributions have
also been investigated in this regard [9–11]. An MMSE estimation of the spectral
amplitude was proposed in [9] using the generalized Gamma distribution. In [11], a
super-Gaussian speechmodel and a smoothed observation in adjacent TFUswere con-
sidered. This work was extended in [10], where a closed-form solution was proposed
considering the advantages of fixed a priori SNR.

Although most of the existing works in the context of SPP estimation have been
focused on the single-microphone techniques, the concept of SPP has also been
examined in multi-channel scenarios. Multi-channel algorithms are able to gather
spatial information in addition to ST, providing higher degrees of freedom. In [32], a
multi-channel SPP (MCSPP) estimator under the Gaussian statistical assumption was
presented. The MCSPP can be expressed as the generalization of the single channel-
SPP proposed in [7] to themulti-channel case. It was shown that the detection accuracy
achieved by the MCSPP is superior than that by single-channel one [32]. Also, by
incorporating the MCSPP with the generalization of the minima controlled recursive
averaging algorithm [5], a practicalmethodwas proposed in [33] formulti-microphone
noise tracking and reduction.

1 The ratio of clean signal variance to noise signal variance.
2 A priori knowledge, indicating whether speech segments are more probable or silence.
3 The ratio of noisy signal variance to noise signal variance
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This paper introduces a distributed SPP (DSPP) estimationmethod that is employed
in wireless acoustic sensor networks (WASNs). WASN consists of several spatially
distributed nodes with arbitrary geometry and desired number of microphones. Ben-
efiting from the wireless connection, nodes are able to cover a larger area and exploit
more spatial information in comparison with the traditional microphone array with
fixed geometry. In addition, some nodes may be located at a small distance from the
desired speaker/noise source, providing signals with a high SNR/good estimation of
the noise signal. Consequently, a considerable improvement can be obtained by the
usage of WASN which utilizes the observations of different nodes. Recently, WASNs
have attracted much attention and several contributions have been devoted to them
[2,3,6,17,18,20,21,23,24,31,34,35]. In WASN, it is important that all available infor-
mation of recorded signals is optimally used in the estimation procedure. The main
objective of this work is to introduce a distributed SPP estimation that provides a good
balance between computational complexity and performance. The proposed DSPP
estimator decreases the number of transmitted signals, while the cooperation between
nodes still exists.

In the context of WASNs, speech signals can be processed into two different ways:
first, when one physical fusion center (FC) is available and all microphones of all
nodes transmit their recorded signals to the physical FC. In this case, since the FC has
direct access to all recorded signals in the whole network, theWASN usually performs
well in terms of noise reduction, SPP estimation, direction of arrival estimation and
etc. However, the performance of the network is rather sensitive to physical FC; if the
FC does not work well, the whole network fails to perform properly.

As an alternative, distributed algorithms have been employed in this framework;
in these algorithms, there is no physical FC and nodes cooperate and transmit signals
between themselves to obtain the final result. One solution to achieve the performance
similar to the case of existence of physical FC is that all nodes transmit all recorded
signals to each others, which is referred to as the centralized mode in the rest of
his paper. However, this procedure imposes high computational complexity to the
network. In the current work, to decrease the computational complexity, we propose
a DSPP estimator using a cooperative distributed maximum a posteriori (MAP) noise
reduction algorithm. In the proposed DSPP estimator, each node computes the SPP
using its local signal along with the compressed signals from the other nodes, under
the Gaussian statistical assumption of signals.

TheGaussian statistical assumption is not only justified by the central limit theorem
(CLT),4 but also simplifies the derivation of the estimators. In fact, other distributions
might be able to model the speech and noise signals more precisely [25–27]; however,
utilizing non-Gaussian distributions gives rise to the excessive complexity of estimator,
and in some cases, leads to the lack of a closed-form solution. Hence, we have relied
on Gaussian distribution in this research. Besides, the proposed DSPP estimator is a

4 Central limit theorem states that when independent random variables are added, the summation tends
toward a Gaussian distribution regardless of the distribution of the original variables.
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generalization of the MCSPP estimator [32], which has been developed for utilization
in WASNs in a distributed way. 5

The remaining of this paper is organized as follows. We review the statistical prop-
erties of signals and the MCSPP algorithm in a fully connected WASN in Sect. 2.
In Sect. 3, we introduce the DSPP estimator. Section 4 illustrates how noise reduc-
tion performance is affected by the use of DSPP estimator compared to the local and
centralized SPP estimators. Finally, some concluding remarks will be presented in
Sect. 5.

2 Problem formulation

Consider a fully connected WASN including K nodes, where each node is able to
receive signals from other nodes. The k-th node contains Mk microphones and the
total number of microphones is equal to M = ∑K

k=1 Mk . Consider the noisy signal of
the m-th microphone of the k-th node at time index t , i.e.,

ym,k(t) = xm,k(t) + vm,k(t), m = 1, . . . , Mk, k = 1, . . . , K (1)

where xm,k(t) and vm,k(t) denote the speech signal and the additive noise in time
domain, respectively. After segmentation and using the window function h(t), the
noisy signal in STFT domain can be expressed as

Ym,k(l, n) =
L∑

t=0

ym,k(lQ + t)h(t)e
− j

2π tn

L

=
L∑

t=0

xm,k(lQ + t)h(t)e
− j

2π tn

L +
L∑

t=0

vm,k(lQ + t)h(t)e
− j

2π tn

L ,

(2)

where L denotes the discrete Fourier transform frame size and window is shifted by Q
samples, respectively. Considering the central limit theorem, a common trend in short-
time Fourier transform (STFT)-based algorithms is to model real and imaginary parts
of discrete Fourier transform (DFT) coefficients by independent identical Gaussian
distribution [7].

In the STFT domain, the noisy signal of the m-th microphone of the k-th node can
be expressed as

Ym,k(l, n) = Xm,k(l, n) + Vm,k(l, n), m = 1, . . . , Mk, (3)

5 In Souden et al. [32], it is shown that when the noise is amixture of both coherent point source interference
(e.g., non Gaussian babble, pink or factory noises) and non-coherent additive white noise, the SPP estimator
is theoretically able to achieve an estimate close to onewhen speech is present. Interested readers are referred
to Souden et al. [32] for theoretical proof.
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where Xm,k(l, n) andVm,k(l, n)denote the speech signal and the additive noise, respec-
tively, with l the frame index and n the discrete frequency index. For brevity, we omit
the frame and frequency indices in the remainder of the paper and only mention them
when referring to a specific TFU.

The Mk-dimensional noisy vector of the k-th node is given by

yk = xk + vk (4)

with yk =[Y1,k, . . . ,YMk ,k]T , xk =[X1,k, . . . , XMk ,k]T and vk =[V1,k, . . . , VMk ,k]T ,
where T denotes the transpose operation. In a fully connectedWASN,where each node
has access to all noisy signals of the whole network, the M-dimensional centralized
noisy vector is given by

y = x + v (5)

with y = [yT1 , . . . , yTK ]T , and x and v are defined similarly. Assuming that the speech
and noise signals are uncorrelated, the M × M dimensional centralized noisy corre-
lation matrix can be expressed as �y = E

{
yyH

} = �x + �v, where �x and �v
denote the centralized speech and noise correlation matrices, respectively. In practice,
the centralized noisy correlation matrix can be recursively estimated using the noisy
signals and the forgetting factor, λy , as follows:

�̂y(l, n) = λy�̂y(l − 1, n) + (1 − λy)y(l, n)yH (l, n). (6)

Similarly, in silent frames, the centralized correlation matrix of noise is given by

�̂v(l, n) = λv�̂v(l − 1, n) + (1 − λv)v(l, n)vH (l, n). (7)

where λv denotes forgetting factor of noise. As can be seen, an estimate of the cen-
tralized correlation matrix of the clean speech signal is given by

�̂x(l, n) = �̂y(l, n) − �̂v(l, n). (8)

Due to the errors that occur in the estimation of correlation matrices, negative eigen-
values of �̂x(l, n) should be set to zero to ensure that the resulting matrix is positive
semi-definite.

We assume that in a fully connected WASN, each node has the authority to receive
and process all recorded signals of the whole network. We refer to this situation as
the centralized mode in the remainder of this paper. In the following, we review the
centralized SPP estimator.

In WASNs, nodes are randomly distributed. Therefore, it is more sensible to for-
mulate the estimators without the knowledge of nodes geometry. In [32], an MCSPP
estimator was proposed under the Gaussian statistical assumption for both speech and
noise signals. This estimator computes the SPP without requiring the knowledge of
geometry, and it is only based on the second-order statistical properties of the signal
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and noise. Considering two hypotheses (H1 and H0) for speech presence and absence,
respectively, the centralized SPP estimation can be proceed as follows:

{
H1 : y = x + v, speech is present

H0 : y = v, speech is absent
(9)

Using Bayes’ rule [32] indicating

p[H1|y] = p[y|H1]p[H1]
p[y|H1]p[H1] + p[y|H0]p[H0] (10)

and also considering the fact p[H1]+ p[H0] = 1, the centralized SPP can be expressed
as

CSPP = p[H1|y] = Λ

1 + Λ
(11)

where Λ = 1 − q

q

p[y|H1]
p[y|H0] denotes the generalized likelihood ratio, and q = p[H0]

is the a priori probability of speech absence [32]. Assuming the real and imaginary
parts of the speech and noise signals to be independent zero-mean Gaussian random
variables, the following likelihood functions are obtained:

⎧
⎪⎨

⎪⎩

p[y|H1] = 1

πM det[�x + �v] exp{−yH [�x + �v]−1y},
p[y|H0] = 1

πM det[�v] exp{−yH�−1
v y}.

(12)

It is easily seen that

Λ = 1 − q

q

det[�v]
det[�x + �v] exp{y

H [�−1
v − [�x + �v]−1]y} (13)

Finally, using the matrix inversion lemma and also trace of matrix proprieties, the
centralized SPP can be expressed as [32]

CSPP = {1 + q

1 − q
[1 + ξ ] exp[ −β

1 + ξ
]}−1, (14)

where ξ = trace[�−1
v �x] and β = yH�−1

v �x�
−1
v y.

3 Distributed SPP estimator

As mentioned before, using the centralized algorithm, a significant improvement is
obtained in the performance of SPP estimation. However, this improvement comes at
the price ofmore computational complexity. Let us assume a fully connectedWASN in
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the centralizedmode,where each node transmits all its noisy signals to others, resulting
in M1(K −1)+· · ·+MK (K −1) = M(K −1) transmitted signals. The enlargement
of matrix dimensions imposes high computational complexity. Also, nodes that are
far from the speaker, receive a weak signal at low SNR. Hence, it is more sensible to
improve the signals before transmitting. As an alternative, distributed algorithms can
be employed to transmit only the compressed and denoised signals. So far, several
distributed algorithms have been presented in WASNs, applying similar idea: sending
a filtered version of the signals instead of transmitting all of them [2,3,6,23,24,31]. In
this research, we use the iterative DMAP estimator proposed in [31], where all nodes
update their estimates simultaneously.

In order to compute the DSPP, each node utilizes its own local noisy signals, and
only the compressed signals, instead of all of them, from other nodes. The compressed
signals are computed as the enhanced speech signals, estimated by other nodes. Let us
define the K -dimensional vector z = [Z1, Z2, . . . , ZK ]T , containing filtered signals
of all nodes. Also, the (K − 1)-dimensional vector z−k is defined by excluding Zk

from vector z, i.e., z−k = [Z1, Z2, . . . , Zk−1, Zk+1, . . . , ZK ]T . The filtered signal
of node k, Zk , is computed as the estimated speech signal of node k [31]. For each
node, without loss of generality, we consider the first microphone as the reference
microphone. Therefore, Zk is computed as

Zk = G1,kY1,k = G1,k X1,k + G1,kV1,k, (15)

where G1,k represents a deterministic gain applied to the first noisy signal of node
k, Y1,k . It is beyond the scope of this paper to explain the calculation of G1,k , so we
briefly introduce it in the next part and refer to [31] for more details.

It should be noted that under theGaussian statistical assumption for both speech and
noise signals, G1,k X1,k and G1,kV1,k still represent independent Gaussian variables;
so, they satisfy the Gaussian likelihood function, which are crucial to develop the
DSPP estimator. For node k, we define the new distributed noisy vector consisting of
its own local noisy signals, yik , and the received signals zi−k from other nodes, as

ỹik =
[
yik
zi−k

]

(16)

The superscript i denotes the iteration index required by the DMAP algorithm (in
a practical implementation, the iteration index is replaced by the frame index [31],
means that all nodes in each frame, simultaneously update their estimates). Indeed,
the Mk + K − 1 dimensional distributed noisy vector of node k contains the Mk local
noisy signals and K − 1 compressed signals. The (Mk + K − 1) × (Mk + K − 1)
dimensional correlation matrix of the distributed noisy signal is given by

�i
ỹk

= E
{
ỹik ỹ

i H
k

}
= �i

x̃k
+ �i

ṽk
, (17)
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Fig. 1 Comparison of the required transmitted signals in centralized and distributed configurations

where �i
x̃k

and �i
ṽk

denote the distributed speech and noise correlation matrices,
respectively. In practice the distributed noisy correlationmatrix is obtained as follows:

�̂
i
ỹk (l, n) = λy�̂

i
ỹk (l − 1, n) + (1 − λy)ỹik(l, n)ỹi Hk (l, n). (18)

Similarly, in silent frames, the distributed correlation matrix of noise is given by

�̂
i
ṽk (l, n) = λv�̂

i
ṽk (l − 1, n) + (1 − λv)ṽik(l, n)ṽi Hk (l, n). (19)

where ṽik(l, n) denotes the noise component in the signal ỹik(l, n). An estimate of the
distributed correlation matrix of the clean speech signal is given by

�̂
i
x̃k (l, n) = �̂

i
ỹk (l, n) − �̂

i
ṽk (l, n). (20)

Considering two hypothesis

{
H̃ i
1 : ỹik = x̃ik + ṽik, speech is present,

H̃ i
0 : ỹik = ṽik, speech is absent,

(21)

the DSPP of node k at each iteration can be obtained as

DSPPik = p[H̃ i
1|ỹik] = Λ̃

1 + Λ̃
(22)

where Λ̃ = 1 − q

q

p[ỹik |H̃ i
1]

p[ỹik |H̃ i
0]

.

In theory, all elements of ỹik have the same statistical properties (i.e., summation of
two independent Gaussian random variables), leading to the following likelihoods:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

p[ỹik |H̃ i
1] =

1

π M̃ det[�i
x̃k

+ �i
ṽk

] exp{−ỹi Hk [�i
x̃k

+ �i
ṽk

]−1ỹik},

p[ỹik |H̃ i
0] = 1

π M̃ det[�i
ṽk

] exp{−ỹi Hk �i
ṽk

−1
ỹik},

(23)
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where M̃ = Mk + K − 1. Again it is observed that

Λ̃ = 1 − q

q

det[�i
ṽk

]
det[�i

x̃k
+ �i

ṽk
] exp{ỹ

i H
k [�i

ṽk
−1 − [�i

x̃k
+ �i

ṽk
]−1]ỹik} (24)

Finally, the proposed DSPP estimator can be expressed as

DSPPik = {1 + q

1 − q
[1 + ξ̃ i ] exp[ −β̃ i

1 + ξ̃ i
]}−1, (25)

where

ξ̃ i = trace[�i
ṽk

−1
�i

x̃k
], β̃ i = ỹi Hk �i

ṽk
−1

�i
x̃k

�i
ṽk

−1
ỹik . (26)

A comparison between the required number of transmitted signals in centralized
and distributed configurations is illustrated in Fig. 1. In centralized case, each node has
to transmit/receive all signals to/from other nodes; this results in M1(K − 1) + · · · +
MK (K − 1) = M(K − 1) transmitted signals between nodes. Also, the dimension of
correlation matrices in each node are equal M × M . In distributed algorithm, nodes
transmit/receive a filtered signal to/from the other nodes. In this case, each node only
transmits/receives one signal; this results in (K − 1) + · · · + (K − 1) = K (K − 1)
transmitted signals between nodes. In this case, the dimension of correlation matrices
in each node are equal (Mk + K − 1) × (Mk + K − 1). So, this proposed distributed
procedure decreases the number of transmitted signals as well as the dimension of the
correlation matrices, while the cooperation between nodes still exists.

3.1 Simultaneous distributedMAP estimator

In simultaneous distributed MAP estimator, all nodes update their estimates simulta-
neously. Without loss of generality, in each node the first microphone is considered as
the reference microphone. Assuming MAP criteria, the estimator provides an estima-
tion of clean speech signal at the reference microphone in each node. This estimator
aims at maximizing the posterior distribution of the amplitude of the reference speech
signal given the amplitude of the distributed noisy vector at each node [31].

In polar representation, (3) can be written as

Ym,k = Rm,ke
jϑm,k = Am,ke

jαm,k + Vm,k, (27)

where Rm,k , ϑm,k , Am,k and αm,k denote the spectral amplitude and phase of the noisy
signal and the speech signal of the m-th microphone of the k-th node, respectively.
Under the Gaussian statistical assumption of signals, the optimization problem of
simultaneous distributed MAP estimator is written as follows

Âi
1,k = argmax

Ai
1,k

p(Ai
1,k |r̃ik), (28)
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where r̃ik corresponds to the amplitude of the distributed noisy vector, ỹik . The proce-
dure of solving this optimization problem has been explained in [31], indicating that
the enhanced signal is obtained by applying a gain factor to the amplitude of noisy
signal at reference microphone. In other word, the solution of the simultaneous dis-
tributed MAP estimator is Âi

1,k = Ri
1,kG

i
1,k , where at each iteration, (i + 1), the gain

is equal to [31]:

Gi+1
1,k = 1

i
Gi

1,k

+
(

1 − 1

i

)

√
√
√
√

ζ̃ i1,k

γ̃ i
1,k

2 + 2
∑M̃

m=1 ζ̃ im,k

Re

{ M̃∑

m=1

√

ζ̃m,k γ̃m,k

+

√
√
√
√
√

⎛

⎝
M̃∑

m=1

√
ζ̃ im,k γ̃

i
m,k

⎞

⎠

2

+ (2 − M̃)

⎛

⎝1 +
M̃∑

m=1

ζ̃ im,k

⎞

⎠
}

,

(29)

and M̃ = Mk + K − 1. Also, the distributed a priori and a posteriori SNRs are given
by

ζ̃ im,k = (σ̃ i
x (m, k))2

(σ̃ i
v(m, k))2

, γ̃ i
m,k = (R̃i

m,k)
2

(σ̃ i
v(m, k))2

, (30)

where R̃i
m,k is directly computed as the amplitude of the distributed noisy signals.

The distributed variances, σ̃ i
x (m, k) and σ̃ i

v(m, k), can be computed as the diagonal
elements of the distributed speech and noise correlation matrices, respectively.

3.2 Implementation of DSPP

Totally, the proposed DSPP estimator runs as follows:

1. The algorithm is initialized with iteration index i = 0. Also, Gi
1,k , k =

1, 2, . . . , K , are set to with a random positive number between 0 and 1.
2. For each node k = 1, 2, . . . , K , while l <= numberofframes:

– Broadcast Zi
k = Gi

1,kY
i
1,k to the other nodes.

– Collect the vector zi−k .
– Construct the vector ỹik using (16).
– Update the distributed correlation matrices for ỹik , ṽ

i
k and x̃ik .

– Compute the distributed ξ̃ and β̃ using (26).
– Compute the DSPP using (25).
– Compute the distributed a priori and a posteriori SNRs using (30).
– Update the node-specific gain using (29)
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Node 1 Concatenation Update Φi
ỹk

,Φi
ṽk

and Φi
x̃k ξ̃ and β̃

Compute ζ̃ and γ̃

Update G1,1

y1 ỹi
1

Y1,1

Compute DSPP

Sending Zk to other nodes

Recieving zi−k from other nodes

Fig. 2 General schematic of computation of DSPP in node 1

3. i ← i + 1
4. return to step 2.

In practical implementation, the iteration index is replaced by the frame index [31];
so, all nodes in each frame update their estimates simultaneously; this procedure
continuous until the last frame of signal. A general schematic of computation of the
DSPP estimator in node 1 is illustrated in Fig. 2

4 Simulation results

In this section, we evaluate the effect of DSPP estimation on noise reduction perfor-
mance, compared to two benchmark algorithms: (1) the local SPP estimation, and (2)
the centralized SPP estimation. In the case of local SPP estimation, each node only
uses its local noisy signals, yk , recorded by its microphones. 6 In the case of centralized
SPP estimation, each node uses all recorded noisy signals of the whole network, y, as
mentioned in (14).

The performance of the considered SPP estimators, namely centralized, local, and
DSPP estimators, is compared in terms of two objective measures, namely noise leak-
age (NL) and signal distortion (SD) as introduced in [13]. The NL value can be
interpreted as the false alarm rate, which represents the percentage of the noise energy
that the SPP estimator fails to attenuate. The SD value can be interpreted as the miss-
hit rate, which denotes the percentage of speech energy that the SPP estimator fails to
detect; the lower NL and SD values, the better SPP estimation.

During these experiments, the STFT is implemented using NFFT=512 with 50%-
overlapping frames and Hamming analysis window. Also, signals are recorded at
sampling frequency fs = 16 kHz. The initial estimate of noise correlation matrices is
computed from the first ten silence frames where the speech is absent.

6 In the local case, there is no cooperation and consequently no transmitted signals between nodes, and
each node only uses the recorded signals by its own microphones. Indeed, in this case instead of y,�v, and
�x in (14), the information of each node, i.e., yk , �vk , and�xk , are utilized to compute the SPP. Since the
procedure is similar to that of CSPP and it is only required to replace the parameters, we explain this case
briefly.
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Fig. 3 Description of the simulated acoustic scenario

4.1 Performance in simulated scenario

As the performance evaluation on simulated data, we performMonte Carlo simulation
using 85 randomized trials. It is assumed that the consideredWASNcontains 3 nodes in
a rectangular roomwith dimensions 6m× 5.5m× 2.7m (width×length×height)with
reverberation time RT60 = 200 ms. In each trial, the position of the desired speaker,
the interference noise, and the microphones of each node are randomly chosen inside
the assumed room. Also, the number of microphones in each node is randomly chosen
between Mk ∈ 1, . . . , 5. An example of these configurations has been depicted in
Fig. 3.

We use sample utterances of eight male and eight female speakers from the TIMIT
database [12] as the clean speech samples. The presented evaluation results are the
averages on these 16 samples and 85 trials. The microphone signals are corrupted by
additive white Gaussian noise at full-band input SNRs ranging from −10 to 15 dB

(full-band input SNRs = 10 × log

∑ |x1,1(t)|2
∑ |v1,1(t)|2 ).

7

Actually, we have repeated the above-mentioned Monte Carlo simulation three
times (each containing 85 trials) to cover three different cases regarding the existence
of directional interference noise. These cases include: (1) no directional interference,
(2) directional non-stationary babble interference, and (3) directional stationary pink
interference.

The image method [1] is used to generate the room impulse responses between the
sources of the signals (speech and interference) and the microphones. This method is

7 Since the firstmicrophone in the first nodewas considered as the referencemicrophone, the input full-band
SNRs is computed for this microphone.
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Fig. 4 Performance of the centralized SPP estimator, local SPP estimator, and proposed DSPP estimator
in terms of NL and SD for several full-band input SNR, in the presence of white Gaussian noise and no
directional interference, and RT60 = 200 ms

a common way to model the acoustic scenario and to generate a good approximation
of impulse responses between the speaker and the microphones. This method makes
it possible to simulate an acoustic room, using the position of microphones, position
of speaker, the reflection coefficients, room dimensions, and reverberation time.

As can be seen in (25), in order to estimate the proposed DSPP estimator, it is
sufficient to have the values of q, ξ̃ and β̃ in each iteration/frame (in a practical
implementation, the iteration index is replaced by the frame index). The value of q
was considered as a fixed value q = 0.5 as presented in [13]. Based on (26), it is seen
that ξ̃ and β̃ are dependent on the distributed correlation matrices of noise and clean
signals. Also, the proposed DSPP algorithm uses the denoised signal at the reference
microphone,which again only requires to compute the distributed correlationmatrices,
and consequently is dependent only on the second-order statistical properties. In fact,
based on [16], when only noise reduction is of interest, there is no need to compute the
impulse response and also model the dynamic situation. This is one of the advantages
of the proposed DSPP estimator.

To avoid the effect of the errors in estimating noise correlation matrices, first we
consider an oracle situation, where the noise correlation matrices are updated based
on noise signals. Also, we experimentally found that the best performance is obtained
by choosing λy = λv = 0.92.

Figure 4 depicts the performance of the considered SPP estimators in terms of NL
and SD considering the additive white Gaussian noise at full-band input SNRs ranging
from −10 to 15 dB. In this case, we have considered no directional interference. It is
seen that the proposed DSPP estimator delivers less NL than the local SPP estimator,
especially in high SNRs. In terms of SD, the DSPP obtains better performance in low
SNRs; also inmid and high SNRs, the DSPP results in slightly lower speech distortion.
It should be noted that the local SPP estimator needs to compute the inverse of the
Mk×Mk dimensional local noise correlationmatrix,while theDSPPestimator requires
the computation of (Mk + K − 1) × (Mk + K − 1) dimensional distributed noise
correlation matrix. Indeed, the DSPP estimator provides better trade-off between NL
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Fig. 5 Performance of the centralized SPP estimator, local SPP estimator, and proposed DSPP estimator
in terms of NL and SD in the case of non-stationary babble interference signal, when SIR = 5 dB and the
SNR for additive white Gaussian noise ranges from −10 to 15 dB, RT60 = 200 ms

and SD rather than the local SPP estimator. This can be justified by considering the
fact that the DSPP estimator utilizes the information of the other nodes as well as
its local observations. Considering the centralized SPP estimator, we observe that the
centralized SPP makes a better trade-off between these two measures, attenuating
more noise while speech signal is preserved more effectively. It should be noted that
the centralized SPP estimator needs to compute the inverse of the M×M dimensional
centralized noise correlation matrix, leading considerable increase in computational
complexity.

In the next series of experiments, we also add two different directional interfer-
ence signals, non-stationary babble and stationary pink at full-band input signal to
interference ratio (SIR) = 5 dB.

Figures 5 and 6, respectively, present the performance results for the cases that
” non-stationary babble” or ”stationary pink” noise is considered as the directional
interference. These figures illustrate the performance of the considered SPP estimators
in terms of NL and SD when the SNR for additive white Gaussian noise ranges from
−10 to 15 dB, while maintaining the level of interference at SIR = 5 dB. It is seen
that in the presence of interference signals the same trend is observed for NL and
SD. As expected, the best performance is obtained by the centralized SPP estimator.
However, this comes at the price of more transmitted signals. On the other hand,
the local SPP estimator results in the worst performance, while requiring the lowest
complexity. These figures demonstrate that the performance and the required number
of transmitted signals of the proposed DSPP estimator lies between the local and the
centralized SPP estimators.

4.2 Performance in realistic scenario

In the following we use the data recorded in a laboratory located at the University of
Oldenburg [31] for the evaluations. The laboratory dimension is (x = 7 m, y = 6
m, z = 2.7 m) with reverberation time RT60 � 350 ms. We considered a WASN
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Fig. 6 Performance of the centralized SPP estimator, local SPP estimator, and proposed DSPP estimator in
terms of NL and SD in the case of stationary pink interference signal, when SIR = 5 dB and the SNR for
additive white Gaussian noise ranges from −10 to 15 dB, RT60 = 200 ms

containing 3 nodes. The first node, including 2 microphones corresponds to a hearing
aid with the intra space � 7.6 mm, placed in the middle of the room. The second
node consists of two microphones located at (x = 4.64 m, y = 4.13 m, z = 2 m)

and (x = 4.64 m, y = 2.63 m, z = 2 m), respectively, and the third node consists of
one microphone located at (x = 2.36 m, y = 4.13 m, z = 2 m). The speech signal is
a 24 s. utterance from a male speaker, played by a loudspeaker located at (x = 4.64
m, y = 4.63 m, z = 2 m). The microphones record the received signals at sampling
frequency fs = 16 kHz. Also, in this case, we found that the best performance is
achieved by choosing λy = λn = 0.985.

Figure 7 illustrates the spectrogram of the clean speech signal, along with the
resulting local SPP, proposed DSPP and centralized SPP estimations at the first node
in the presence of stationary white Gaussian noise at full-band input SNR = 5 dB. It
can be seen that the DSPP estimator outperforms the local SPP estimator, which only
considers its recorded signals, especially in high frequencies. Also, it is observed that
the DSPP provides SPP which is similar to that from the centralized SPP estimator
(i.e., SPP is close to one when speech is present and close to zero in speech absence).
Compared to the distributed case, the centralized SPP estimator requires to transmit
M(K − 1) signals instead of K (K − 1).

In the following, we have also considered a more practical situation, where four
loudspeakers were used to generate the realistic noises. These loudspeakers were
facing the corners of the laboratory and playing different realizations of babble and
factory noises, respectively.

Also, to update the noise correlationmatrices, we use the recursive approach as pro-
posed in [33], where only noisy signals are available. In this case, the noise correlation
matrices, e.g., the centralized one is given by:

�̂v(l, n) = λv�̂v(l − 1, n) + (1 − λv)y(l, n)yH (l, n). (31)

with λv = λn + (1 − λn)CSPP(l, n), where λn denotes the forgetting factor. It is
observed that the value of CSPP is required for the computation of �v; on the other
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Fig. 7 a Spectrogram of clean signal, b the local SPP estimates, c the distributed SPP estimates, and d the
central SPP estimates (full-band input SNR = 5 dB, stationary white Gaussian noise, RT60 = 350 ms)

hand, the CSPP depends on the �v. Thus, in [33] the authors proposed an iterative
algorithm for this issue. In the first step, the noise correlation matrix of the previous
frame is used to estimate an initial CSPP; in the second step, the initial CSPP is used
to update the forgetting factor, and consequently the noise correlation matrix. It is
mentioned in [33] that two repetitions of this procedure are quite enough.

We assume that the first 10 frames consist of noise only, and accordingly use them
to obtain an initial correlation matrix of noise and noisy signal. Considering [33], the
noise correlation matrix is briefly computed as follows:

– Compute the initial correlationmatrix of noisy signal using (6) for thefirst linit = 10
frames.

– Set �̂v(l, n) ←− �̂y(l, n), l ≤ linit
– Set CSPP(l, n) = 0, l ≤ linit
– For l > linit

1. Use �̂v(l − 1, n) to compute the initial CSPPinit(l, n) according to (14)
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2. Smooth the CSPPinit(l, n) as

ˆCSPPsmooth−init(l, n) = λpCSPP(l − 1) + (1 − λp)CSPPinit(l, n), (32)

3. Compute the initial estimate of λv as :

λv = λn + (1 − λn) ˆCSPPsmooth−init(l, n) (33)

4. Compute the first estimation of �̂v(l, n) as λv�̂v(l − 1, n) + (1 − λv)y(l, n)

yH (l, n),

5. Use �̂v(l, n) instead of �̂v(l − 1, n) to perform step (1) and compute the
CSPP(l, n)

6. Update the forgetting factor for noise

λv = λn + (1 − λn)CSPP(l, n) (34)

7. Compute the noise correlation matrix using (31)

Figure 8 depicts the performance of the considered SPP estimators in terms of
NL and SD in the presence of different additive noises (including babble and factory
noises), in realistic scenario. For babble noise, Fig. 8a shows that the noise leakage
obtained by the DSPP estimator is superior than both the centralized and the local
SPP estimators, in low and mid SNRs. This can be justified by the fact that the DSPP
estimator needs to compute the inverse of smaller matrix (i.e., (Mk + K −1)× (Mk +
K −1) dimensional) compared to the centralized matrix (i.e., M×M dimensional). In
general, matrices with smaller dimensions yield a smaller estimation errors compared
to those with larger dimensions. It is also seen that the centralized SPP estimator
outperforms the others at SNR = 15dB. For factory noise case, Fig. 8b indicates that
the proposed DSPP estimator delivers the best performance in low SNRs. In mid and
high SNRs the centralized SPP estimator outperforms the others.

Concerning the SD, for both the babble and the factory noises, the usual trade-off
between noise leakage and signal distortion is more evident in Fig. 8c, d. At SNR
= −10 dB, the DSPP estimator results in the lowest NL and the highest SD. In mid
and high SNRs, we observe that the local SPP estimator obtains the highest value of
NL and the lowest SD. Also, it is seen that the performance of DSPP estimator lies
between the local and centralized SPP estimators in mid and high SNRs.

5 Conclusion

In thiswork,weproposed aDSPPestimation technique that is employed in a distributed
noise reduction algorithm. We utilized a simultaneous iterative DMAP estimator, in
which the compressed signal is computed as the estimated speech signal.We compared
the performance of the proposed estimator with the local and centralized counterparts
in terms of noise leakage and signal distortion. The evaluations were done on both
simulated and real recorded signals. The results show that when the noise signal is a
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Fig. 8 Performance of the centralized SPP estimator, local SPP estimator, and proposed DSPP estimator in
terms of NL and SD for several full-band input SNRs, in the presence of babble noise (first column), and
factory noise (second column), when noisy signals are available, RT60 = 350 ms

mixture of both point source interference (including babble, pink and factory noises)
and additive white noise, our proposed technique yields good performance, while it
considerably decreases the number of transmitted signals compared to the centralized
one. Indeed, the proposed DSPP estimator provides a good trade-off between the
number of transmitted signals, as an indicator of computational complexity, and the
detection accuracy, as a measure of system performance. Indeed, compared to the
centralized mode, which each node has direct access to all recorded signals in the
whole network, theDSPPestimator requires less transmitted signals and, consequently,
less computational complexity. On the other hand, compared to the local case, which
there is no connection and cooperation between different nodes, the DSPP estimator
provides better performance.

In this work, the DSPP estimator was derived using the DMAP estimator, which
considersMAPcriteria to estimate the clean speech signal. Although the proposed esti-
mator delivers good performance, other estimation method, especially Kalman filter
which overcomes both dynamic and non-Gaussian noise scenarios, can be considered
in the future works.
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In current work, benefiting a fully connected structure inWASN, a DSPP estimator
was derived. The proposed DSPP estimator can be considered as a starting point for
computing speech presence probability inWASNs in a distributed way. Utilizing other
structures like tree structure or graph-theory based ones would be suggested as topics
for future work. As an example, utilizing the graph concept, it is possible to replace
the reference microphone of each node by an enhanced signal from another node with
higher SNR and achieve better performance improvement.

A combination of the currentworkwith some other techniques (e.g., considering the
spatial temporal correlation, or implementation in the Cepstrum domain, which were
mostly considered for singlemicrophone cases) canbeworthwhile for the futureworks.
In addition, other statistical distributions for both speech and noise have also been
considered in the speech-related applications. Although the proposed DSPP estimator
provides good performance in the presence of non-Gaussian interference noises, a
theoretical derivation of distributedSPP estimation based onnon-Gaussian distribution
would be suggested.
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