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Abstract
In this paper, we study the problem of passivity analysis of fractional-order neural
networks (FONNs) with a time-varying delay. By using the Razumikhin fractional-
order theorem, we first derive an improved sufficient criterion for asymptotic stability
of FONNs with a bounded time-varying delay. Then, based on the proposed stability
criterion and some auxiliary properties of fractional calculus, a delay-dependent con-
dition is established to ensure the passivity of the considered system. These conditions
are order-dependent and in the form of linear matrix inequalities, which therefore can
be efficiently solved in polynomial time by using the existing convex algorithms. Some
numerical examples are provided to show the effectiveness of the obtained results.

Keywords Caputo fractional-order · Neural networks · Asymptotic stability ·
Passivity analysis · Time-varying delays · Linear matrix inequality

1 Introduction

In recent years, FONNs have attracted considerable research attention. Compared
with integer-order neural networks (IONNs), FONNs can represent the real dynamic
characteristics of actual network systems more accurately. As a consequence, many
important and interesting results on FONNs have been reported and various issues
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have been studied by many authors, such as asymptotic stability [18,19,30,37,47,51],
finite-time stability [7,36,41,45,49], guaranteed cost control [39,42], synchronization
analysis [1,5,26–29,32,46,52,53,56,57], H∞ control problem [43] and so on.

On the other hand, passivity theory plays an important role in network control the-
ory [31]. Passivity performance analysis has also been extensively applied in various
areas such as signal processing, fuzzy control, power system, robot system and so on.
In the recent years, many important results on passivity analysis for continuous-time
or discrete-time integer-order dynamical systems have been reported in the litera-
ture [3–5,8,10,14,20,22–24,40,48,50,54,55,58]. For example, by using a second-order
Bessel–Legendre inequality, the authors in [58] derived some improved passivity cri-
terion for neural networks with a bounded time-varying delay. The conditions were
expressed in terms of linearmatrix inequality (LMI). Somepassivity criteria for IONNs
with discrete bounded time-varying delay were presented in [24] by constructing a
suitable augmented Lyapunov–Krasovskii functional with an extended free-weighting
matrices integral inequality. By constructing an improved Lyapunov–Krasovskii func-
tional with a novel delay-produce-type term and combining with a free-matrix-based
integral inequality, the problem of passivity analysis for uncertain IONNs with mixed
bounded time-varying delays was addressed in the work of Ge at el. [13]. The authors
in [5] investigated the passivity analysis problem for BAM neural networks with leak-
age, discrete, distributed delays and uncertainties by using a Wirtinger-based integral
inequality combined with some novel summation inequalities. Based on the stochastic
analysis theory combined with the LMI techniques, passive synchronization problems
for Markov jump neural networks with randomly occurring gain variations have been
considered in the work of Dai et al. [10]. With the help of stochastic analysis theory
and the Lyapunov–Krasovskii functional method, the authors in [34] considered the
problem of passive gain-scheduling filtering for Markov jump linear parameter vary-
ing systems with fading channels. Recently, reliable event-triggered asynchronous
extended passive control problems for semi-Markov jump fuzzy systems have been
considered by Shen et al. [35]. Summarizing these results, we can see that the methods
used in existing works mainly based on the Lyapunov–Krasovskii functional method
combined with the LMI techniques. Noting that the passivity analysis problem of
fractional-order dynamical systems is more complex and difficult than that of integer-
order dynamical systems due to the fact that fractional derivatives are nonlocal and
have weakly singular kernels. This is the main reason that there have been very few
results on passivity analysis for fractional-order systems [9,11,33]. Very recently, the
authors in [11] solved the passivity analysis problem for FONNs for the first time by
using the LMI techniques and control theories. Note that the results derived in [11]
were for FONNs without time delays and applied only for order-independent passivity
analysis. It is well known that time delay is very encountered in various systems, and
its existence may cause undesirable system transient response and instability. When
time delay is small, it is obvious that delay-dependent stability conditions are less
conservative than delay-independent ones. To the best of our knowledge, the problem
of passivity analysis for FONNs with a time-varying delay has not yet been investi-
gated in the literature. Therefore, the main goal of this paper is to present a simple
and easily verifiable delay-dependent and order-dependent criteria for the passivity
analysis problem of FONNs with a bounded time-varying delay.
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In this paper, we study the passivity analysis problem for FONNs with a bounded
time-varying delay. The main contributions of this paper are summarized as follows:

– A less conservative delay-dependent and order-dependent stability criteria for
asymptotic stability of FONNs with a bounded time-varying delay is investigated
based on Razumikhin fractional-order theorem and the LMI techniques;

– Based on the proposed stability criteria and some auxiliary properties of fractional
calculus, the problem of passivity analysis for FONNs with a time-varying delay
is solved for the first time;

– Some new sufficient criterion is derived in terms of LMI, which can be effectively
solved in polynomial time by various computational tools;

– Some numerical examples are given to show that our results are less conservative
compared to some existing works.

The organization of this paper is as follows. In Sect. 2, we provide some definitions,
notations and auxiliary lemmas which will be used in the proof of the main results.
We present our main results on passivity analysis for FONNs with a bounded time-
varying delay in Sect. 3. Four numerical examples are provided in Sect. 4 to illustrate
the effectiveness of the proposed method.

Notations The notation used in this paper is standard. Let Rn and R
n×m denote

the n-dimensional Euclidean space with vector norm ‖.‖ and the set of n × m
matrices, respectively. In and 0n denote the n × n dimensional identity and zero
matrix, respectively. 0n×m denote the n × m dimensional zero matrix. For matrices

P, Q ∈ R
n×m , diag{P, Q} denotes the block matrices

[
P 0
0 Q

]
. sym(P) stands for

P + PT . A matrix P is symmetric positive definite, write P > 0, if P = PT and
xT Px > 0,∀x ∈ R

n, x �= 0. A matrix Q is symmetric semi-positive-definite, write
Q ≥ 0, if Q = QT and xT Qx ≥ 0,∀x ∈ R

n . L p([0, T ]), p ≥ 1 denotes the space of
all p− integrable functions on [0, T ]. The segment of the trajectory x(t) is denoted
by xt = {x(t + s) : s ∈ [−δ, 0]} with its norm ‖xt‖ = sups∈[−δ,0] ‖x(t + s)‖. Let
S
n+ and S

n++ denote the set of symmetric semi-positive-definite and the set of sym-
metric positive definite matrices in R

n×n , respectively. We also denote by D
n++ the

set of positive diagonal matrices, that is, a matrix Λ = diag{λ1, . . . , λn} ∈ D
n++ if

λi > 0 (i = 1, 2, . . . , n).

2 Problem Statement and Preliminaries

We first give some basic concepts of fractional calculus from [17] for later use. The
Riemann–Liouville integral Iμ

t f (t), the Riemann–Liouville derivative RD
μ
t and the

Caputo fractional derivative Dμ
t f (t) are defined for f ∈ L1[0,+∞), μ ∈ (0, 1) as

follows, respectively:

Iμ
t f (t) = 1

Γ (μ)

∫ t

0
(t − s)μ−1 f (s) ds,

RD
μ
t f (t) = d

dt

(
I 1−μ
t f (t)

)
,
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Dμ
t f (t) = RD

μ
t ( f (t) − f (0)) ,

where Γ (.) is the gamma function, Γ (s) =
∞∫
0
e−t t s−1dt, s > 0.

We recall some useful properties about fractional-order calculus.
P1 ([17]): For any constants λ1, λ2, and two functions f (t), g(t), we have

Dμ
t (λ1 f (t) + λ2g(t)) = λ1D

μ
t f (t) + λ2D

μ
t g(t).

P2 ([17]): If f (t) ∈ Cn([0,+∞),R) and n − 1 < μ < n, (n ≥ 1, n ∈ Z
+), then

Iμ
t

(
Dμ
t f (t)

) = f (t) −
n−1∑
j=0

t j

j ! f
( j)(0).

In particular, when 0 < μ < 1, we have

Iμ
t

(
Dμ
t f (t)

) = f (t) − f (0).

P3 ([17]): If f (t) is a continuous function, then we have

Iμ1
t

(
Iμ2
t f (t)

) = Iμ2
t

(
Iμ1
t f (t)

) = Iμ1+μ2
t ( f (t)),∀t ≥ t0.

Consider the followingCaputo fractional-order neural networkswith a time-varying
delay:

⎧⎪⎨
⎪⎩

Dμ
t x(t) = −Ax(t) + W1g(x(t)) + W2g(x(t − δ(t))) + u(t)

z(t) = C1g(x(t)) + C2g(x(t − δ(t)) + C3u(t),

x(t) = φ(t), t ∈ [−δ, 0],
(1)

where μ ∈ (0, 1], x(t) ∈ R
n is the neuron state vector, n is the number of neurons

in FONNs, z(t) ∈ R
n is the output vector and u(t) ∈ R

n is the external input of the
network, g(x(t)) = (g1(x1(t)), g2(x2(t)), . . . , gn(xn(t)))T ∈ R

n denotes the neu-
ron activation function, W1 = (w1

i j )n×n,W2 = (w2
i j )n×n,C1,C2,C3 ∈ R

n×n, A =
diag{a1, . . . , an} ∈ D

n++ (ai > 0, i = 1, 2, . . . , n), are known constant matrices, the
initial condition φ(t) is a vector-valued continuous function.

Before proceeding further, we need the following assumptions:
(H1): The time-varying delay function δ(t) is continuous and satisfying

0 ≤ δ(t) ≤ δ, (2)

where δ is known constant.
(H2): The activation functions gi (.) are continuous, gi (0) = 0(i = 1, 2, . . . , n) and
satisfy the following condition

l−i ≤ gi (a) − gi (b)

a − b
≤ l+i , i = 1, 2, . . . , n, (3)
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where a, b ∈ R, a �= b, and l−i , l+i are known real scalars.

Remark 1 The constants l−i and l+i are allowed to be positive, negative or zero. There-
fore, condition (2) is less restrictive than the descriptions on both Lipschitz-type
activation functions and sigmoid activation functions when analyzing the stability
or stabilization of FONNs.

Definition 1 ([55]) System (1) is said to be passive if the following conditions are
satisfied:

(i) With zero output vector and zero external input vector, system (1) is asymptotically
stable.

(ii) With zero initial condition, i.e., φ(t) = 0,∀t ∈ [−δ, 0], there exists a positive
number γ > 0 such that

2
∫ t f

0
zT (t)u(t)dt ≥ −γ

∫ t f

0
uT (t)u(t)dt,∀t f ≥ 0,

where z(t) is the output vector of the system and u(t) is external input in the system
which belongs to L2[0,∞).

Now, we present several technical lemmas which are essential in order to prove the
main results of this paper.

Lemma 1 ([12]) Let x(t) ∈ R
n be a vector of differentiable function. Then, for any

time instant t ≥ t0, the following relationship holds

1

2
Dα
t

(
xT (t)Px(t)

)
≤ xT (t)PDα

t x(t), ∀α ∈ (0, 1),∀t ≥ 0.

where P ∈ R
n×n is a symmetric positive definite matrix.

Lemma 2 [21] Assume that there exist three positive constants a1, a2, a3 and a
quadratic Lyapunov function V (.) : R+ × R

n → R
+ such that

(i) a1‖x(t)‖2 ≤ V (t, x(t)) ≤ a2‖x(t)‖2, t ≥ 0, x ∈ R
n and

(i i) Dμ
t V (t, x(t)) ≤ −a3‖x(t)‖2 whenever V (t+s, x(t+s)) < ρV (t, x(t)),∀s ∈

[−h, 0], t ≥ 0, for some ρ > 1, then the zero solution of delayed fractional-order
system Dμ

t x(t) = f (t, xt ), μ ∈ (0, 1), is asymptotically stable.

3 Main Results

In order to solve the problem of passivity analysis for FONNs with a time-varying
delay (1), we first present a new stability result for system (1) with zero output vector
and zero external input vector. Let us denote

e j = [
0n×( j−1)n In 0n×(5− j)n

]
, j = 1, . . . , 5.
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Theorem 1 Assume that the assumptions (H1)–H(2) hold. System (1) with u(t) ≡
0, z(t) ≡ 0 is asymptotically stable if there exist matrices P, Q ∈ S

n++, a matrix
X ∈ S

5n+ , three matrices Λi = diag{λi1, λi2, . . . , λin} ∈ D
n++ (i = 1, 2, 3) such that

the following LMI holds

Ω = δμμ−1Υ T XΥ +
3∑

i=1

Ωi < 0, (4)

where

Υ = [
eT1 eT2 eT3 eT4 eT5

]T
, Σ1 = diag{l−1 , . . . , l−n }, Σ2 = diag{l+1 , . . . , l+n },

Υ1 = e3 − Σ1e1, Υ2 = Σ2e1 − e3,

Υ3 = e4 − Σ1e2, Υ4 = Σ2e2 − e4,

Υ5 = e3 − e4 − Σ1 (e1 − e2) , Υ6 = Σ2 (e1 − e2) − e3 + e4,

Ω1 = sym
(
eT1 Pe5 − eT1 Qe5 + eT1 QW1e3 + eT1 QW2e4 − eT5 QAe1+

eT5 QW1e3 + eT5 QW2e4
)

,

Ω2 = eT1
[
−QA − AT Q + P

]
e1 − eT2 Pe2 + eT5 (−2Q)e5,

Ω3 = sym
(
Υ T
1 Λ1Υ2 + Υ T

3 Λ2Υ4 + Υ T
5 Λ3Υ6

)
.

Proof Consider the following Lyapunov function for the system (1) with u(t) ≡
0, y(t) ≡ 0 :

V (t) = V (t, x(t)) = xT (t)Px(t).

It is easy to check that

λmin(P)‖x(t)‖2 ≤ V (t) ≤ λmax(P)‖x(t)‖2.

Hence, condition (i) in Lemma 2 is guaranteed. By using Lemma 1, the Caputo frac-
tional derivative orderμ of system (1) with u(t) ≡ 0, z(t) ≡ 0 is calculated as follow:

Dμ
t V (t) ≤ 2xT (t)PDμ

t x(t) = ξ T (t)sym
(
eT1 Pe5

)
ξ(t), (5)

where ξ(t) =
[
xT (t) xT (t − δ(t)) gT (x(t)) gT (x(t − δ(t)))

(
Dμ
t x(t)

)T ]T
. For any

a matrix Q ∈ S
n++, the following equation can be obtained by using FONNs system

(1) with zero output vector and zero external input vector

[
2xT (t) + 2(Dμ

t x(t))
T
]
Q

[−Dμ
t x(t) − Ax(t) + W1g(x(t)) + W2g(x(t − δ(t)))

] = 0.

(6)
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For any a matrix X ∈ S
5n+ , the following estimate holds

δμμ−1ξ T (t)Xξ(t) −
∫ t

t−δ(t)
(t − s)μ−1ξ T (t)Xξ(t)ds

= δμμ−1ξ T (t)Xξ(t) + ξ T (t)Xξ(t)
(t − s)μ

μ

∣∣∣∣
s=t

s=t−δ(t)

= δμμ−1ξ T (t)Xξ(t) − δμ(t)μ−1ξ T (t)Xξ(t)

≥ 0.

(7)

From Assumption (H2), it can be deduced that for any λ j i > 0, ( j = 1, 2, 3, i =
1, 2, . . . , n),

2
(
gi (xi (t)) − l−i xi (t)

)
λ1i

(
l+i xi (t) − gi (xi (t))

) ≥ 0,

2
(
gi (xi (t − δ(t))) − l−i xi (t − δ(t))

)
λ2i

(
l+i xi (t − δ(t)) − gi (xi (t − δ(t)))

) ≥ 0,

2
(
gi (xi (t)) − gi (xi (t − δ(t))) − l−i (xi (t) − xi (t − δ(t)))

)
λ3i

× (
l+i (xi (t) − xi (t − δ(t))) − gi (xi (t)) + gi (xi (t − δ(t)))

) ≥ 0,

which imply

2ξ T (t)Υ T
1 Λ1Υ2ξ(t) ≥ 0,

2ξ T (t)Υ T
3 Λ2Υ4ξ(t) ≥ 0,

2ξ T (t)Υ T
5 Λ3Υ6ξ(t) ≥ 0.

(8)

Since V (t, x(t)) = xT (t)Px(t), in the light of Lemma 2, we assume that for some
real number ρ > 1 such that

V (t + s, x(t + s)) < ρV (t, x(t)),∀s ∈ [−δ, 0],

we obtain

ρxT (t)Px(t) − xT (t − δ(t))Px(t − δ(t)) > 0. (9)

Combining estimates (5)–(9), we then obtain

Dμ
t V (t, x(t)) ≤ ξ T (t)Ω̂ξ(t) −

∫ t

t−δ(t)
(t − s)μ−1ξ T (t)Xξ(t)ds, (10)

Ω̂ = δμμ−1Υ T XΥ + Ω1 + Ω̂2 + Ω3,

Ω̂2 = eT1
[
−QA − AT Q + ρP

]
e1 − eT2 Pe2 + eT5 [−2Q]e5.
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Since ρ > 1 is an arbitrary parameter and the left-hand side function Dμ
t V (t, x(t))

does not dependent on ρ, then taking ρ → 1+, the inequality (10) leads to

Dμ
t V (t, x(t)) ≤ ξ T (t)Ωξ(t) −

∫ t

t−δ(t)
(t − s)μ−1ξ T (t)Xξ(t)ds, (11)

Since
∫ t
t−δ(t)(t − s)μ−1ξ T (t)Xξ(t)ds ≥ 0, we have

Dμ
t V (t, x(t)) ≤ ξ T (t)Ωξ(t). (12)

From (4), we have Dμ
t V (t, x(t)) < 0. Thus, condition (ii) in Lemma 2 is also sat-

isfied. Thus, system (1) with zero output vector and zero external input vector is
asymptotically stable. The proof of theorem is completed. ��
Remark 2 In [51], the authors considered the problem of stability analysis for system
(1) with zero output vector and zero external input. However, they derived delay-
independent stability criteria for the considered system with a constant time delay. In
Theorem 1, we proposed delay-dependent and order-dependent stability criteria for
system (1) (u(t) ≡ 0, z(t) ≡ 0) with a time-varying delay by using the fractional-
order Razumikhin theorem and the LMI approach. Therefore, the obtained result in
Theorem 1 is less conservative than the existing results [6,51].

Based on the proposed stability criteria of Theorem 1 and some auxiliary properties
of fractional calculus, we will solve the problem of passivity analysis for FONNs (1).
For the simplicity of matrix representation, we denote

r j = [
0n×( j−1)n In 0n×(6− j)n

]
, j = 1, . . . , 6.

Theorem 2 Assume that the assumptions (H1)–H(2) hold. System (1) is passive
if there exist matrices P, Q ∈ S

n++, a matrix X ∈ S
5n+ , three matrices Λi =

diag{λi1, λi2, . . . , λin} ∈ D
n++ (i = 1, 2, 3) and a scalar γ > 0 such that the fol-

lowing LMI holds

Ξ = δμμ−1ΠT XΠ +
3∑

i=1

Ξi < 0 (13)

where

Π = [
rT1 rT2 rT3 rT4 rT5

]T
,

Π1 = r3 − Σ1r1, Π2 = Σ2r1 − r3,

Π3 = r4 − Σ1r2, Π4 = Σ2r2 − r4,

Π5 = r3 − r4 − Σ1 (r1 − r2) , Π6 = Σ2 (r1 − r2) − r3 + r4,

Σ1 = diag{l−1 , . . . , l−n }, Σ2 = diag{l+1 , . . . , l+n },
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Ξ1 = sym

(
rT1 Pr5 − rT1 Qr5 + rT1 QW1r3 + rT1 QW2r4 + rT1 Qr6 − rT5 QAr1

+ rT5 QW1r3 + rT5 QW2r4 + rT5 Qr6 − rT3 C
T
1 r6 − rT4 C

T
2 r6

)
,

Ξ2 = rT1
[
−QA − AT Q + P

]
r1 − rT2 Pr2 + rT5 (−2Q)r5 + rT6

(
−C3 − CT

3 − γ I
)
r6,

Ξ3 = sym
(
ΠT

1 Λ1Π2 + ΠT
3 Λ2Π4 + ΠT

5 Λ3Π6

)
.

Proof Whenever u(t) ≡ 0, z(t) ≡ 0, (13) implies (4). It follows from Theorem 1,
system (1) with zero output vector and zero external input vector is asymptotically
stable. To show the passivity analysis of system (1),we consider theLyapunov function
as considered in the proof of Theorem 1. By using the same technique as in Theorem
1, we obtain the following estimate

Dμ
t V (t) − 2zT (t)u(t) − γ uT (t)u(t) ≤ ηT (t)Ξη(t), (14)

where η(t) =
[
xT (t) xT (t − δ(t)) gT (x(t)) gT (x(t − δ(t)))

(
Dμ
t x(t)

)T
uT (t)

]T
.

From (13), we get

Dμ
t V (t) − 2zT (t)u(t) − γ uT (t)u(t) < 0, ∀t ≥ 0. (15)

Integrating (15) with respect to t from 0 to t f , we get

I 1t f D
μ
t f V (t f ) − 2

∫ t f

0
zT (t)u(t)dt −

∫ t f

0
γ uT (t)u(t)dt < 0. (16)

By using properties P2 and P3 on fractional-order calculus, we obtain

I 1t f D
μ
t f V (t f ) = I 1−μ

t f Iμ
t f D

μ
t f V (t f )

= I 1−μ
t f

(
Iμ
t f D

μ
t f V (t f )

)

= I 1−μ
t f

(
V (t f ) − V (0)

)
= I 1−μ

t f V (t f ) − I 1−μ
t f V (0).

On the other hand, we have

I 1−μ
t f V (t f )

= 1

Γ (1 − μ)

∫ t f

0
(t f − t)−μxT (t)Px(t)dt ≥ 0,∀t f ≥ 0.

Under zero initial condition, we can get the following estimate

I 1−μ
t f V (0)
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= 1

Γ (1 − μ)

∫ t f

0
(t f − t)−μxT (0)Px(0)dt = 0,∀t f ≥ 0.

Hence, I 1t f D
μ
t f V (t f ) ≥ 0,∀t f ≥ 0 with zero initial condition. Therefore, we have

J =
∫ t f

0

(
−2zT (t)u(t) − γ uT (t)u(t)

)
dt < 0,∀t f ≥ 0.

Hence,

2
∫ t f

0
zT (t)u(t)dt > −γ

∫ t f

0
uT (t)u(t)dt, ∀t f > 0.

This completes the proof. ��
Remark 3 In [11], the authors used the Lyapunov direct method to derive order-
independent passivity analysis criteria for FONNs without time delays. Here, we
use the fractional Razumikhin theorem combined with some auxiliary properties of
fractional calculus to obtain delay-dependent and order-dependent passivity analysis
criteria for Caputo fractional-order neural networks with a time-varying delay. The
model considered in this paper is more general, and our results are less conservative
than the results in [11].

Remark 4 LMIs are useful tool for solving a wide variety of optimization and control
problems. LMI-based conditions are solvable in polynomial time. In the literature,
many efficient software packages such as Matlab’s LMI Control Toolbox, SP program
and LMITOOL [44] have been developed to solve LMI problems. The LMI condition
(4) in Theorem 1 (or (13) in Theorem 2) contains only five unknown matrices, one
weighting-free matrix (or five unknown matrices, one weighting-free matrix, and a
scalar) and depends on the parameters of the system under consideration as well as
the delay bound. Therefore, these conditions can be easily verified by using existing
efficient software packages.Tofind the feasible solutionof theLMI in the case of bigger
LMIs in size, it can be solved by the interior point algorithms in convex optimization
technique and the LMI toolbox inMATLAB. Yet, there is an increase in computational
time.

Remark 5 The bounded time-varying delay is considered in Theorem 1 and Theorem
2, if system (1) degenerates into ones with constant time delays, i.e., δ(t) = δ, these
results are still new and available. In future works, we will consider the problem of
passivity analysis for some kind of FONNs with unbounded time-varying delays by
using the method in [15] combined with LMI approach.

Remark 6 In the recent years, many results have been presented for passivity analysis
of integer-order dynamical systems with time-varying delays [14,22–24,38,40,48,50,
54,58]. Since the fact that fractional derivatives are nonlocal and have weakly sin-
gular kernels, these approaches could not be extended to FONNs easily. This is the
main reason that there are very few results on passivity analysis for FONNs. By using
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Fig. 1 State trajectories of the system in Example 1

fractional-order Razumikhin theorem and some auxiliary properties on fractional cal-
culus, we have solved the problem of passivity analysis for Caputo FONNs with a
bounded time-varying delay for the first time. The method used in Theorem 2 can be
regarded as an extension of the problem of passivity analysis for IONNs with bounded
time-varying delays to fractional-order ones. Theorem 2 of this paper is new and has
not been reported anywhere else in the literature.

Remark 7 In this paper, we consider the problem of passivity analysis for Caputo
FONNswith a bounded time-varying delay. For the passive control problem of FONNs
with bounded or unbounded time-varying delays, how to construct the output feedback
controller, dynamic output feedback controller [9], the observer-based controller [25]
or adaptive feedback controller [28] to solve the problem are interesting problems.
These require further investigation in future works.

4 Numerical Examples

This section provides four numerical examples to show the effectiveness of the
obtained results in this paper.

Example 1 Consider the FONNs (1) with u(t) ≡ 0, z(t) ≡ 0 and the following param-
eters

A =
[
0.8 0
0 0.9

]
, W1 =

[−0.05 0.01
0.23 0.01

]
, W2 =

[−0.01 0.12
0.11 0.01

]
,

C1 = C2 = C3 = 02,

μ = 0.9.

The time delay is chosen as δ(t) ≡ δ = 1. The activation function is given by

g(x(t)) = (tanh x1(t), tanh x2(t))
T ∈ R

2.
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Hence, l−1 = l−2 = −1, l+1 = l+2 = 1. We will show that the result in [6] cannot

be applied in this example. By computing, we have ‖W ∗
1 ‖ =

2∑
i=1

max
1≤ j≤2

{|w1
i j |l+j } =

0.24, ‖W ∗
2 ‖ =

2∑
i=1

max
1≤ j≤2

{|w2
i j |l+j } = 0.23 and a = min{1 − amax, amin}, where

amax = max
1≤i≤2

{ai } = 0.9, amin = min
1≤i≤2

{ai } = 0.8. Hence, a = 0.1. Therefore,

‖W ∗
1 ‖ + ‖W ∗

2 ‖ = 0.47 > a = 0.1 fails to satisfy the condition ‖W ∗
1 ‖ + ‖W ∗

2 ‖ < a
of Theorem 1 in [6]. However, by using LMI Control Toolbox in MATLAB [2], the
LMI (4) in Theorem 1 is feasible with

P =
[
35.6448 −0.0734
−0.0734 25.8804

]
, Q =

[
38.1943 4.6044
4.6044 22.5124

]
, Λ1 =

[
2.1203 0

0 1.1505

]
,

Λ2 =
[
8.6505 0

0 6.8448

]
, Λ3 =

[
1.1170 0

0 0.6274

]
,

X =

⎡
⎢⎢⎢⎢⎢⎢⎣

10.6959 1.5725 1.0797 0.0045 −0.0107 −0.0090 −0.0866 −2.3619 17.7301 4.5257
1.5725 5.1638 0.0129 0.5905 −0.0603 −0.0061 −1.1958 −0.4250 4.8263 8.5187
1.0797 0.0129 7.4599 −0.0403 −0.0065 −0.0008 0.0039 −0.0013 0.0536 −0.0115
0.0045 0.5905 −0.0403 5.0246 −0.0025 −0.0003 −0.0014 0.0010 0.0081 0.0113

−0.0107 −0.0603 −0.0065 −0.0025 2.9745 0.0005 −1.0441 0.0025 0.3998 −2.4481
−0.0090 −0.0061 −0.0008 −0.0003 0.0005 1.6119 0.0008 −0.5833 −0.2196 −0.1372
−0.0866 −1.1958 0.0039 −0.0014 −1.0441 0.0008 9.1402 0.0025 −0.1055 −1.2516
−2.3619 −0.4250 −0.0013 0.0010 0.0025 −0.5833 0.0025 6.9571 −2.5768 −0.4562
17.7301 4.8263 0.0536 0.0081 0.3998 −0.2196 −0.1055 −2.5768 40.4116 5.4179
4.5257 8.5187 −0.0115 0.0113 −2.4481 −0.1372 −1.2516 −0.4562 5.4179 22.3863

⎤
⎥⎥⎥⎥⎥⎥⎦

.

By Theorem 1 and Remark 5, the system is asymptotically stable.
In order to obtain simulation results, let us choose initial value as φ(t) =

(0.5,−0.5)T ∈ R
2,∀t ∈ [−1, 0]. From Fig. 1, we can see that the states of the

system are asymptotically stable.

Example 2 Consider the FONNs (1) with u(t) ≡ 0, z(t) ≡ 0 and the following param-
eters

A =
[
0.6 0
0 1

]
, W1 =

[
0.01 0.02

−0.06 0.08

]
, W2 =

[
0.09 0.8

−0.05 0.01

]
,

C1 = C2 = C3 = 02,

μ = 0.8.

The activation functions are given by

gi (xi ) = 0.5 (|xi + 1| − |xi − 1|) , (i = 1, 2).

It is easy to verify that condition (3) is satisfiedwithΣ1 = diag{0, 0},Σ2 = diag{1, 1}.
We let the time delay δ(t) = | sin(ωt)|, where ω > 0 is scalar. Note that δ(t) is a
continuous function but nondifferentiable at arbitrarily many points tk = kπ

ω
, k ∈ Z

+.
As a consequence, the existing results, for example, in [6,21,47,51,57] cannot directly
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Fig. 2 State trajectories of the system in Example 2

ensure stability of the system. By using the Matlab LMI toolbox [2], we obtain a set
of feasible solutions as follows:

P =
[
125.9724 91.1017
91.1017 812.9082

]
, Q =

[
225.0191 63.9701
63.9701 578.4119

]
,

Λ1 =
[
4.4149 0

0 53.7355

]
, Λ2 =

[
106.1268 0

0 538.3481

]
, Λ3 =

[
3.3803 0

0 20.2852

]
,

X =

⎡
⎢⎢⎢⎢⎢⎢⎣

68.2618 16.9373 0.0586 7.3939 −3.1959 0.2170 −6.1585 −93.8508 108.5540 9.3645
16.9373 115.4775 −0.2334 1.3804 0.9317 −33.4051 10.7739 −20.9265 21.6569 178.6727
0.0586 −0.2334 53.3757 42.0356 1.5102 0.0595 −47.1683 −2.7751 0.3854 0.5384
7.3939 1.3804 42.0356 390.6252 0.3321 11.1656 −1.1784 −297.5324 9.5420 7.4973

−3.1959 0.9317 1.5102 0.3321 6.3509 −0.0866 −2.8054 −0.1412 0.7909 16.6528
0.2170 −33.4051 0.0595 11.1656 −0.0866 61.8614 −0.2296 −20.9664 −4.2554 −25.5241

−6.1585 10.7739 −47.1683 −1.1784 −2.8054 −0.2296 92.9970 0.4991 −7.7493 12.4623
−93.8508 −20.9265 −2.7751 −297.5324 −0.1412 −20.9664 0.4991 566.3696 −100.4306 −37.5642
108.5540 21.6569 0.3854 9.5420 0.7909 −4.2554 −7.7493 −100.4306 205.9427 68.3705
9.3645 178.6727 0.5384 7.4973 16.6528 −25.5241 12.4623 −37.5642 68.3705 580.9007

⎤
⎥⎥⎥⎥⎥⎥⎦

.

According to Theorem 1, the system is asymptotically stable.
In order to obtain simulation results, let us choose the time delay as δ(t) = | sin t |,

initial value as φ(t) = (1,−1)T ∈ R
2,∀t ∈ [−1, 0]. From Fig. 2, we can see that the

states of the system are asymptotically stable.

Example 3 Consider the following two-dimensional FONNswith a time-varying delay

{
D0.7
t x(t) = −Ax(t) + W1g(x(t)) + W2g(x(t − δ(t))) + u(t), t ≥ 0,

z(t) = C1g(x(t)) + C2g(x(t − δ(t))) + C3u(t),
(17)

where x(t) = (x1(t), x2(t))T ∈ R
2 is pseudo-state, u(t) ∈ R

2 is the external input of
the network, z(t) ∈ R

2 is the output vector, and

A =
[
1 0
0 1

]
, W1 =

[
0.02 0.03
0.02 −0.08

]
, W2 =

[
0.08 0.07

−0.02 0.03

]
,

C1 = C2 = C3 = I2.

The activation functions are given by

gi (xi ) = tanh(xi ), (i = 1, 2).
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Fig. 3 State trajectories of the system in Example 3 with external input

It is easy to verify that condition (3) is satisfied with Σ1 = diag{−1,−1},Σ2 =
diag{1, 1}. We let the time delay δ(t) = t

1+t , t ≥ 0. By using the MATLAB LMI
Control Toolbox, we can find a solution to the LMI (13) as follows γ = 942.1760 and

P =
[
434.5651 −10.4605
−10.4605 495.5811

]
, Q =

[
470.1122 8.0855
8.0855 498.3805

]
,

Λ1 =
[
36.6030 0

0 56.0828

]
, Λ2 =

[
111.0305 0

0 122.0611

]
, Λ3 =

[
11.4239 0

0 17.1571

]
,

X =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

63.7531 −0.8560 8.6797 −0.0467 1.3715 0.3164 −14.4626 −13.3236 115.3794 7.8165
−0.8560 67.4771 −0.0334 13.0923 0.1675 2.0417 3.9256 −5.5215 8.0434 100.8383
8.6797 −0.0334 69.6759 −4.0231 −0.0768 0.0046 −0.0866 −0.0390 0.4128 −0.0239

−0.0467 13.0923 −4.0231 80.2866 0.0049 −0.1324 0.0469 −0.1432 −0.0315 0.7677
1.3715 0.1675 −0.0768 0.0049 36.9037 −0.0240 −6.8740 0.0966 −4.8688 −3.6488
0.3164 2.0417 0.0046 −0.1324 −0.0240 55.8719 −0.1146 −11.1018 −5.0095 14.0761

−14.4626 3.9256 −0.0866 0.0469 −6.8740 −0.1146 92.4922 −0.0287 −17.1314 4.9761
−13.3236 −5.5215 −0.0390 −0.1432 0.0966 −11.1018 −0.0287 106.3481 −14.3922 −9.4709
115.3794 8.0434 0.4128 −0.0315 −4.8688 −5.0095 −17.1314 −14.3922 295.5900 3.0156
7.8165 100.8383 −0.0239 0.7677 −3.6488 14.0761 4.9761 −9.4709 3.0156 311.1612

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

According to Theorem 2, we know that system (17) is passivity.
In order to obtain simulation results, let us choose initial value as φ(t) =

(0.5,−0.6)T ∈ R
2,∀t ∈ [−1, 0]. Figure 3 shows the state trajectories of system

(17) with external input u(t) = (1 − 2 sin t, 1 − 3 cos t)T ∈ R
2. Figure 4 displays

the trajectories state of system (17) with zero external input, i.e., u(t) ≡ 0, which
shows that the FONNs with a bounded time-varying delay without external input is
asymptotically stable.

Example 4 Consider the following three-dimensional FONNs with hub structure and
a bounded time-varying delay [16]

{
Dμ
t x(t) = −Ax(t) + W1g(x(t)) + W2g(x(t − δ(t))) + u(t), t ≥ 0,

z(t) = C1g(x(t)) + C2g(x(t − δ(t))) + C3u(t),
(18)

where theorderμ ∈ S := {0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1},
x(t) = (x1(t), x2(t), x3(t))T ∈ R

3 is pseudo-state, u(t) ∈ R
3 is the external
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Fig. 4 State trajectories of the system in Example 3 without external input

input of the network, z(t) ∈ R
3 is the output vector, the time-varying function

δ(t) = t
1+t , t ≥ 0, A = diag{9, 8, 9} and

W1 =
⎡
⎣3 −2 −2
1 1 0
1 0 1

⎤
⎦ , W2 = I3, C1 = C2 = C3 = I3.

The activation functions are given by

gi (xi ) = 0.5 (|xi + 1| − |xi − 1|) , (i = 1, 2, 3).

It is easy to verify that the time-varying function δ(t) satisfies the condition (2)with δ =
1, the activation functions gi (xi ) satisfy the condition (3) with Σ1 = {0, 0, 0},Σ2 =
{1, 1, 1}. Applying Theorem 2, it is found the FONNs under study are passive with
the order μ ∈ S. Table 1 shows the relationship between the order μ and the passivity
performance γ .

In order to obtain simulation results, let us choose initial value as φ(t) =
(1,−1,−0.5)T ∈ R

3,∀t ∈ [−1, 0]. We consider three cases: μ = 0.4, μ = 0.8
and μ = 1. Figures 5, 6 and 7 display the trajectories of system (18) with zero exter-
nal input and the order μ = 0.4, μ = 0.8 and μ = 1, respectively. It is clear that the
system is asymptotically stable.

5 Conclusions

In this paper, we have investigated the problem of passivity analysis of FONNs with
a time-varying delay. By using some auxiliary properties of fractional calculus and
Razumikhin fractional-order theorem, new sufficient conditions for solving the passiv-
ity analysis problem have been presented in terms of LMIs. Some numerical examples
with simulation results are given to illustrate the effectiveness of the proposed results.
The method of studying delay-dependent passivity in this paper can be extended
to other types of FONNs, such as switched FONNs with time-varying delays and
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Table 1 The relationship between the order μ and the passivity performance γ

Methods The order μ The passivity performance γ

Theorem 2 0.4 57.4606

0.45 61.4350

0.5 69.3270

0.55 1.7220 × 103

0.6 1.9351 × 103

0.65 1.9228 × 103

0.7 1.8201 × 103

0.75 2.0396 × 103

0.8 2.0503 × 103

0.85 2.3505 × 103

0.9 511.2330

0.95 17.1198

1 2.9164 × 103
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Fig. 5 State trajectories of the system in Example 4 with zero external input and order μ = 0.4
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Fig. 6 State trajectories of the system in Example 4 with zero external input and order μ = 0.8
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Fig. 7 State trajectories of the system in Example 4 with zero external input and order μ = 1

fractional-order memristive neural networks. It is notable that the time-varying func-
tion in the considered system is bounded, then our future work is to extent the proposed
results to FONNswith unbounded time-varying delays. The second proposal for future
work is the study of observer-based control or adaptive feedback control problems for
FONNs with bounded or unbounded time-varying delay.
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