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Abstract
In this article, a new system diminution technique is proposed for the reduction in com-
plexity and controller design of the higher-order models. This method is based on the
Mihailov stabilitymethodwhich ensures the stability of the obtained simplified/micro-
model if the higher-order plant is stable. In this technique, the reduced characteristic
equation of the simplified plant is obtained by using the Mihailov stability technique
and the reduced numerator equation is determined by using the improved Padé approx-
imation technique. By using this reduced-order model, the PID controller is designed
for the large-scale system. The accuracy and effectiveness of the proposed method are
validated by comparing the step responses of the complete and lower-order models.
The performance of the recommended technique is shown in terms of step responses
and performance error indices. Three standard numerical systems are finally provided
to validate the effectiveness and accuracy of the designed controller and the perfor-
mance of the proposed model-order reduction technique.
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1 Introduction

The study and synthesis of a large-scale model are a difficult work and lead to a
continuous effort to simplify the complexity of the higher-order model. The higher-
dimensional systems are exist in various fields of engineering and sciences such as
aeronautic systems [31], jump systems [60, 67], control systems [6, 43], multilayer
systems [59], electromagnetic systems [28], power systems [5], thermodynamics [9]
and regulator problems [30]. The goal of a system diminution technique is to obtain a
plant that is simpler than the actual system and retains the essential properties of the
actual system. The model diminution of the complex system is a popular theme within
the area of biological systems [55, 56], control systems [8, 34, 58], electromagnetic
field [27, 66], mechanical engineering [12, 19, 20, 22, 24], power systems [25, 42, 43,
64], chemical engineering [7, 15], etc.

In the frequency domain, several system diminution technologies exist in the liter-
ature for the order diminution of the transfer function of the higher-order linear time
invariant (LTI) dynamic models [2, 16, 18, 21, 46, 54, 65, 68]. Among these methods,
the time moment matching technique [68] and Padé approximation approach [46] are
the frequently used model diminution techniques, and these are suitable schemes for
the matching of static responses of the microsystem and the original system [1, 40].
Sometimes these techniques fail to decrease the complexity of large-scale systems
because these methods give unstable micro-models even though the original higher-
order systems are stable [32, 37]. Routh stability scheme [16] is another commonly
usedmethod for the order diminution of higher-order plants, and it is a popular scheme
for the matching of the transient responses of the higher-order plant and the lower-
order system [1, 40]. This technique also has some limitations such as non-uniqueness
(sometimes giving the same lower-order plant for the different large-scale models)
and fails to retain the dominant poles of non-minimum phase complex system in its
microsystem [36, 51].

Routh approximation is also another popular model reduction method for the
diminution of higher-order linear systems in the frequency domain but it is limited for
the complex system having strictly proper transfer function [18]. A stability equation
scheme for the model reduction in minimum phase higher-order plant is described in
[2] but it is not convenient for the non-minimum phase large-scale systems. In [21],
the factor division algorithm is given for the approximation of large-scale systems into
lower-order approximants. Sinha and Pal recommended the pole clustering scheme for
the diminution ofminimumand non-minimum large-scalemodels [54]. This technique
also has some drawbacks such as it requires tuning factor for the matching of transient
responses and gain adjustment factor for the matching of steady-state responses of the
lower-order model with the large-scale plant. In the frequency domain, the Mihailov
stability technique is one of the superior methods for the determination of denominator
of the simplified plant [65]. In the Mihailov stability criterion method, the reduced
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model is always stable provided that the higher-order model must be stable. Because
reduced denominator polynomial is obtained in such a way that the Mihailov fre-
quency characteristic of the reduced system is matched with the characteristic of the
original system hence if the original system is stable then the reduced model will also
be stable.

In this article, a new system reduction technique is proposed for the simplification
and design of a controller for the higher-order system. The proposed method retains
the properties of the Mihailov stability criterion [65] and improved Padé approxima-
tion technique [53]. In this approach, the denominator polynomial is determined by
the Mihailov stability technique, and the improved Padé approximation technique is
applied for the evaluation of the numerator coefficients. The improved Padé approxi-
mation technique guarantees the preservation of initial few timemoments andMarkov
parameters of the original system in the reduced model [53]. The proposed model
reduction is simple and due to using of the Mihailov stability method, it ensures the
stability of the lower-order plant for the stable original system. This method also
ensures the preservation of time moments and Markov parameters because of using
improved Padé approximation technique. The remaining paper is structured as in
Sect. 2; the problem statement of the system reduction is given. The basic procedures
of the proposed model reduction technique are described in Sect. 3. In Sect. 4, the new
method for the design of a controller for the large-scale system is illustrated. In Sect. 5,
three popular numerical examples are taken from the literature for the validation of
proposed algorithms. The conclusion of the paper is given in Sect. 6.

2 Problem of Statement

Let us consider the transfer function G(s) of a large-scale SISO LTI dynamic system,
defined as follows:

G(s) � N (s)

D(s)
� d0 + d1s + · · · + dn−1sn−1

e0 + e1s + e2s2 + · · · + ensn
(1)

whered0, d1 . . . dn−1 and e0, e1 . . . en are the knownparameters. Inmodel-order reduc-
tion, the main goal is to compute the unknown parameters of the transfer function of
r th-order (r < n) reduced model defined as.

Rr (s) � Qr (s)

Pr (s)
� q0 + q1s + q2s2 + · · · + qr−1sr−1

p0 + p1s + p2s2 + · · · + pr−1sr−1 + pr sr
(2)

where q0, q1 . . . qr−1 and p0, p1 . . . pr are unknown parameters.

3 Proposed System Reduction Technique

The proposed technique is illustrated in the following two steps
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3.1 Determination of the Denominator Polynomial

The Mihailov stability criterion is used for the determination of denominator polyno-
mial of the approximated reduced model. From (1), the denominator polynomial of
the original system is written as

D(s) � e0 + e1s + e2s
2 + · · · + ens

n (3)

Putting s � jw in (3) and isolating the real and imaginary parts as follows:

D(s) � e0 + e1( jw) + e2( jw)2 + · · · en( jw)n

�
(
e0 − e2w

2 + e4w
4 − · · · eXwX

)
+ j

(
e1w − e3w

3 + e5w
5 − · · · eYwY

)

� φ(w) + jψ(w) (4)

where

φ(w) � e0 − e2w
2 + e4w

4 − · · · eXwX (5)

ψ(w) � e1w − e3w
3 + e2w

5 − · · · eYwY (6)

{
X � n − 1
Y � n

when n is even. (7)

{
X � n
Y � n − 1

when n is odd (8)

and w is the angular frequency. The polynomials φ(w) and ψ(w) are used for plot-
ting Mihailov frequency characteristic of the higher-order plant in which φ(w) d ψ

(w) show horizontal axis and vertical axis, respectively, and w varies from 0 to ∞.

For plotting the Mihailov frequency characteristic, set φ(w) � 0, ψ(w) � 0, and
it will give intersecting frequencies w0 � 0,±w1,±w2, . . . ,±wn−1. For a stable
system, the Mihailov characteristic starts from abscissa at w � 0 and intersects the
vertical axis and horizontal axis alternatively as w rises and the number of intersec-
tions is the same as the order of the transfer function of the higher-order plant. The
reduced denominator polynomial is determined in such a way that its Mihailov fre-
quency characteristic is approximately matched with the original system. From (2),
the characteristic polynomial of the lower-order plant is written as

Pr (s) � p0 + p1s + p2s
2 + · · · + pr−1s

r−1 + pr s
r (9)

Putting s � jw in (9) and isolating the real and imaginary parts, it gives

Pr (s) � p0 + p1( jw) + p2( jw)2 + · · · + pr−1( jw)r−1 + pr ( jw)r

�
(
p0 − p2w

2 + p4w
4 − · · · pxwx

)
+ j

(
p1w − p3w

3 + p5w
5 − · · · pywy

)

� ξ(w) + jη(w) (10)
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where

ξ(w) � p0 − p2w
2 + p4w

4 − · · · pxwx (11)

η(w) � p1w − p3w
3 + p5w

5 − · · · pywy (12)

{
x � r − 1
y � r

when r is even (13)

{
x � r
y � r − 1

when r is odd (14)

The Mihailov frequency characteristic of the reduced model is in the same manner
as that of the large-scale system but it intersects r times only. Hence, the poles of
ξ(w) � 0 and η(w) � 0 must be positive real and intersecting frequencies are the
same as the higher-order model for the matching of input and output relationship and
distributed along the w axis alternatively.Consequently, the roots of (11) and (12) are
the subset of the roots (5) and (6), and ξ(w) and η(w) can be written as

ξ(w) � k1
(
w2 − w2

1

)(
w2 − w2

3

)
. . . (15)

η(w) � k2w
(
w2 − w2

2

)(
w2 − w2

4

)
. . . (16)

where k1 is obtained by using from φ( jw0) � ξ( jw0) and k2 is obtained from ψ

( jw1) � η( jw1) or (dψ/dφ)w0
� (dη/dξ)w0.

After computing the characteristic
equation of the lower-order model Pr ( jw) � ξ(w) + jη(w), replacing jw � s and it
will give Pr (s) � p0 + p1s + p2s2 + · · · + pr−1sr−1 + pr sr . Now, the improved Padé
approximation method [53] is used for the determination of the numerator polynomial
of the reduced model.

Remark 1 For the stable large-scale system, the reduced-order system will also be
stable because both the models have approximately the same Mihailov frequency
characteristic.

3.2 Determination of the Numerator Polynomial by Using an Improved Padé
Approximation Algorithm

The transfer function (1) of the original model G(s) can be written with regard to its
power series expansion of G(s) about s � ∞, i.e.

G(s) � M0s
−1 + M1s

−2 + · · · + M2r s
−2r−1 + · · ·

�
∞∑
i�0

Mis
−i−1 (17)
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The parameters {Mi : i � 1, . . . ,∞} are called the Markov parameters of the sys-
tem and “r” is the order of the reduced model. Similarly, G(s) can also be written in
the terms of its Taylor series expansion of G(s) about s � 0; hence,

G(s) � c0 + c1s + c2s
2 + · · · + c2r s

2r + · · ·

�
∞∑
i�0

ci s
i (18)

The parameters {ci : i � 0, 1, 2, . . . ,∞} are proportional to the system matching
moments [46, 68].The numerator coefficients of rth-order reduced model are obtained
by using improved Padé approximation technique. The improved Padé approxima-
tion method guarantees the preservation of the initial few time moments and Markov
parameters [53] of the original system in the reduced-order system. The numerator
polynomial coefficients are obtained as

q0 � c0 p0
q1 � c1 p0 + c0 p1
q2 � c2 p0 + c1 p1 + c0 p2
...

qα−1 � cα−1 p0 + cα−2 p1 + · · · + c1 pα−2 + c0 pα−1

qr−β � Mβ−1 pr + Mβ−2 pr−1 + · · · + M1 pr−β+2 + M0 pr−β+1

qr−β+1 � Mβ−2 pr + Mβ−3 pr−1 + · · · + M1 pr−β+3 + M0 pr−β+2

...

qr−2 � M1 pr + M0 pr−1

qr−1 � M0 pr (19)

The unknown parameters (q0, q1, q2, . . . , qr−1) of the numerator polynomial of the
reduced model are calculated by solving the “r” number of equations given in (19).

Remark 2 The numerator polynomial of the lower-order system is determined by using
improved Padé approximation technique; due to this, the reduced model retains the
properties of the improved Padé approximation method.

4 Design of PID Controller

The controller design and simulation of large-scale systems are lengthy and difficult
tasks. As the complexity of the dynamic system increases, the simulation time and cost
of the design of the controller increases proportionally. To circumvent these types of
limitations, a “good” approximated model can be determined for the complex model,
and the controller is designed by using this approximated plant. In case of a higher-
dimensional model, large amounts of sensors are needed for sensing the state variables
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for the design of feedback controllers. Due to this, series controllers are appropriate
over the feedback controllers.

In order to get the desired performance of the real-time dynamic system, a reference
model (M(S)) is formulated on the basis of given specification so that the closed-loop
characteristic of the controlled plant with unity feedback is thoroughly matched with
the characteristic of the computed reference model. The techniques of computing
reference system from the desired specification in more details are given in [29, 61].
Consider a proportional–integral–derivative (PID) controller, which yields the desired
closed-loop behaviour as

Gc(s) � Kp +
Ki

s
+ Kds (20)

For designing the PID controller by using the approximated system, the open-loop

reference system
(
M̃(s)

)
is calculated from the closed-loop reference system ((M(s))

M̃(s) � M(s)

1 − M(s)
(21)

The PID controller is designed so that the performance of an open-loop controlled
system is the same as the performance of the open-loop reference system as

Gc(s)G(s) � M̃(s) (22)

Gc(s) � M̃(s)

G(s)
�

∑2
i�0 ei s

i

s
(23)

where ei (i � 0, 1, 2) are the Taylor series coefficients about s � 0, and determined
by using moment generating algorithm [46, 68]. And G(s) is the transfer function
of the original system, it can also be replaced by an equivalent approximated model
so that the mathematical computation and simulation time will be decreased. The
unknown scalar constants of the PID controller are attained by comparing (20) and
(23) as follows:

Kp +
Ki

s
+ Kds � e0 + e1s + e2s2

s
(24)

Ki + Kps + Kds2

s
� e0 + e1s + e2s2

s
(25)

Therefore, Kp � e1, Ki � e0, Kd � e2. After finding the scalar constants of the
controller, the transfer function of the closed-loop plant can be written as

Gcl(s) � Gc(s)G(s)

1 + Gc(s)G(s)
(26)
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5 Simulation Results

In order to compare the proposed method with some other standard and recently
proposed system reductionmethods, the following performance error indices are com-
puted [36, 50, 53].

⎧⎪⎨
⎪⎩
ISE � ∞∫

0
[y(t) − yr (t)]2dt

RISE � ∞∫
0
[y(ti ) − yr (t)]2dt/

∞∫
0

[
Ŷ (t)

]2
dt

(27)

⎧⎪⎨
⎪⎩
IAE � ∞∫

0
|y(t) − yr (t)|dt

ITAE � ∞∫
0
t |y(t) − yr (t)|dt

(28)

where y(t) and yr (t) are the step responses of the higher-dimensional model and the
simplified model.

Example 1 Consider the eighth-order transfer function of a flexible-missile control
plant designed in [3]

G (s)

� −s6 + 3.06 × 102s5 − 4.96 ×4 +3.577 × 106s3 − 6.303 × 107s2 − 1.246 × 1010s + 5.906 × 1011

s8 + 52.99s7 + 3.05 × 104s6 + 1.375 × 106s5 + 1.839 × 108s4 + 5.232 × 109s3 + 3.422 × 1011s2 + 2.823 × 1012s + 1.442 × 1014

(29)

For this system c0 � 0.00409, M0 � 0, and the characteristic equation of the
original system is

(30)

D (s) � s8 + 52.99s7 + 3.05 × 104s6 + 1.375 × 106s5 + 1.839 × 108s4

+ 5.232 × 109s3 + 3.422 × 1011s2 + 2.823 × 1012s + 1.442 × 1014

The first step of the proposed method discussed in Sect. 3.1 is to obtain the real and
imaginary parts of the denominator polynomial of the original system. For obtaining
the real and imaginary parts substituting s � jw in (30) and splitting the real part and
imaginary part, it gives

φ(w) � (
w2 − 591.1193

)(
w2 − 2491.5423

)(
w2 − 4220.8461

)(
w2 − 23196.4923

)

ψ(w) � w
(
w2 − 646.7532

)(
w2 − 3837.6991

)(
w2 − 21463.8398

)

In order to obtain the reduced denominator polynomial by the Mihailov stability
method, first step is to assume the real and imaginary parts of the reduced polynomial
which are having the same initial “r” characteristic roots as the original denominator
polynomial have. For the second-order reduced system, real and imaginary parts are
assumed as ξ(w) � k1

(
w2 − 591.1193

)
and η(w) � k2w. And, unknown parameters

k1 is calculated by using relation φ( jw0) � ξ( jw0) and k2 is computed from ψ
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Fig. 1 Comparison of step responses of original system and reduced models

( jw1) � η( jw1) and obtained as k1 � −2.4394 × 1011 and k2 � 1.9977 × 1011.
Thus, the characteristic equation of the second-order approximated model obtained
by the Mihailov stability method is

P2(s) � 2.4394 × 1011s2 + 1.9977 × 1011s + 1.442 × 1014 (31)

By using the proposed method discussed in Sect. 3.2 (with α � 1, β � 1), the
second-order reduced plant is

R2(s) � Q2(s)

P2(s)
� 5.906

2.4394s2 + 1.9977s + 1442
(32)

The comparison of time responses of the actual model, simplified-order models
evaluated by the proposed scheme and other standard methodologies are displayed
in Fig. 1. From this comparison, it can be seen that the microsystem achieved by the
recommended technique gives the closest approximation to the higher-order plant.
Also, the quantitative analysis of the reduced-order systems determined by the rec-
ommended technique and other existing techniques in terms of performance indices
ISE, RISE, IAE and ITAE values is shown in Table 1. It is clear from this table that
the presented scheme is superior to some other standards methods because it is giving
the least values of different error indices.



4858 Circuits, Systems, and Signal Processing (2020) 39:4849–4867

Table 1 Comparison of performance indices for the different system diminution techniques

Reduction method Reduced-order plant ISE RISE IAE ITAE

Balanced truncation method
[23]

−0.1384s+1.875
s2+0.9322s+605.4 9.8645×10−4 0.0063 0.9910 49.9728

Routh stability and Padé
approximation [26]

−0.23535s+5.906
1.8794s2+1.1903s+1442 5.4693×10−4 0.0035 0.1441 0.4195

Routh stability method [2],
improved Routh stability
method [36], Routh
stability and factor
division [52]

−0.23534s+5.906
1.8794s2+1.1903s+1442 5.4692×10−4 0.0035 0.1441 0.4195

4.3787×10−5s+5.906
1.8794s2+1.1903s+1442

4.6355×10−4 0.0029 0.1232 0.3064

Modified pole clustering
and improved Padé
approximation [53]

2.8024
s2+1.0788s+6.8422×102 4.0735×10−4 0.0026 0.1064 0.1991

Modified pole clustering
and factor division
schemes [48]

−1.585×10−4s+2.8024
s2+1.0788s+6.8422×102

4.0715×10−4 0.0026 0.1064 0.1991

Modified pole clustering
and Padé approximation
[62]

−0.1096s+2.8024
s2+1.0788s+6.8422×102 3.7474×10−4 0.0024 0.0960 0.1822

Pole clustering and Padé
approximation [63]

−0.3603s+9.1013
s2+2.4046s+2.2221×103 3.4588×10−4 0.0022 0.1041 0.2167

Improved pole clustering
methodology [14]

−0.1096s+2.8024
s2+1.0788s+6.8422×102 3.4588×10−4 0.0022 0.1041 0.2167

Routh approximation
technology [18]

−0.1663s+7.88
s2+37.67s+1924 2.4165×10−4 0.0015 0.0884 0.1803

Routh and Padé
approximations [41],
improved Routh
approximation [35]

−0.1662s+7.8801
s2+37.67s+1924 2.4164×10−4 0.0015 0.0884 0.1778

Differentiation method and
Padé approximation [17]

−4.26s+119.06
2.464s2+142.3s+29070 2.3979×10−4 0.0015 0.0882 0.1804

Differentiation method [11]
−0.4187s+119.1

2.464s2+142.3s+29070 2.3424×10−4 0.0015 0.0885 0.2403

Stability equation and
continued-fraction [3]

−2.67×10−4s+2.4209
s2+11.5726s+591.1932

2.2688×10−4 0.0014 0.0875 0.2174

Truncation method [47]
−0.1246s+5.906

3.422s2+28.23s+1442 2.1574×10−4 1.4×10−3 0.0848 0.1768

Factor division and stability
equation methodologies
[49]

−0.1066s+5.906
2.4399s2+28.23s+1442 2.1459×10−4 0.0014 0.0852 0.1763

Stability equation [2], Padé
approximation and
stability equation [4]

−0.1246s+5.906
2.4399s2+28.23s+1442 2.1272×10−4 0.0013 0.0849 0.1762

Padé approximation [46]
−0.0626s+1.99
s2+4.479s+485.8 1.9682×10−4 1.211×10−3 0.0831 0.2077

Time moment matching [68]
−0.12886s+4.09

2.0585s2+9.2198s+1000 1.9682×10−4 1.21×10−3 0.0830 0.206

Proposed method
5.906

2.4394s2+1.9977s+1442 1.4225×10−4 9.022×10−4 0.0557 0.1108
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Fig. 2 Qualitative comparison of system reduction methods in terms of the step response

Example 2 Consider a sixth-order system described by the following transfer function
[13]

G(s) � s5 + 8s4 + 20s3 + 16s2 + 3s + 2

s6 + 18.3s5 + 102.4s4 + 209.5s3 + 155.9s2 + 33.6s + 2
(33)

The characteristic equation of the original system is written as

D(s) � s6 + 18.3s5 + 102.4s4 + 209.5s3 + 155.9s2 + 33.6s + 2 (34)

Putting s � jw in (34) and isolating the real part and imaginary part and it gives
the following polynomials as

φ(w) � −
(
w2 − 0.0129

)(
w2 − 1.5327

)(
w2 − 100.8544

)

ψ(w) � w
(
w2 − 0.1627

)(
w2 − 11.2854

)

For the second-order reduced model, ξ(w) � k1
(
w2 − 0.0129

)
, η(w) �

k2w and k1 � −155.0388 and k2 � 33.5652. Hence, the characteristic equation
of the second-order reduced system computed by the Mihailov stability criterion is

P2(s) � 155.0388s2 + 33.5652s + 2 (35)
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By using the proposed model reduction algorithm, the second-order reduced model
is obtained as

R2(s) � Q2(s)

P2(s)
� 3s + 2

155.0388s2 + 33.5652s + 2
(36)

Figure 2 shows the time responses of the full-order model and reduced models
obtained by the presented method and other standard methods. This figure reveals
that the response of the obtained system by the proposed technique is much closer to
the response of the full-order model. The quantitative comparison of the lower-order
models computed by the proposed method and some other well-known methods in
terms of ISE, RISE, IAE and ITAE values is tabulated in Table 2. It can be seen that
the proposed method is giving the least values of the various performance indices.
Hence, the proposed method is superior and comparable with some other standard
system reduction methods.

Example 3 Consider the sixth-order regulator plant with its reference plant for the
design of PID controller [57].

Gp(s) � 2s5 + 3s4 + 16s3 + 20s2 + 8s + 1

2s6 + 33.6s5 + 155.94s4 + 209.5s3 + 102.42s2 + 18.3s + 1
(37)

M(s) � 25

s2 + 20s + 25
(38)

The open-loop reference system is obtained as

M̃(s) � M(s)

1 − M(s)
� 25

s(s + 20)
(39)

By using the complex model, the PID controller is determined as follows:

(40)

Gc (s) � M̃ (s)

G (s)
� e0 + e1s + e2s2 + · · ·

s
� Ki + Kps + Kds2

s

� 1.25 + 12.8125s − 0.6156s2 + · · ·
s

Hence, Kp � 12.8125, Ki � 1.25, Kd � −0.6156. By using this controller, the
closed-loop system is computed as

Rcl(s) � G(s)Gc(s)

1 + G(s)Gc(s)
(41)

The lower-order plant obtained by the proposed technique with (α � 2, β � 0) is
given follows:

R2(s) � 5.934s + 1

101s2 + 16.23s + 1
(42)
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Fig. 3 Comparison of step responses of the closed-loop systems

By using the proposed lower-order plant, the PID controller is determined as fol-
lows:

(43)

Gcr (s) � M̃ (s)

Rr (s)
� e0 + e1s + e2s2 + · · ·

s
� Ki + Kps + Kds2

s

� 1.25 + 12.8125s + 49.2192s2 + · · ·
s

Hence,Kp � 12.8125, Ki � 1.25, and Kd � 49.2192. The closed-loop transfer
of the original system with the controller obtained by using the reduced model cab be
computed by using the following equation:

Rcl(s) � G(s)Gcr (s)

1 + G(s)Gcr (s)
(44)

Figure 3 shows the comparison of step responses of the reference model and the
closed-loop model with PID controllers obtained by using the higher-order plant and
the reduced-order plants. It can be seen that all the responses of the closed-loop plant
with PID controllers are approximately matching with the reference model in both
steady state and transient region. The time-domain specifications of the closed-loop
system with controllers are given in Table 3. In this table, it is obvious that the time-
domain specifications of the closed-loop plant with the controller calculated by using
the original system are nearly the same as the time-domain specifications of the closed-
loop system with the controller designed by using lower-order models. The design of
the controller by using the approximated model is comparatively easy as the design of
the controller by using the original full-order system. This table also reveals that the
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time-domain specifications of the closed-loop plant with the controllers are the same
as the reference system.

6 Conclusion and Future Scope

In this article, a new hybrid scheme for decreasing the order of the transfer function of
the complex SISO systems is proposed. In this method, the denominator coefficients
of the reduced model are determined by using the Mihailov stability criterion, while
the numerator coefficients are calculated by using the improved Padé approximation
method. This algorithm has been verified on the two standard numerical examples,
and the time responses of the full-order model and the reduced-order plants are com-
pared graphically in Figs. 1 and 2. The quantitative comparison in terms of various
performance indices such as ISE, RISE, IAE and ITAE are tabulated in Tables 1 and
2. From the analysis, it has been summarized that the proposed scheme is simple and
comparable with some other standard system diminution methods. This algorithm
confirms the stability of the approximated plant if the higher-order plant is stable and
exactly matching the steady-state value of the actual system. A new method for the
design of the controller is also proposed. The controller design is done by using the
large-scale system as well as the reduced models. The design of the controller by
using reduced model is simple and easier than the design of the controller by using the
original large-scale system. This design procedure is validated and verified in Fig. 3
and Table 3. In this contribution, the proposed works are implemented on the single
input single output (SISO) LTI continuous systems and can also be extended for the
large-scale multi-input multi-output (MIMO) and discrete systems.
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