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Abstract
A model predictive control (MPC) scheme is mainly developed in discrete-time 
uncertain systems. The control law contains a dynamic property in the proposed 
MPC. Hence, the MPC with a dynamic control policy is simply known as model 
predictive dynamic control (MPDC). To this end, a suitable matrix transformation 
is suggested to convert the MPDC problem into another optimization issue. Then, 
a systematic procedure based on linear matrix inequality (LMI) is addressed to the 
MDPC design. Hence, the MPDC synthesis is translated into an LMI minimization 
problem, which handles both constraints on the control inputs and plant outputs. The 
optimization problem can be numerically solved at each sample time through the 
well-known LMI solver. Then, the parameters of the dynamic controller would be 
automatically updated at each sample time. The method is applied in a discrete-time 
example to verify the effectiveness of the presented approach versus similar results.

Keywords MPC · LMI · Dynamic control law · Discrete-time uncertain systems

1 Introduction

Nowadays, model predictive control (MPC) has drawn the attention of many 
researchers and engineers [1, 20]. The MPC problem is initially investigated in a 
linear discrete-time system [3]. Some closed-form results have been addressed in 
simplified discrete-time systems [3]. These techniques have been used in industrial 
applications successfully [32, 36]. The commercial versions of the MPC include 
dynamic matrix control (DMC), predictive functional control (PFC), generalized 
predictive control (GPC), and the other MPC methods [5, 23, 27].

In the MPC methods, the plant behavior is anticipated at each sample time know-
ing the nominal model. Then, some control sequences are generated while a given 
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cost function is minimized. The first input signal is applied to the plant and the oth-
ers are discarded. Such a process is repeated at each sample time [24, 25]. In the 
mentioned scheme, a suitable control sequence is numerically computed at the sam-
ple time by some matrix calculations [3]. The MPC concept can also be used in 
various applications as well as chaotic systems synchronization [17] and constrained 
guidance system [29].

In the last decade, the linear matrix inequality (LMI) has been an efficient and 
powerful tool due to the huge progressive development in the matrix calculus. 
Hence, analysis tools and synthesis techniques based on the LMI have some advan-
tages over the other ones [2, 28].

Most times, the stability checking and also control system design can be trans-
lated into an LMI feasibility or a minimization problem [10, 28]. A static gain is 
expressed as an LMI feasibility problem in the state feedback control design [28]. 
Such a static gain may be deliberately determined at each sample time [30]. In the 
mentioned MPC, some controller parameters like the gains are updated at each sam-
ple time rather than computing the whole control sequences.

An LMI-based MPC scheme is firstly addressed in discrete-time systems [16, 
37]. In this method, both the prediction and control horizons tend to the infinity for 
obtaining an LMI representation. Thus, the MPC design is actually translated into a 
selection of some suitable static gains that are updated at each sample time. Then, a 
similar control problem has been formulated in linear systems subjected to actuator 
nonlinearity [33, 38], nonlinear systems [21, 22], constrained systems [7, 18], uncer-
tain systems [8], networked control systems [31, 32, 42], parameter-varying systems 
[19], event-triggered systems [41] and time-delayed systems [11, 40]. Initially, the 
MPC is inherently suggested in control systems with a discrete-time representation, 
but the MPC formulation could also be extended into continuous-time systems [4, 9, 
26].

A typical dynamic control system has various additional degrees of freedom 
rather than a static control policy. As a result, it is expected that the transient 
response is effectively compensated by the dynamic controller in comparison with 
the static control law. The static control design is restricted to a suitable gains 
selection in the state or output feedback structure. But, the problem formulation is 
increasingly complicated in the dynamic control design as well. Additionally, an 
extra cost should be paid due to the computational load. Therefore, a reasonable 
trade-off between the closed-loop performance and required computation time may 
be necessarily taken into account in the real-time systems. The raised issues are sub-
stantially reduced utilizing fast numerical optimization techniques. Consequently, 
the transient performance is progressively improved via predictive dynamic control. 
The existing MPCs are usually realized with a static control law. In this study, the 
MPC, in which the control law contains some state variables, is referred to as the 
model predictive dynamic control (MPDC).

Over the last decade, various MPDC methods have been developed in discrete-
time control systems. An MPC scheme has been designed in discrete-time sys-
tems through dynamic output feedback [6]. A discrete-time integral sliding-model 
predictive control addresses the dynamic lateral motion of autonomous driving 
vehicles [15]. By applying event-triggered dynamic output feedback, MPC is 
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planned in uncertain fuzzy systems [35]. Then, by a predictive event-triggered 
strategy, a dynamic surface control is investigated in strict-feedback systems in 
the presence of network-induced delays [39]. The aforementioned control method 
may not be immediately applicable to a typical uncertain system.

Although the design of static control systems may follow the standard ways, 
synthesizing the dynamic control systems will have some major complexi-
ties. Hence, MPDC will be interested in uncertain dynamical systems. Lately, 
an MPDC has been derived in continuous-time uncertain systems [12]. In this 
method, a minimization problem subjected to some LMIs is solved at predefined 
sample times. Then, the parameters of the dynamic control are updated in real-
time operation. The results of the continuous-time MPDC cannot be directly 
applied to the discrete-time systems due to the induced discretization error. 
Accordingly, it may destabilize and/or destroy the transient response of the 
closed-loop system. This point motivates the author to reformulate the MPDC 
problem for synthesizing an effective discrete-time control system in the pres-
ence of unstructured uncertainties. A matrix transformation is suggested to per-
form such a control goal. The presented MPDC can be expressed based on some 
LMI terms. Thus, the main contribution is concentrated on a robust MPDC for-
mulation and synthesis in uncertain discrete-time systems. Hence, an LMI-based 
control technique is proposed to the MPDC design in uncertain control systems. 
The dynamic controller parameters can be automatically updated in real-time 
applications.

To tune the controller parameters, at each sample time, an LMI solver as well 
as YALMIP, SEDUMI, SDPT3, MOSEK, LMILab and so on may be used to han-
dle the optimization problem numerically. Therefore, the stability and/or perfor-
mance characteristic of the closed-loop system can be considerably improved via 
the MPDC when compared to the existing MPC.

The rest of the paper is organized as follows: In Sect. 2, some mathematical 
preliminaries and definitions are briefly addressed. The discrete-time MPDC 
problem is formulated in Sect. 3, and then, the main contribution is presented in 
Sect. 4. In Sect. 5, the results are used in a numerical simulation. Finally, some 
concluding remarks are presented in the last section.

2  Definitions and Mathematical Preliminaries

Hereafter, In is a n × n identity matrix and the operator ‖.‖ is a two-norm of the 
given matrix. The Euclidean spacesℝ,ℝn and ℝm×n are some well-known vector 
spaces. Thus, the set ℝ describes all real numbers, ℝn is the set of all real vectors 
that contain n elements, and ℝm×n is the set of all m × n real matrices. A sym-
metric matrix Θ ∈ ℝ

n×n is positive definite if the condition 𝜗TΘ𝜗 > 0 satisfies for 
every non-zero� ∈ ℝ

n . Additionally, the matrix Θ is negative definite if −Θ is a 
positive definite matrix. The following mathematical lemmas are borrowed from 
the literature to make this study self-contained:
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Lemma 1 For any symmetric matrices Q ∈ ℝ
s×s , R ∈ ℝ

t×t and rectangular matrix 
S ∈ ℝ

s×t , the following inequalities are equivalent:

1. R > 0 and Q − SR−1ST > 0

2. Q > 0 and R − STQ−1S > 0

3. 
[
Q S

ST R

]
> 0

Lemma 1 can be explicitly obtained by the Schur’s matrix decomposition. Hence, 
it is referred to as the Schur’s complement lemma [28].

Lemma 2 (Barbalat’s lemma [14]) Let �(.) ∶ R+
→ R+ be a uniformly continuous 

Lebesgue measureable function on [0,+∞). If lim
t→+∞

∫ t

0
�(�)d� exists, then 

lim
t→+∞

�(t) = 0 . In a similar way, if lim
k→+∞

∑k

i=0
�(i) exists, then lim

k→+∞
�(k) = 0.

These lemmas will be very useful in the proof of the main theorems.

3  Problem Setup

Consider a discrete-time plant described by the following difference equation:

where xp(k) ∈ ℝ
np is the state vector, y(k) ∈ ℝ

q is the output vector and u(k) ∈ ℝ
p 

is the control input of the plant (1). The plant (1) can be imagined as an LTI sys-
tem that is subjected to a nonlinear term fp(.) . The control effort u(k) is inherently 
unknown and generated by the control law. In other words, the signal u(k) is not 
known in advance. It is numerically calculated via the proposed optimization prob-
lem. Furthermore, the uncertain system (1) may be stable or unstable in the open-
loop structure. The following assumptions are considered to formulate the MPDC 
problem:

Assumption 1 Assume that the time-independent plant (1) is stabilizable. Thus, 
there exists a constrained control sequence u(k) , ‖u(k)− −

u ‖ ≤ umax and 
−
u= lim

k→+∞
u(k) , 

such that the plant states xp(k) converge to its equilibrium point 
−
x (i.e. lim

k→+∞
xp(k) =

−
x ). 

Additionally, it is assumed that the states of the uncertain plant (1) are measurable 
for the control purpose.

Assumption 2 The nonlinear function fp(.) may be unknown, but it is zero at zero 
(i.e. fp(0) = 0 ). The following inequality also holds:

(1)
{

xp(k + 1) = Apxp(k) + Bpu(k) + fp
(
xp(k)

)
y(k) = Cpxp(k)

(2)‖fp(�) − fp(�)‖ ≤ Lp‖� − �‖,∀�, � ∈ ℝ
np
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The inequality (2) is known as the Lipschitz condition. The constant Lp is the 
maximum slope of the nonlinear term fp(.) . The vector fp(.) can be fully unknown 
for the designer. Hence, the nonlinear function fp(.) is treated as an uncertain 
term. The exact value of the nonlinear term fp(.) is not necessary to be known for 
the proposed method. Although the uncertain system (1) is partially unknown, the 
control parameters are determined with only some certain values of the plant (1) 
as well as Ap , Bp , Cp and Lp.

The following dynamic control system may be used to regulate the plant (1):

where xc(k) ∈ ℝ
nc is the state vector of the control system (3) and also the term 

e(k) = r(k) − y(k) denotes the error signal. Thus, the set point r(k) is explicitly 
appeared in the error term e(k) . Then, in order to regulate the plant output y(k) , the 
controller (3) is designed such that the error signal is modified in a suitable way.

Assumption 3 For the sake of simplicity, the reference r(k) = r is assumed to be 
constant. Furthermore, the number of the controller states is equal to the number of 
plant state (i.e. nc = np = n).

Let define the variable x(k)
def

=
[
xT
p
(k) xT

c
(k)

]T . Then, the closed-loop system 
that contains the uncertain plant and controller can be written as:

where

The system matrix A can be decomposed as follows:

Besides, the reference signal is a constant one, when the closed-loop system 
(4) is stable, the equilibrium point is found as:

where lim
k→+∞

x(k) = lim
k→+∞

x(k + 1) =
−
x.

Let define a deviated variable like �(k)
def

=
[
�T
p
(k) �T

c
(k)

]T
= x(k)−

−
x . Then, the 

closed-loop plant model can be written as the following autonomous system:

(3)
{

xc(k + 1) = Acxc(k) + Bce(k)

u(k) = Ccxc(k) + Dce(k)

(4)
{

x(k + 1) = Ax(k) + Br + fN(x(k))

y(k) = Cx(k)

A =

[
Ap − BpDcCp BpCc

−BcCp Ac

]
,B =

[
BpDc

Bc

]
,C =

[
Cp 0

]
, fN(x(k)) =

[
fp
(
xp(k)

)
0

]

(5)A =

[
Ap 0

0 0

]
+

[
0 Bp

In 0

][
Ac Bc

Cc Dc

][
0 In

−Cp 0

]

(6)

{ −
x= A

−
x +Br + f

(
−
x
)

r = C
−
x
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where the nonlinear term is defined as f (�(k))
def

= fN(x(k)) − fN

(
−
x
)
 . Thus, the pro-

posed control tries to handle the autonomous system (7).
To design the control system parameters, an infinite horizon cost function may 

be selected at sample time k as follows:

where 
−
u= lim

k→+∞
u(k) and the weights Q ∈ ℝ

n×n ≥ 0 and R ∈ ℝ
p×p > 0 are symmetric 

matrices.
In the cost function (8), the term x̂p(k + i|k) is the predicted value of the plant 

states at time instant k + i with x̂p(k|k) = xp(k) . The first computed control effort 
û(k + i|k) is applied to the plant (1) while the other input signals are discarded. 
The objective function (8) will enforce that the plant state and control input are 
converged to their steady-state values (i.e. 

−
xp and 

−
u ). Hence, the summation argu-

ments will tend to zero.
The control signal u(k) is designed such that the cost function (8) is minimized 

in the MPDC problem. In Eq. (8), the prediction horizon tends to infinity. Hence, 
by using the Barbalat lemma, if the objective function (8) is bounded, then the 
plant states xp(k) are converged to a predefined value 

−
xp (i.e. lim

k→+∞
xp(k) =

−
xp ). 

Therefore, it implies lim
k→+∞

e(k) = 0 when considering Eq. (6). Although the objec-
tive function (8) explicitly depends on the plant states xp(k) , the tracking error 
e(k) is implicitly considered in the control problem. In the control system (3), we 
have:

Then, the cost function (8) may be rewritten as:

where

The weight matrix Φ can be decomposed as follows:

The MPDC design is subsequently presented in discrete-time systems.

(7)�(k + 1) = A�(k) + f (�(k))

(8)

J(k) =

+∞∑
i=0

((
x̂p(k + i|k) − −

xp

)T

Q
(
x̂p(k + i|k) − −

xp

)
+

(
û(k + i|k)− −

u
)T

R
(
û(k + i|k)− −

u
))

(9)u(k) = Ccxc(k) + Dc

(
r − Cpxp(k)

)

(10)J(k) =

+∞∑
i=0

�̂T (k + i|k)Φ�̂(k + i|k)

(11)Φ =

[
Q + CT

p
D

T

c
RDcCp −CT

p
D

T

c
RCc

−CT
c
RDcCp CT

c
RCc

]

(12)Φ =

[
Q 0

0 0

]
+

[
CT
p
D

T

c

−CT
c

]
R
[
DcCp −Cc

]
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4  Main Results

An LMI-based approach is developed to find the parameters of a dynamic control sys-
tem (3). Hence, the controller parameters can be obtained via the solution of an LMI 
minimization problem with a systematic procedure.

Theorem 1 Suppose that the assumptions 1–3 are held and A ∈ ℝ
2n and Φ ∈ ℝ

2n 
are two known matrices. At time instant k , if there exists a symmetric positive defi-
nite matrix P ∈ ℝ

2n and a positive constant � such that the following minimization 
problem is feasible:

subject to

then, the closed-loop system (4) is asymptotically stabilized with the control law 
(3), and also, the minimized value � is an upper bound for the cost function (8).

Proof Consider a quadratic Lyapunov function like V(k) = �̂T (k)P�̂(k) and its differ-
ence as ΔV(k) = V(k + 1) − V(k) . Let pre-multiply the inequality (13) by the vector 
�̂T (k + i|k) and post-multiply it by the vector �̂(k + i|k) . Then,

The following inequalities can be found by applying the inequality (2):

� □

Using the condition (16), an upper bound of the following inequality can be 
obtained:

Min �

(13)ATPA + Lp
(
PA + ATP

)
+
(
L2
p
− 1

)
P + Φ ≤ 0

(14)�T (k)P�(k) ≤ �

(15)
𝜉T (k + i|k)

(
ATPA + Lp

(
PA + ATP

)
+ L2

p
P
)
𝜉(k + i|k) ≤ 𝜉T (k + i|k)(P − Φ)𝜉(k + i|k)

(16)

⎧⎪⎪⎨⎪⎪⎩

f T
�
�̂(k + i�k)

�
Pf

�
�̂(k + i�k)

�
≤ L2

p
�̂T (k + i�k)P�̂(k + i�k)

�̂T (k + i�k)ATPf
�
�̂(k + i�k)

�
≤ Lp�̂

T (k + i�k)ATP�̂(k + i�k)
f T
�
�̂(k + i�k)

�
PA�̂(k + i�k) ≤ Lp�̂

T (k + i�k)PA�̂(k + i�k)

(17)

(
A𝜉(k + i|k) + f

(
𝜉(k + i|k)))TP(A𝜉(k + i|k) + f

(
𝜉(k + i|k)))

≤ 𝜉T (k + i|k)
(
ATPA + Lp

(
PA + ATP

)
+ L2

p
P
)
𝜉(k + i|k)

≤ 𝜉T (k + i|k)(P − Φ)𝜉(k + i|k)
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Therefore, inequality (17) can be found as:

Then, by using Eq. (7), the inequality (18) can be written as follows:

Therefore, the inequality (13) implies that the following condition holds at any 
time instant k:

Then, at time instant k , by taking summation from both sides of the inequality 
(20) from i = 0 to infinity, we have:

The Barbalat’s lemma implies lim
i→+∞

V(k + i + 1|k) = 0 . Then,

The cost function J(k) has an upper bound like � by considering the condition 
(22) at time instant k . The minimum � could be obtained by a suitable selection of 
the matrix P.

In Theorem 1, two matrices A and Φ are explicitly dependent on the control-
ler parameters ( Ac,Bc,Cc,Dc ). The matrices A and Φ are not completely known. 
Thus, the control design problem may have some complexities. But, an innovative 
matrix transformation is suggested to translate the MPDC problem into an LMI 
optimization one. Hence, the controller parameters are directly computed at each 
sample time in the next theorem.

Theorem  2 Suppose that the assumptions 1–3 are held simultaneously. At time 
instant k, if there exists two symmetric positive definite matrices X, Y ,U,V ∈ ℝ

n×n 
and some compatible matrices K ∈ ℝ

n×n, L ∈ ℝ
n×p,M ∈ ℝ

q×n,N ∈ ℝ
q×p and a pos-

itive constant � such that following minimization problem is feasible:

(18)
(
A𝜉(k + i|k) + f

(
𝜉(k + i|k)))TP(A𝜉(k + i|k) + f

(
𝜉(k + i|k)))

− 𝜉T (k + i|k)P𝜉(k + i|k) + 𝜉T (k + i|k)Φ𝜉(k + i|k) ≤ 0

(19)
𝜉T (k + i + 1|k)P𝜉(k + i + 1|k) − 𝜉T (k + i|k)P𝜉(k + i|k)

+ 𝜉T (k + i|k)Φ𝜉(k + i|k) ≤ 0

(20)ΔV(k + i|k) = V(k + i + 1|k) − V(k + i|k) ≤ −�̂T (k + i|k)Φ�̂(k + i|k)

(21)lim
i→+∞

V(k + i + 1|k) − V(k|k) ≤ −J(k)

(22)J(k) ≤ �T (k)P�(k)

(23)

Min 𝛾

subject to[
Y In
In X

]
> 0
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where the star symbol ∗ denotes the matrix symmetry and also the matrices M11

,M12 , M13,M14 , M22 and M24 are defined as follows:

Then, by means of the dynamic control law (3) with the following parameters:

where

(24)
⎡
⎢⎢⎣

Y ∗ ∗

In X ∗

M −NCp u2
max

Ip

⎤
⎥⎥⎦
≥ 0

(25)
⎡
⎢⎢⎣

Y V �p(k)

∗ Y �c(k)
∗ ∗ 1

⎤
⎥⎥⎦
≥ 0

(26)

⎡
⎢⎢⎢⎢⎢⎢⎣

M11 M12 M13 M14 Y −MT

∗ M22 K M24 In CT
p
NT

∗ ∗ Y In 0 0

∗ ∗ ∗ X 0 0

∗ ∗ ∗ ∗ �Q−1 0

∗ ∗ ∗ ∗ ∗ �R−1

⎤
⎥⎥⎥⎥⎥⎥⎦

≥ 0

(27)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

M11

def

=
�
1 − L2

p

�
Y − Lp

�
ApY + BPM + YAT

p
+MTBT

P

�

M12

def

=
�
1 − L2

p

�
I
n
− Lp

�
Ap − BpNCp + AT

p
− CT

p
NTB

T

p

�

M13

def

= ApY + BPM

M14

def

= Ap − BpNCp

M22

def

=
�
1 − L2

p

�
X − Lp

�
XAp − LCp + AT

p
X − CT

p
LT

�

M24

def

= XAp − LCp

(28)Ac = U−1
(
K − XApY + LCpY − XBpM − XBpNCPY

)
V−1

(29)Bc = U−1(L − XBpN)

(30)Cc = (M + NCPY)V
−1

(31)Dc = N

(32)

{
U = X

(
In − X−1Y−1

) 1

2

V = −
(
In − X−1Y−1

) 1

2 Y
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The uncertain plant (1) is asymptotically stabilized while the minimized value � is an 
upper bound for the cost function (8).

Proof The matrix P is a symmetric positive definite one. Let partition P as follows:

� □

The Schur’s complement lemma implies that the matrices X must be positive 
definite. The inverse of the matrix P is also symmetric positive definite. It can be 
written as:

where

The Schur’s complement lemma implies that Y  must be positive definite matrices. 
It is not hard to show that the matrices U and V  in term of X and Y  can be computed 
as:

Consider another invertible symmetric matrix Ψ as follows:

The matrix Ψ can be decomposed as:

Let define two matrices Λ and Ω as follows:

The inverse of the matrix Ψ may be computed as:

(33)P = �

[
X U

U X

]

(34)P−1 = �−1
[
Y V

V Y

]

(35)

⎧⎪⎨⎪⎩

XY + UV = In
XV + UY = 0

XY = YX

UY = YU

(36)

{
U = X

(
In − X−1Y−1

) 1

2

V = −
(
In − X−1Y−1

) 1

2 Y

(37)Ψ =

[
Y V

V 0

]

(38)Ψ =

[
In 0

0 V

][
Y In
In 0

][
In 0

0 V

]

(39)Λ
def

=

[
In 0

0 V

]
,Ω

def

=

[
Y In
In 0

]
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Besides the matrix P is symmetric positive definite, the matrix ΨPΨ is also sym-
metric and positive definite. Then, the condition (23) may be obtained as follows:

Therefore,

Let pre- and post-multiply both sides of the inequality (42) by the matrix Ψ . 
Then

The inequality (43) may be compactly rewritten as follows:

The controller parameters ( Ac,Bc,Cc,Dc ) in terms of the matrices ( K, L,M,N ) 
can be found as:

The controller parameters could be simplified as follows:

It is evident that the matrices ( K, L,M,N ) in terms of the controller parameters 
( Ac,Bc,Cc,Dc ) are expressed as:

In inequality (43), the term ΨΦΨ is computed as follows:

Then,

(40)Ψ−1 =

[
0 V−1

V−1 −V−1YV−1

]
=

[
In 0

0 V−1

][
0 In
In −Y

][
In 0

0 V−1

]

(41)ΨPΨ = 𝛾

[
Y V

V VXV

]
= 𝛾

[
In 0

0 V

][
Y In
In X

][
In 0

0 V

]
> 0

(42)ATPA + Lp
(
PA + ATP

)
+ (L2

p
− 1)P + Φ ≤ 0

(43)ΨATPAΨ + LpΨPAΨ + LpΨA
TPΨ + (L2

p
− 1)ΨPΨ + ΨΦΨ ≤ 0

(44)

(
1 − L2

p

)
ΨPΨ − LpΨPAΨ − LpΨA

TPΨ − (ΨPAΨ)T(ΨPΨ)−1ΨPAΨ − ΨΦΨ ≥ 0

(45)
[
Ac Bc

Cc Dc

]
=

[
U XBp

0 Ip

]−1[
K − XApY L

M N

][
V 0

−CpY Iq

]−1

(46)

⎧⎪⎨⎪⎩

Ac = U−1
�
K − XApY + LCpY − XBpM − XBpNCPY

�
V−1

Bc = U−1
�
L − XBpN

�
Cc =

�
M + NCPY

�
V−1

Dc = N

(47)
[
K L

M N

]
=

[
U XBp

0 Ip

][
Ac Bc

Cc Dc

][
V 0

−CpY Iq

]
+

[
XApY 0

0 0

]

(48)ΨΦΨ =

[
Y V

−M NCpV

]T[
Q 0

0 R

][
Y V

−M NCpV

]
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and also the term ΨPAΨ can be obtained as:

It can be decomposed as follows:

Let pre- and post-multiply both sides of the inequality (44) by the matrix Λ−1 . 
Then

Therefore, the condition (26) is obtained by applying the Schur’s complement 
lemma. At each sample time k , the Lyapunov stability theorem can lead to the fol-
lowing condition:

It can be modified as:

Then, the inequality (25) is found by applying the Schur’s lemma. The control 
effort u(k) is written as:

The two-norm of the deviated control signal v(k) is computed as:

Equation (56) can be written as follows:

(49)ΨΦΨ =

[
In 0

0 V

][
Y In
−M NCp

]T[
Q 0

0 R

][
Y In
−M NCp

][
In 0

0 V

]

(50)ΨPAΨ = γ

[
ApY + BPM ApV − BpNCpV

VK VXApV − VLCpV

]

(51)ΨPAΨ = γ

[
In 0

0 V

][
ApY + BPM Ap − BpNCp

K XAp − LCp

][
In 0

0 V

]

(52)

(
1 − L2

p

)[
Y In
In X

]
− Lp

[
ApY + BPM Ap − BpNCp

K XAp − LCp

]

− Lp

[
ApY + BPM Ap − BpNCp

K XAp − LCp

]T
− γ−1

[
Y In
−M NCp

]T[
Q 0

0 R

][
Y In
−M NCp

]

−

[
ApY + BPM Ap − BpNCp

K XAp − LCp

]T[
Y In
In X

]−1[
ApY + BPM Ap − BpNCp

K XAp − LCp

]
≥ 0

(53)J(k) < 𝜉T (k)P𝜉(k) ≤ 𝛾

(54)�T (k)

[
Y V

V Y

]−1
�(k) ≤ 1

(55)v(k) = u(k)−
−
u=

[
−DcCp CC

]
�(k)

(56)‖v(k)‖2 = �T (k)
�
−DcCp CC

�T�
−DcCp CC

�
�(k)

(57)
‖v(k)‖2 = �T (k)

�
−NCp

�
M + NCPY

�
V−1

�T�
−NCp (M + NCPY)V

−1
�
�(k)
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The following matrix decomposition is used to find an upper bound:

The condition (57) can be rewritten as:

It is easy to check that the following decomposition is valid:

Using the Schur’s lemma, one may have:

Let pre- and post-multiply the inequality (61) by the following matrices, 
respectively:

The inequality (61) could be simplified as follows:

Then, the control sequence ‖v(k)‖ may be an upper-bounded using the condi-
tion (57).

It completes the proof.

Remark 1 The inequality (26) is used while both matrices Q and R are invertible. 
Sometimes, the matrix Q may not be invertible. Hence, the symmetric matrices Q 
and R could be decomposed by means of the Cholesky factorization technique as 
follows [34]:

(58)
[
−NCp (M + NCPY)V

−1
]
=
[
M −NCp

][ 0 V−1

In −YV−1

]

(59)‖v(k)‖2 = �T (k)

�
0 V−1

In −YV−1

�T�
M −NCp

�T�
M −NCp

�� 0 V−1

In −YV−1

�
�(k)

(60)
[
Y In
In X

]
=

[
Y V

In 0

][
Y V

V Y

]−1[
Y In
V 0

]

(61)

[
M −NCp

]T[
M −NCp

]
≤ u2

max

[
Y In
In X

]
= u2

max

[
Y V

In 0

][
Y V

V Y

]−1[
Y In
V 0

]

(62)
[
Y V

In 0

]−1
=

[
0 In

V−1 −V−1Y

]
and

[
Y In
V 0

]−1
=

[
0 V−1

In −YV−1

]

(63)
[
−NCp

(
M + NCPY

)
V−1

]T[
−NCp (M + NCPY)V

−1
]
≤ u2

max

[
Y V

V Y

]−1

(64)‖v(k)‖2 ≤ u2
max

�T (k)

�
Y V

V Y

�−1
�(k) ≤ u2

max

(65)
{

Q = QT
ch
× Qch

R = RT
ch
× Rch
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where the terms Qch and Rch are some unique triangular matrices. Then, the condi-
tion (26) could be interchanged with the following LMI:

The other matrix factorization techniques like diagonalization procedure may be 
also used to tackle such difficulty. The matrices Q and R are decomposed via the 
diagonalization method as follows [34]:

where the terms Q
1

2 and R
1

2 are the square root of the matrices Q and R , respectively. 
Then, the LMI condition (26) is interchanged with the following LMI:

Remark 2 The plant output y(k) norm may admit an upper bound like ymax (i.e. 
‖y(k) − r‖ < ymax ). Such inequality can be written as follows:

In Theorem 2, the inequality (69) can be added to the LMI sets (23)–(26) to guar-
antee that the output constraint is satisfied.

Remark 3 The MPDC may outperform the other MPCs in terms of the performance 
cost. But, its computational demand to solve the MPDC optimization problem seems 
harder than the other MPC. In the discrete-time control implementation, there is 
enough time to compute the controller parameters by solving the LMI minimization 
problem. The optimization issue is typically solved in less than 0.1 s in the proposed 
method. Hence, such a problem can be handled in practical applications.

Remark 4 The minimization of the quadratic performance index (8) subject to 
some plant constraints is the main objective of the MPDC approach. Thus, the 

(66)

⎡
⎢⎢⎢⎢⎢⎢⎣

M11 M12 M13 M14 YQch −MTRch

∗ M22 K M24 Qch CT
p
NTRch

∗ ∗ Y In 0 0

∗ ∗ ∗ X 0 0

∗ ∗ ∗ ∗ �In 0

∗ ∗ ∗ ∗ ∗ �In

⎤
⎥⎥⎥⎥⎥⎥⎦

≥ 0

(67)

{
Q = Q

1

2 × Q
1

2

R = R
1

2 × R
1

2

(68)

⎡⎢⎢⎢⎢⎢⎢⎢⎣

M11 M12 M13 M14 YQ
1

2 −MTR
1

2

∗ M22 K M24 Q
1

2 CT
p
NTR

1

2

∗ ∗ Y In 0 0

∗ ∗ ∗ X 0 0

∗ ∗ ∗ ∗ �In 0

∗ ∗ ∗ ∗ ∗ �In

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

≥ 0

(69)
[
I Cp𝜉p(k)

∗ y2
max

]
> 0



4843Circuits, Systems, and Signal Processing (2020) 39:4829–4848 

optimization of the objective function (8) is only taken into account in the MPDC 
design rather than in the other control requirements. Therefore, various practical 
issues, as well as the actuator life cycle problem (control input rate), can also be 
considered in the cost function to achieve a more efficient control scheme.

Remark 5 The optimization problem of Theorem 2 may be solved at each sample 
time. The results of Theorem 2 can also be used to design a robust optimal control in 
the uncertain system (1). Hence, the cost function can be written as follows:

The proposed optimization problem is solved in an off-line way when the initial 
conditions of the uncertain plant (1) are known. Therefore, an off-line dynamic con-
trol system may be obtained in an uncertain system (1).

Remark 6 In Assumption 1, it is supposed that the states of the uncertain system 
(1) have to be measurable to the control designer. But, some parts of the states may 
not be available in real-time implementations. In this case, an extra (full or reduced 
order) observer block can be incorporated to estimate the non-measured states of 
the uncertain system (1). Nevertheless, an additional error is induced regarding the 
transient response of the estimator dynamic. Consequently, in the case of the non-
measured states, the raised issue could be handled if the output feedback MPDC is 
derived for the uncertain system (1).

5  Simulation Results

Consider the following discrete-time system [13]:

The initial conditions of the plant (71) and the controller states are chosen as 
xp(0) =

[
1 2 1

]T and xc(0) =
[
0 0 0

]T , respectively. Recently, two LMI-based 
MPC algorithms have been suggested to regulate the uncertain plant (1). They 
include the discrete-time MPC [13] and the continuous-time MPDC [12]. In order 
to implement the continuous-time MPDC, a continuous-time form of the nonlinear 
system (1) may be approximated via the Euler backward method as follows:

(70)J =

+∞∑
k=0

((
xp(k) −

−
xp

)T

Q
(
xp(k) −

−
xp

)
+

(
u(k)−

−
u
)T

R
(
u(k)−

−
u
))

(71)

⎧⎪⎨⎪⎩

xp(k + 1) =

⎡
⎢⎢⎣

0.9 0.8 0.1

−0.1 0.7 0.2

−0.2 −0.4 −0.2

⎤
⎥⎥⎦
xp(k) +

⎡
⎢⎢⎣

0

0

1

⎤
⎥⎥⎦
u(k) +

1

2+x2
3
(k)

⎡
⎢⎢⎣

0

x1(k)

x2(k)

⎤⎥⎥⎦
yp(k) =

�
1 0 0

�
xp(k)

(72)ẋp = Ac
p
xp + f c

p

(
xp
)
+ Bc

p
u
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whereAc
p
=

1

T

(
Ap − In

)
 , Bc

p
=

1

T
Bp , f cp (.) =

1

T
fp(.) and T  denote the sample time. The 

discrete-time MPC is applied as u(k) = F(k)xp(k) . The gain F(k) is updated at sam-
ple time with the solution of a minimization problem.

Hence, the simulation results are compared to the mentioned MPC methods with 
the same Q and R weights. The weight matrices are selected as Q = I3 and R = 1 . 
Then, it is assumed that the control input affects the performance index the same as 
the plant states. The weights Q and R are some invertible matrices. Hence, no fac-
torization is necessary.

The results of Theorem  2 is applied to the MPDC design while the constraint 
on the control input sets as |u(k)| ≤ 0.5 . In the numerical simulation, the reference 
signal is assumed to be zero and the sample time is selected as 1 s. The control and 
prediction horizons tend to infinity. The optimization problem is numerically solved 
via the LMILab. Then, the MPCs parameters are updated at each sample time. The 
following quadratic cost function is considered as the performance index:

The performance criterion can be evaluated by applying Theorem 2. The com-
parative results are shown in Table 1. Thus, the controllers are designed while the 
cost function J0 is minimized as well.

(73)J0 =

+∞∑
k=0

xp(k)
TQxp(k) + u(k)TRu(k)

Table 1  The comparison of the performance indexes

Performance index Proposed control Discrete-time MPC Continuous-time MPDC

J
0

60.1201 69.2362 80.1314

Fig. 1  The applied control signal u(k)
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The generated control signal u(k) is plotted in Fig. 1. The states of the exam-
ple are also illustrated in Figs. 2, 3 and 4. The cost value upper bound � at each 
sample time is depicted in Fig. 5. It is seen that the state deviations of the uncer-
tain plant (71) are considerably small via the suggested predictive control com-
pared to the other control techniques. The simulation results are demonstrated in 
Figs. 1–5 and Table 1 by using the proposed and existing MPCs.

Fig. 2  The first state of the plant x
1
(k)

Fig. 3  The second state of the plant x
2
(k)
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As a consequence, the outcomes verify the performance improvement of the 
closed-loop system compared to the other predictive control methods. Therefore, 
the control goals are accomplished by the presented MPDC in the discrete-time 
systems by considering the system uncertainty and the given control constraint.

Fig. 4  The third state of the plant x
3
(k)

Fig. 5  The upper bound of the cost function �
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6  Conclusion

The MPDC design is investigated in the discrete-time uncertain systems. A quad-
ratic objective function is selected as the control design requirement. Then, a matrix 
transformation is used to express the results in terms of some LMI’s. It is shown 
that the MPDC synthesis can be translated into another LMI minimization problem 
by using the matrix transformation. The dynamic controller parameters are updated 
at each sample time via the solution of the optimization problem. The procedure 
is applied to a discrete-time example to demonstrate the effectiveness of the pro-
posed approach versus the existing results. The efficiency of the suggested MPDC is 
numerically shown in terms of the control and transient performances.
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