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Abstract
This paper is concerned with the identification of turntable servo system through the
usage of a reframed multi-innovation least-squares scheme. A Wiener–Hammerstein
model is employed in this paper to depict the dynamic characteristics of the turntable
system. In the test bed, the stabilized platform can be considered as a linear dynamic
subsystem. The motor is also a linear dynamic subsystem. And the major nonlinearity
characteristic betweenmotor and platform is captured by a continuously differentiable
friction model. A new reframed multi-innovation least-squares approach (RMILS) is
proposed to identify theWiener–Hammersteinmodel. By introducing the intermediary
step updating, the innovation updating is decomposed into sub-innovations updating,
which can solve the inverse of covariance matrix and improve the identification per-
formance. Then, the consistency nature of the RMILS method is discussed by using
the theoretical analysis. Finally, the simulation and experiment results explain that the
developed approach produces an outstanding performance in convergence speed and
identification precision comparing to the conventional multi-innovation least-squares
approach.
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1 Introduction

In recent decades, parameter identification techniques have attracted extensive interest
in system modeling, signal processing, control system design and fault diagnosis,
etc. [5,18,24,34]. In system modeling, block-oriented models (B-O-M) have become
one of the popular nonlinear modeling approaches because of their advantages to
capture the behavior of the practical system, and to provide a model analysis for
control system. On the other hand, B-O-M consist of interaction of linear dynamic
submodels and static nonlinear submodels. Such combination characteristic is flexible
to use and easy to understand. By far the simplest and most widely used combination
models are Hammerstein (for short, H-S) and Wiener systems (W-S). The extension
versions involve Wiener–Hammerstein (for short, W–H-S) and Hammerstein–Wiener
systems (H–W-S). The extended systems can provide higher modeling capabilities
than the H-S andW-S. In this paper, the focus is made on the identification and system
modeling of the W–H-S as depicted in Fig. 1, where L1 is the first subsystem, the
middle friction nonlinearity is denoted by f (·), and the third subsystem is L2.

Many efforts have been made on the parameter identification and system model-
ing of W–H-S [6,11,20,26,30]. Giordano et al. [6] developed a modified fractional
approach to divide the poles and zeros for two linear subsystems of W–H-S by trans-
forming discrete problem into continuous problem way, and estimated initial value of
systems based on the best linear approximation method and Newton algorithm. Mzyk
et al. [20] utilized a kernel-type nonparametric estimate to estimate static nonlinear
part of W–H-S and used kernel-correlation estimator to identify the linear dynamic
characteristic. Dong et al. [2] applied two-step estimation method to obtain the param-
eter information for the micro-positioning stage with piezoelectric actuator based on
the W–H-S with hysteresis nonlinearity. In Schoukens et al. [23], the W–H-S are
approximated based on the best linear approximation technique, and the parameter
of models are estimated by using the L–M approach. In some mild assumptions, the
presented estimation schemes are effective. However, in aforementioned works, the
W–H-S in which the middle nonlinear block is a linear combination of basis functions
(e.g., [20,23,30]) or rational fraction function (e.g., [6]) is presented to model the
practical system. When the practical system exhibits a strong nonlinear information,
the W–H-S with a linear combination of basis function or rational fraction function
may not effectively capture system dynamics or even may not be valid. Therefore, it is
necessary to replace the above nonlinear block by using an appropriate nonlinear ele-
ment when wemodel the complex nonlinear system such as the servo system and X–Y
positioning table. In [32], a switched nonlinear autoregressive moving average eXoge-
nous model developed by Zhang et al. is used to model the turntable servo system,
in which system parameters are estimated by using the particle swarm optimization

Fig. 1 Wiener–Hammerstein systems with friction
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algorithm. A cascade model for the servo system is presented in the literature [31], in
which the particle swarm optimization is used to identify the system parameter, the
cross-validation shows that there is a good correspondence between the real equip-
ment and the identified model. Na et al. [22] used an improved Lyapunov–Krasovskii
functions to handle the unknown time-delays, and a novel high-order neural network
model is used to model the unknown deadzone and others nonlinearities of robotic
servo system. Finally, the tracking control is achieved by developing an adaptive con-
troller. In the above literature, the modeling of servo system is based on the global
approximationmethod, partial approximationmethod or simple cascademodel, which
may produce an unsatisfactory modeling performance due to the complex dynamic of
servo system. Inspired by literature [2], the complex W–H-S model is used to model
for servo system based on a novel friction submodel.

In recent years, the design and development of multi-innovation identification idea
have been proven to be simple and effective in theory [17,25] and engineering appli-
cation [14,33]. The basic idea of multi-innovation theory is to expand the scalar
innovation into multi-innovation vector or matrix by using the several groups of data,
to improve the utilization rate of estimator based on the current and past time system
information, which can enhance the estimation accuracy and convergence speed of
identification algorithm. Multi-innovation theory is a natural extension of scalar inno-
vation, which only uses available system information and does not need an additional
design to improve the identification performance. Inspired by the multi-innovation
identification idea, a new reframed identification approach for the identification of
Wiener–Hammerstein with friction and the modeling of the turntable servo system
are designed by using the intermediary step updating. The major contributions of this
paper are provided as follows:

(1) A new reframed multi-innovation least-squares scheme (RMILS) is proposed to
solve the problem of multi-innovation length p in conventional MILS method
by using the intermediary step updating. The multi-innovation update is trans-
formed into p sub-innovations update, which effectively addresses inversion of
covariance matrix. Moreover, the consistency proof of the presented estimator
has indicated that the estimation value can converge to desired value.

(2) According to the nonlinear characteristic of turntable servo system, we choose the
friction nonlinearity as nonlinear submodel rather than a linear combination of
basis functions or rational fraction function, which is more suitable for modeling
the turntable servo system.

(3) The efficacy and usefulness of the developed method is checked on the system
identification and modeling of turntable servo system based on the W–H-S with
frication nonlinearity. Numerical verification and experimental analyses are con-
vincingness and rationality for using the algorithm presented in practice.

The remainder of this paper is given as follows. The W–H-S with friction is intro-
duced in Sect. 2. Section 3 derives the RMILS approach. The convergence analysis of
the proposed algorithm is given in Sect. 4. Section 5 provides the numerical example
and experiment, and discussion is given in Sect. 6. Section 7 shows some conclusions.
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2 SystemDescription and IdentificationModel

The structure of the W–H-S with friction nonlinearity to model the turntable servo
system is displayed in Fig. 1, where u(t) and y(t) denote the input–output of the
system, x(t), v(t) are outputs of the linear subsystem (L1) and friction. d(t) represents
the noise signal. L1 and L2 can be expressed as

x(t) =
na∑

i=1

ai u(t − i) −
nb∑

j=1

b j x(t − j), (1)

y(t) =
nc∑

m=1

cmv(t − m) −
nd∑

n=1

dn y(t − n) + d(t). (2)

Assume that the linear dynamic subsystems L1 and L2 are stable, na , nb, nc and
nd are known. a1, . . . , ana , b1, . . . , bnb , c1, . . . , cnc and d1, . . . , dnd are unknown,
u(t) = 0, x(t) = 0, v(t) = 0 and y(t) = 0 for t ≤ 0. Let both a1 = 1, c1 = 1 for the
unique description of identification model [3,12].

The identifications of discontinuous or piecewise continuous friction model param-
eters are time-consuming [1]. Moreover, these models may lead to a problematic for
smooth control actions [21]. In this paper, a newlyproposed continuously differentiable
friction model [19,29] is applied, which is described by the following parameterized
form:

v(t) = γ1 tanh(γ2 ẋ(t)) − γ1 tanh(γ3 ẋ(t)) + γ4 tanh(γ5 ẋ(t)) + γ6 ẋ(t), (3)

where γi , i = 1, 2, . . . , 6 represent positive parameters.
Compared with the mentioned friction model (e.g., Coulomb, LuGre and GMS),

friction model (3) possesses a continuously differentiable form to enable more suit-
able parameter identification. It can capture the following major behavior discussed
in friction modeling: (1) γ1 and γ4 denote the coefficient of the static friction. (2)
tanh(γ2 ẋ) − tanh(γ3 ẋ) can capture the so-called Stribeck effect. (3) γ4 tanh(γ5 ẋ)

dominates the Coulomb friction. (4) The viscous dissipation term is given by γ6 ẋ . For
more information on friction model (3), the reader can refer to [19].

To achieve the systemmodeling of the turntable servo system, based on the property
of function tanh(·), the output and input characteristics of Eq. (3) can be described by
the following equation:

v(t) = γ6x(t)−γ6x(t −1)+β1sign(x(t)−x(t −1))−β2 tanh(x(t)−x(t −1)), (4)

where β1, β2 are positive parameters, sign(·) denotes the sign function.
Substituting (1) and (4) into (2) and applying the key-term separation principle [27]

yields

y(t) = c1γ6

na∑

i=1

ai u(t − i − 1) − c1γ6

nb∑

j=1

b j x(t − j − 1) − c1γ6x(t − 2)
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+ c1β1sign(x(t − 1) − x(t − 2)) − c1β2 tanh(x(t − 1) − x(t − 2))

+
nc∑

m=2

cmv(t − m) −
nd∑

n=1

dn y(t − n) + d(t). (5)

In order to obtain the identification model, (5) can be equivalently written as

y(t) = ϕT (t)θ + d(t), (6)

where the data vector ϕ(t) and the vector θ are listed as follows:

ϕ(t) = [u(t − 2), u(t − 3), . . . , u(t − na − 1),−x(t − 2),−x(t − 3), . . . ,

− x(t − n − b − 1), sign(x(t − 1) − x(t − 2)),− tanh(x(t − 1) − x(t − 2)),

v(t − 2), v(t − 3), . . . , v(t − nc),−y(t − 1),−y(t − 2), . . . ,−y(t − nd)]T,

and

θ = [c1a1γ6, . . . , c1ana γ6, c1b1γ6 + c1γ6, c1b2γ6, . . . c1bnbγ6, c1β1, c1β2,

c2, c3, . . . , cnc , d1, d2, . . . , dnd ]T,

where

γ6 = c1a1γ6, a2 = c1a2γ6/γ6, . . . , ana = c1ana γ6/γ6, b1 = (c1b1γ6 + c1γ6)/γ6 − 1,
b2 = c1b2γ6/γ6, . . . , bnb = c1bnbγ6/γ6, β1 = c1β1, β2 = c1β2.

3 ReframedMulti-innovation Least-Squares Algorithm

In the field of system identification, recursive least squares method (RLS) is one of
the most popular identification algorithms [8,9]. The multi-innovation least-squares
algorithm (MILS) is designed for the purpose of improving the convergence rate of
the RLS [4,28]. To display the advantage of the RMILS, the MILS will be briefly
introduced.

For the identification model (6), defining the criterion function J (θ) = [y(t) −
ϕT (t)θ ]2 andminimizing thequadratic criterion J (θ), thenwecanget theRLSmethod,
in which e(t) = y(t)−ϕT (t)θ̂(t −1) represents the scalar innovation [10]. Expanding
the scalar innovation e(t) to the innovation vector (multi-innovation) E(p, t) by using
newest p data: Y(p, t) = [y(t), y(t − 1), . . . , y(t − p + 1)]T, E(p, t) = [e(t), e(t −
1), . . . , e(t − p + 1)]T, φT (p, t) = [ϕT (t), ϕT (t − 1), . . . , ϕT (t − p + 1)]T, where
p represents the innovation length (p ≥ 1).

Based on the innovation vector, MILS is written as follows:

θ̂ (t) = θ̂ (t − 1) + L(t)[Y(p, t) − φT (p, t)θ̂(t − 1)], (7)

L(t) = P(t − 1)φ(p, t)[Ip + φT (p, t)P(t − 1)φ(p, t)]−1, (8)

P(t) = P(t − 1) − L(t)φT (p, t)P(t − 1), P(0) = p0 I . (9)
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Noting that (7), (8), and (9) involve the unknown variables ϕ(t) in φ(p, t), and
x(t − i), v(t − i) in ϕ(t), one solution is to reconstruct the auxiliary model through the
usage of the auxiliary model method [15,16]. The basic idea of the auxiliary model
method is to replace the unknown variable by using their estimated values, i.e., x(t −i)
is replaced by x̂(t − i), where x̂(t − i) is the estimate of x(t − i). Then, the information
vector ϕ(t) in (6) is replaced by using ϕ̂(t) such that φ(p, t) is also known.

In the MILS method, the inverse of the covariance matrix in Eq. (8) needs to be
calculated, which leads to a large amount of computation and singular value phe-
nomenon. To tackle the above problem, the multi-innovation updating is divided into
p sub-innovations updating steps by introducing the intermediary step updating. Then,
the covariance matrix is transformed into scalar operation, which decreases the com-
putational burden of the algorithm and improves the identification performance of the
method. The decomposition is described as follows.

When i = 1, . . . , p, the matrix [1 + ϕT (t, i)Pi−1(t)ϕ(t, i)] is transformed into
scalar operation. To achieve this purpose, y(t) and ϕ(t) are modified to y(t, i) and
ϕ(t, i), then the RMILS is written as follows:

θ̂i (t) = θ̂i−1(t) + Li (t)e(t, i), (10)

e(t, i) = y(t, i) − ϕT (t, i)θ̂i−1(t), (11)

Li (t) = Pi−1(t)ϕ(t, i)[1 + ϕT (t, i)Pi−1(t)ϕ(t, i)]−1, (12)

Pi (t) = Pi−1(t) − Li (t)ϕ
T (t, i)Pi−1(t), (13)

P0(t) = Pp(t − 1), L0(t) = L p(t − 1), θ̂0(t) = θ̂p(t − 1). (14)

Remark 1 Compared with the MILS method, the RMILS approach can exact the sys-
tem information as far as possible by using p the sub-innovation update steps under
the same conditions without computing the inverse of covariance, which effectively
improves the performance of the parameter identification. In iterative algorithm [30],
the estimated parameter is updated by using L sets of data each time, which is repeated
k times. In presented method, the estimated parameter is updated by using a set of
data each time, which is computed from 1 to p. For the same system, in general, the
length of innovation p is much less than the iterative time k.

In Eqs. (10)–(14), i represents the sub-innovation updating step, and θ̂0(0) = I/p0.
when i = p holds, then the next updating will be started.

4 Convergence Analysis

In this section, the convergency of the RMILS scheme will be studied. Assume that
{d(t),Ft } is a bounded martingale, in which the algebra sequence {Ft } is constituted
by {d(t)}, and the noise {d(t)} satisfies [7]
(A1) E[d(t)|Ft−1] = 0, a.s.,
(A2) E[‖d(t)‖2|Ft−1] = σ 2

d (t) ≤ σ 2
d < ∞, a.s.,

(A3) lim sup
t→∞

1
t

t∑
i=1

‖d(i)‖2 ≤ σ 2
d < ∞, a.s..
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Theorem 1 For the system (6) and the RMILS algorithm (10)–(14), assume that the
input u(t) satisfies persistent excitation condition, such that, α I ≤ 1/t

∑t
j=1

∑p
i=1

ϕ̂( j, i)ϕ̂T ( j, i) ≤ β I , t ≥ t0 and (A1)–(A3) hold, then the parameter estimation
(θ̃(t) = θ̂p(t) − θ) converges to zero, i.e., limt→∞ ‖θ̂p(t) − θ‖2 = 0, a.s..

Proof Define the parameter error vector θ̃i (t) = θ̂i (t) − θ, i = 1, 2, . . . , p. Then,
subtracting θ both sides of (10), it yields

θ̃i (t) = θ̃i−1(t) + Pi (t)ϕ̂(t, i)[ϕT (t, i)θ − ϕ̂T (t, i)θ̂i−1(t)] + Pi (t)ϕ̂(t, i)d(t, i)

= θ̃i−1(t) + Pi (t)ϕ̂(t, i){−ϕ̂T (t, i)θ̃i−1(t) + [ϕ(t, i) − ϕ̂T (t, i)]Tθ + d(t, i)}
= θ̃i−1(t) + Pi (t)ϕ̂(t, i)[−ỹ(t, i) + �(t) + d(t, i)], (15)

where ỹ(t, i) = ϕ̂T (t, i)θ̂i−1(t) − ϕ̂T (t, i)θ = ϕ̂T (t, i)θ̃i−1(t), �(t) = [ϕ(t, i) −
ϕ̂T (t, i)]Tθ .

Based on (15) and P−1
i (t) = P−1

i−1(t) + ϕ̂(t, i)ϕ̂T (t, i), we obtain

θ̃T
i (t)P−1

i (t)θ̃i (t) = {θ̃i−1(t) + Pi (t)ϕ̂(t, i)[−ỹ(t, i) + �(t) + d(t, i)]}T P−1
i (t)

× {θ̃i−1(t) + Pi (t)ϕ̂(t, i)[−ỹ(t, i) + �(t) + d(t, i)]}
= θ̃T

i−1(t)[P−1
i−1(t) + ϕ̂(t, i)ϕ̂T (t, i)]θ̃i−1(t) + 2 ỹ(t, i)[−ỹ(t, i)

+ �(t) + d(t, i)] + ϕ̂T (t, i)Pi (t)ϕ̂(t, i)[̃y(t, i)2 + d(t, i)2

+ �(t)2 − 2 ỹ(t, i)d(t, i) − 2 ỹ(t, i)�(t) + 2�(t)d(t, i)]
= θ̃T

i−1(t)P−1
i−1(t)θ̃i−1(t) − [1 − ϕ̂T (t, i)Pi (t)ϕ̂(t, i)]̃y(t, i)2

+ 2[1 − ϕ̂T (t, i)Pi (t)ϕ̂(t, i)]̃y(t, i)[�(t) + d(t, i)]
+ ϕ̂T (t, i)Pi (t)ϕ̂(t, i) × [d(t, i)2 + �(t)2 + 2�(t)d(t, i)].

(16)

Assume that {�(t)} is bounded, e.g, �(t)2 ≤ ε < ∞. Since θ̃T
i−1(t)P−1

i−1(t)θ̃i−1(t),
ỹ(t, i), ϕ̂T (t, i)Pi (t)ϕ̂(t, i) and �(t) are uncorrelated with d(t, i), and 1 − ϕ̂T (t, i)
Pi (t)ϕ̂(t, i) = [1 + ϕ̂T (t, i)Pi−1(t)ϕ̂(t, i)]−1 ≥ 0. Define the function Wi (t) =
E[θ̃T

i (t)P−1
i (t)θ̃i (t)], the conditional expectation is taken on both sides of (16) with

respect toFt−1 and using Assumptions (A1)–(A3), we have

Wi (t) ≤ Wi (t − 1) + E{ϕ̂T (t, i)Pi (t)ϕ̂(t, i)[d(t, i)2 + �(t)2]}. (17)

Summing for Wi (t) from i = 1 to i = p. From (17), we obtain

Wp(t) ≤ Wp(t − 1) +
p∑

i=1

E{ϕ̂T (t, i)Pi (t)ϕ̂(t, i)[σ 2
v + ε]}

≤ Wp(0) + E

⎧
⎨

⎩

p∑

i=1

t∑

j=1

ϕ̂T ( j, i)Pi ( j)ϕ̂( j, i)[σ 2
v + ε]

⎫
⎬

⎭ . (18)
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Since P−1
i−1(t) = P−1

i (t) − ϕ̂(t, i)ϕ̂T (t, i), we have

|P−1
i−1(t)| = |P−1

i (t)||I − Pi (t)ϕ̂(t, i)ϕ̂T (t, i)|,

ϕ̂T (t, i)Pi (t)ϕ̂(t, i) = |P−1
i (t)| − |P−1

i−1(t)|
|P−1

i (t)| =
∫ P−1

i (t)

P−1
i (t−1)

dx

|P−1
i (t)| .

Replacing t with j , and summing for i from 1 to p yield

p∑

i=1

t∑

j=1

ϕ̂T ( j, i)Pi ( j)ϕ̂( j, i) ≤
p∑

i=1

∫ P−1
i (t)

P−1
i (0)

dx

x
=

p∑

i=1

[ln |P−1
i (t)| + n ln p0].

(19)

Applying the persistent excitation condition α I ≤ 1/t
∑p

i=1

∑t
j=1 ϕ̂( j, i)ϕ̂T ( j, i) ≤

β I , t ≥ t0 to P−1
i (t) = ∑p

i=1

∑t
j=1 ϕ̂( j, i)ϕ̂T ( j, i) + P−1

i (0), substituting |P−1
i (t)|

into (19), we have

p∑

i=1

t∑

j=1

ϕ̂T ( j, i)Pi ( j)ϕ̂( j, i) =
p∑

i=1

[ln |P−1
i (t)| + n ln p0]

≤ pn ln(βt + 1/p0) + pn ln p0. (20)

According to the definition of Wi (t), we have

Wp(t) ≥ p(αt + 1/p0)E[‖θ̃ (t)‖]2. (21)

Since Wp(0) = E[θ̃T (0)P−1(0)θ̃(0)] = pn/p20, substituting (20), (21) into (18)
yields

p(αt + 1/p0)E[‖θ̃ (t)‖]2 ≤ Wp(t)

≤ Wp(0) + E

⎧
⎨

⎩

p∑

i=1

t∑

j=1

ϕ̂T ( j, i)Pi ( j)ϕ̂( j, i)[σ 2
v + ε]

⎫
⎬

⎭

≤ pn/p20 + [pn ln(βt + 1/p0) + pn ln p0][σ 2
v + ε]. (22)

Taking the limits of both sides of (22) with t , we have

lim
t→∞[‖θ̃ (t)‖]2 ≤ lim

t→∞
n/p20 + [n ln(βt + 1/p0) + n ln p0][σ 2

v + ε]
(αt + 1/p0)

= 0.

Theorem 1 has been shown. �	
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5 Illustrative Example and Application

5.1 Illustrative Example

Consider the following W–H-S with friction block:

L1 : x(t) = u(t − 1) + 2.2u(t − 2) − 1.0x(t − 1) − 0.5x(t − 2),
L2 : y(t) = v(t − 1) + 0.2v(t − 2) − 0.15y(t − 1) − 0.4y(t − 2) + d(t),
Friction: v(t) = 0.05x(t)−0.05x(t−1)+0.7sign(x(t)−x(t−1))−0.2 tanh(x(t)−
x(t − 1)).

As can be seen from the example considered above, the desired parameter values
are a1 = 1, a2 = 2.2, b1 = 1.0, b2 = 0.5, c1 = 1, c2 = 0.2, d1 = 0.15, d2 = 0.4,
γ6 = 0.05, β1 = 0.7, β2 = 0.2. In the simulation, the input u(t) is mean μ = 0 and
variance σ 2 = 1 persistent excitation signal. The white noise d(t) is uncorrelated with
input persistent excitation signal whose signal-to-noise ratio is SNR = 7.4620. The
sample length is N = 1000, p = 4, the initial value is chosen as θ̂ (0) = 19/102 (1
represents the unit column vector).

Applying the MILS and RMILS algorithms to estimate the parameter value θ of
the W–H-S with friction, the comparative parameter convergence histories by both
identification approaches are, respectively, depicted in Fig. 2a–c. It can be observed
that the estimatedvalueswith solid line quickly tend to their expectedvaluewith dashed
black line during the samples from 0 to 500, whereafter, the parameter estimation can
reach their true values after about sample data 800. In order to reveal the evolutionary
processes of the identification, the identification errors (δ = ‖θ̂ (t)−θ‖/‖θ‖) byMILS
algorithm with solid blue line and RMILS algorithm with solid red line are shown in
Fig. 2d. It is shown that the estimation errors by both identificationmethods are rapidly
decreasing in the initial stage of parameter estimation, and after the sample data 1000,
the estimation errors tend to small steady value. The contrastive results shown in
Fig. 2 indicate that the proposed algorithm (RMILS) provides a better estimation
property both in the convergence speed and estimation precision compared to the
MILS algorithm.

To test the results of parameter estimate, the contrastive modeling verifications are
implemented based on the identification results, as shown in Fig. 3. The estimated
model outputs by both algorithms with the dashed red line can capture the dynamics
of the actual outputs with the solid blue line, which validates the usefulness of both
algorithms. Compared with the MILS algorithm, the proposed algorithm produces an
excellent predictive performance with a smaller model error.

The following indices are used to quantitatively analyze the capability of the estima-
tor, in which the small indices mean the superiority of the estimator. (1) Normalized
mean squared error (NMSE), NMSE = 1

N ′σ 2
y

∑N ′
i=1(yi − ŷi )

2; (2) prediction error

mean, μe = 1
N ′

∑N ′
i=1 esim(t); (3) root mean square, eRM Se =

√
1
N ′

∑N ′
i=1 esim(t)2,

where N ′ represents the sample length, σ 2
y is the output variance and esim(t) = yt − ŷt

is the error of prediction [19].
Based on the definition ofμe, eRMSe and NMSE, results of the performance indices

are listed in Table 1. Table 1 displays the performance values of the identification
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Fig. 3 Model validation for both algorithms

algorithms, it is clear that the indices are small values, which indicate that the iden-
tification algorithms produce accurate parameter estimation. Table 1 also shows that
the performance of the RMILS method outperforms that of the MILS approach.
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Table 1 Performance indices of the identification algorithms

Algorithm μe eRMSe NMSE

MILS 1.6550 × 10−2 5.9980 × 10−2 5.9515 × 10−3

RMILS 1.5282 × 10−4 2.2284 × 10−3 8.6324 × 10−5

Fig. 4 Turntable servo system

5.2 Application

From the simulation results, it can be seen that the proposed algorithm has certain
advantages in convergence speed and estimation accuracy compared to the MILS. To
confirm the usefulness of the presented estimator, the RMILS is utilized to model the
turntable servo system based on the W–H-S with friction. A turntable system is used
as a test rig, which is depicted in Fig. 4. In this experimental platform, the stabilized
platform and motor can be considered as dynamic subsystems, respectively. Friction
lies in the stabilized platform andmotor. Tomake a long story short, the turntable servo
system is aW–H-S with friction system.We can use theW–H-S with friction to model
the turntable system. In this rig, themotion of x-axis (or y-axis) is driven by a permanent
magnet synchronous motor (HC-UFS13). A digital signal processor (TMS3202812)
is used as the controller and motor drive card (MR-J2S-10A) performing as the driver,
resolution of the encoder is 800 divisions. The results of the experiment are displayed
on a PC Pentium 2.8 GHz.

Based on the structure of the turntable system, the Wiener–Hammerstein model
can be written as follows:

(1) Linear submodel L1 for the motor system: x(t) = u(t − 1) + A2u(t − 2) −
B1x(t − 1) − B2x(t − 2),

(2) friction model f (·) for the actual nonlinearity: v(t) = α1x(t) − α1x(t − 1) +
α2sign(x(t) − x(t − 1)) − α3 tanh(x(t) − x(t − 1)),

(3) linear submodel L2 for the stabilized platform (Load): y(t) = v(t −1)+C2v(t −
2) − D1y(t − 1) − D2y(t − 2).
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Fig. 5 Comparative estimations by both approaches

In this experiment, a PID algorithm is employed as the controller, whose param-
eters are chosen as kp = 40, ki = 0.001, kd = 0.2. The reference signal yd =
0.8 sin(2/5π t) is taken as the input signal. The sampling rate is 0.01 s. The initial
value of θ is θ0 = [0.04, 0.06, 0.044, 0.0058, 0.001, 0.036, 0.001, 0.11, 0.01]T, the
innovation length p = 4, the covariance matrix is P = 106 I .

The contrastive parameter identification profiles by MILS and RMILS algorithms
are plotted in Fig. 5, respectively. We can find that the estimated parameters have
oscillations in the initial stage of parameter estimation by both identification schemes,
but the estimated values can give close to steady values with the increase in time. The
proposed approach provides smaller oscillation and faster convergence speed than
the MILS algorithm. According to Fig. 5, we can obtain the corresponding estimated
values Â2 = 0.8545, B̂1 = −0.9703, B̂2 = 0.6861, α̂1 = 0.0436, α̂2 = 0.006,
α̂3 = 0.0532, Ĉ2 = −0.7049, D̂1 = 0.3246 and D̂2 = 0.4869.

To illustrate the superiority of the RMILS scheme, Fig. 6 shows the tracking outputs
and errors for both algorithmsbased on the estimation results. It can be clearly observed
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Fig. 6 Track output and error by both approaches

Table 2 Comparison of output error indices

Algorithm μe eRMSe NMSE

MILS − 6.7508 × 10−5 3.4426 × 10−2 2.3675 × 10−3

RMILS − 3.9563 × 10−5 1.3820 × 10−2 3.8107 × 10−4

that the obtainedmodel outputs can track the reference output and the presented scheme
produces a classy tracking performance compared with theMILS algorithm. Tracking
output results indicate that the W–H-S with friction can model for the turntable servo
system, and also demonstrate the advantage of RMILS. Table 2 summarizes the model
error indices comparisons between the RMILS scheme and MILS algorithm. It is
obvious that the developed method can give more accurate modeling results by the
values of μe, eRMSe and NMSE.

6 Discussion

Compared with our previous work in [13], this paper has the following differences.
Firstly, the purpose and system characteristics of the paper are different: The publica-
tion in [13] considers the parameter estimation of the Wiener–Hammerstein systems
with backlash in which backlash is a piecewise nonlinearity. However, in this paper,
we use the Wiener–Hammerstein with friction to model the turntable servo system
in which friction is a newly proposed continuously differentiable nonlinearity and
apply the actual data of turntable servo system to identify the parameters of Wiener–
Hammerstein model rather than the simulated data in [13]. Secondly, the starting point
for improving the algorithm is different: In our previous work [13], which is used
to improve the multi-innovation length problem for gradient method, estimator type
is gradient-type method. While the identifier is least-squares-type algorithm in this
paper, which is applied to address the inversion of covariance matrix for least-squares
algorithm,
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7 Conclusion

In this paper, a RMILS approach of estimating andmodeling theWiener–Hammerstein
systems with friction nonlinearity has been proposed through the usage of the multi-
step updating. To obtain the identification model of the modeling turntable servo
system, the key-term separation principle is employed to address theW–Hmodel. The
components of the turntable servo system can be described by the corresponding parts
of theW–Hmodel. Then, the RMILS scheme is proposed to estimate the parameters of
this model based on the system data of turntable system. By decomposing the multi-
innovation into p sub-innovations, the RMILS algorithm can effectively handle the
problem for the inversion of covariance matrix. Compared with the MILS algorithm,
example and experiment results indicate the superiority of the proposed approach in
this paper.
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