
Circuits, Systems, and Signal Processing (2020) 39:4320–4338
https://doi.org/10.1007/s00034-020-01386-x

Quasi-time-Dependent l2 − l∞ Filtering of Discrete-Time
Switched Systems with Admissible Edge-Dependent
Average Dwell Time

Ruihua Wang1,2 · Bingxin Xue1 · Linlin Hou3 · Shumin Fei2 · Jingbo Zhao1

Received: 16 April 2019 / Revised: 24 February 2020 / Accepted: 27 February 2020 /
Published online: 5 March 2020
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
The l2 − l∞ filtering problem is studied for a class of discrete-time switched sys-
tems under the admissible edge-dependent average dwell time (AED-ADT) switching.
Firstly, a new multiple convex Lyapunov function (MCLF) is established as a convex
combination form in the context of the l2 − l∞ filtering problem. Then, corresponding
to the MCLF, the quasi-time-dependent switched filter is proposed for the considered
switched system, and the sufficient conditions are derived to ensure that the filter-
ing error system is globally uniformly exponentially stable with a prescribed l2 − l∞
performance index. Owing to the quasi-time-dependent and multi-degree-of-freedom
properties of the designed switchedfilter, thewider feasibility regions of systemparam-
eters, more desirable l2 − l∞ disturbance attenuation levels and tighter bounds on the
AED-ADT can be acquired. Finally, a numerical example is given to expound that our
approach outperforms the extant results.
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1 Introduction

A switched system [19] is a special hybrid system, which is composed of a few dynam-
ical subsystems and a switching rule responsible for arranging which subsystem and
when to be activated. Due to the modeling flexibility, switched systems have been
used as modeling tools or controller design strategies to investigate various kinds of
practical systems, such as networked control systems [20], DC/DC converters [6],
flight control systems [15] and chaos generators [14]. Up to now, many stability anal-
ysis and control synthesis results have been obtained for switched systems such as
[4,5,9,12,18,21,28] and the references therein.

During the past decades, several Lyapunov function approaches have been pro-
posed to study the stability problem of switched systems. When all the subsystems of
a switched system share a common Lyapunov function (CLF) [11], the underlying sys-
tem is stable under arbitrary switching signals. Nevertheless, many times, the CLF can
not be found for switched systems. Because of this, the multiple Lyapunov function
(MLF) approach [1,3,29] is designed for studying switched systems with constrained
switching signals. Recently, Zhao et al. in [24,25,31] propose amultiple discontinuous
Lyapunov function for continuous-time switched systems and discrete-time switched
systems, respectively, where the Lyapunov function for each subsystem is piecewise
continuous. In the approach, a parameter 0 < ρi < 1 contributes to the deduction
of mode-dependent average dwell time (MDADT) bounds. However, a problem also
arises that a series of added inequalities Pis ≤ ρi Pi(s−1) may bring about the infeasi-
bility of other relevant LMI conditions. It is of significance to develop new Lyapunov
functions with more degrees of freedom for decreasing the conservativeness of the
obtained results.

Among constrained switching signals, average dwell time (ADT) switching [10]
has been extensively employed to study the stability and control problems of switched
systems, where the average time between consecutive switchings is required to be
not less than a constant. Then, the paper [33] introduces the MDADT, which is more
flexible than the general ADT switching [4,23]. Recently, a novel notion of AED-ADT
is proposed in [27] and [7] for designing switching signals. It is defined by means of
a directed graph, where an admissible transition edge (ATE) signifies a switching
from one subsystem to another. Each ATE has its own transition weight, which is the
key of making the AED-ADT switching superior to the MDADT switching. Up to
date, there exist very few works that concern AED-ADT switching in the stability
analysis and control synthesis fields of switching systems. Furthermore, regardless of
which switching method above is adopted, inequalities Pj ≤ μ j Pi or Pj ≤ μi j Pi
are necessary at switching points. However, the feasible evaluation of parameters μ j

and μi j often induces the conservativeness of ADT bounds, which hinders us from
choosing a broader range of switching signals in practical applications.

When unexpected disturbances and measurement missing phenomena happen in
practice, the filtering is the popularmethod to estimate the state or output signals [2]. In
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recent years, a great deal of attention has been focused on studying the filtering problem
of switched systems [13,22,30]. The authors in [26] investigate the event-triggered H∞
filtering problem for discrete-time switched linear systems, where the system output
and switching signal are transmitted to the filter via a communication network. As
for the asynchronous H∞ filtering, the paper [17] considers the switched T–S fuzzy
systems with applications to the single-link robot arm system, and in [16], the state-
dependent switching mechanism is utilized for switched linear systems with unstable
subsystems to guarantee that the resulting filtering error system is exponentially mean
square stable with a weighted l2-gain performance. In [7], the l2 − l∞ filtering is
studied for discrete-time switched systems under the AED-ADT switching, where
the traditional MLF approach is used to derive the exponential stability results of the
filtering error system.Although the filtering problemhas been investigated extensively,
the great majority of the extant works focus on the H∞ filtering. So far, very few
studies have been devoted to the l2 − l∞ filtering of switched systems, which aims
at energy-to-peak disturbance attenuation, completely different from the energy-to-
energy performance of the H∞ filtering. Besides, another two important issues should
be observed for the l2 − l∞ filtering research of switched systems. On the one hand,
the extant l2 − l∞ filtering results suffer from the conservativeness of the feasibility
regions of system parameters. Their slight variations cause frequently the infeasibility
of the existing results. In addition, the l2 − l∞ performance indexes are not reduced
to sufficiently low levels in the current literature, which results in the inapplicability
of the existing results in many practical situations.

Based on the above discussions of the filtering research status for switched systems,
we are motivated to consider the l2 − l∞ filtering of discrete-time switched systems.
The main contributions are shown in the following aspects:

(1) A MCLF for the filtering problem is proposed resorting to a set of quasi-time-
dependent functions. It is pointed out below that the MLF typically used in the
filtering research of switched systems is the special form of our MCLF and our
obtained results generalize the existing ones.

(2) TheAED-ADT switching strategy is used to design switching signals, and tighter
AED-ADT bounds can be obtained by virtue of ourMCLF’s capability to slacken
the restricted conditions at switching points.

(3) The quasi-time-dependent l2 − l∞ switched filter is developed according to the
structure of the MCLF, under which the wider feasible regions of system param-
eters and smaller l2 − l∞ performance indexes can be achieved.

The remainder of this paper is organized as follows. Section2presents the preliminaries
and the problem formulation. In Sect. 3, the main results in the paper are put forth.
We firstly introduce a MCLF for discrete-time switched systems, and then, an l2 − l∞
switched filter is derived in a quasi-time-dependent form, where the filtering error
system is ensured to be exponentially stable with a prescribed l2 − l∞ performance.
Section 4 gives the numerical example to illustrate the effectiveness of the obtained
results. Eventually, the paper is concluded.

Notations The notations in this paper are fairly standard. We use A > 0 (A < 0) to
stand for a positive definite (negative definite) matrix A. AT refers to the transpose of
a matrix A. Let Rn , Sn and Z≥0 denote the n-dimensional Euclidean space, the set of
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n-dimensional symmetric matrices and the set of nonnegative integers, respectively.
‖ · ‖ is used to denote the vector Euclidean norm. l2[0,∞) is the space of square
summable infinite vector sequences, and for ω = {ω(k)} ∈ l2[0,∞), its norm is given

by ‖ω‖2 =
√∑∞

k=0 ωT (k)ω(k); l∞[0,∞) is the space of all essentially bounded
vector functions, and for e = {e(k)} ∈ l∞[0,∞), its norm is given by ‖e‖∞ =√
supk eT (k)e(k). As is commonly used in other literature, ∗ denotes the elements

below the main diagonal of a symmetric matrix, and max and min, respectively, stand
for the maximum and minimum. In addition, matrices, if not explicitly stated, are
assumed to have compatible dimensions for algebraic operations.

2 Preliminaries and Problem Formulation

Consider the following discrete-time switched system (Σs)

x(k + 1) = Aσ(k)x(k) + Bσ(k)ω(k), (1)

y(k) = Cσ(k)x(k) + Dσ(k)ω(k), (2)

z(k) = Eσ(k)x(k), (3)

where x(k) ∈ Rn and y(k) ∈ Rny are the state and measured output, respectively;
z(k) ∈ Rnz is the signal to be estimated;ω(k) ∈ Rnω is the disturbance input belonging
to l2[0,∞); the matrices Ai , Bi , Ci , Di , Ei are assumed to be known and with appro-
priate dimensions; σ(k) is a piecewise constant function of time, called a switching
signal, which takes its values in a finite set N = {1, 2, . . . , ns}, ns > 1 is the number
of subsystems. For a switching signal σ(k), let k1 < k2 < · · · < km < · · · denote
the switching instants of σ(k). When km ≤ k < km+1, the σ(km)th subsystem is
activated, where we use the notation Hσ(km ) to stand for the length of the time inter-
val [km, km+1). Besides, we assume that the switching signal σ(k) is available to the
designed filter.

To proceed, some necessary definitions and lemma are reviewed for deriving the
main results.

Definition 1 ([33]) The equilibrium x = 0 of system (1) with ω = 0 is globally
uniformly exponentially stable (GUES) under a switching signal σ(k), if there exist
constants γ > 0, λ > 1 such that the solution x(k) of system (1) satisfies ‖x(k)‖ ≤
γ λ−(k−k0)‖x(k0)‖, ∀k ≥ k0 with arbitrary initial conditions.

Definition 2 ([33]) For a switching signal σ(k), ∀k ≥ k0 ≥ 0, let Nσ i (k0, k), ∀ i ∈ N
be the number of times that subsystem i is activated over the interval [k0, k), and
Ti (k0, k) denote the total running time of subsystem i over the interval [k0, k). We say
that σ(k) has a mode-dependent average dwell time τai if there exist positive numbers
N0i and τai such that

Nσ i (k0, k) ≤ N0i + Ti (k0, k)

τai
, ∀k ≥ k0 ≥ 0. (4)
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Fig. 1 S(N ) and W of σ(k)

Definition 3 ([27]) For a directed switching graphG and i, j ∈ N (i 	= j), if a directed
edge from i to j is admissible, then we call S(i, j) as an admissible transition edge
(ATE) ofG, whose set is denoted by S(N ). AnATE S(i, j) has an admissible transition
edge-dependent weight (ATEDW) βi j , which describes the switching property from
i to j and the set of which is signified by W .

In Fig. 1, the periodic switching signal σ(k) : 1 → 3 → 2 → · · · has the ATE
set S(N ) = {S(1, 3), S(3, 2), S(2, 1)} with the set of ATEDWs W = {β13, β32, β21}.
The dotted line represents that the corresponding transition edge is not admissible.
Next, the definition of AED-ADT is given on the basis of Definition 3.

Definition 4 ([27]) For a switching signal σ(k), ∀k ≥ k0 ≥ 0, ∀S(i, j) ∈ S(N ), let
Nσ
i j (k0, k) be the switching count from i to j over the interval [k0, k), and Ti j (k0, k)

denote the total running time of subsystem j over the interval [k0, k), where i is the
previously active subsystem. We say that σ(k) has an AED-ADT τ ai j if there exist

positive numbers N 0
i j and τ ai j such that

Nσ
i j (k0, k) ≤ N 0

i j + Ti j (k0, k)

τ ai j
, ∀S(i, j) ∈ S(N ), ∀k ≥ k0 ≥ 0, (5)

where N 0
i j are called as the admissible edge-dependent chatter bounds.

Lemma 1 ([8]) Let P ∈ Sn,Λ ∈ Sp,Φ andΨ be matrices of appropriate dimensions.
Then, the following statements are equivalent:

(i) Find P > 0 such that ΦT PΦ − Λ < 0;

(ii) Find P > 0 and Ψ such that

[ −Λ ∗
Ψ Φ −Ψ − Ψ T + P

]
< 0.

Next, a new switched filter (Σ f ) is proposed in the following:

x f (k + 1) = A f
σ(k)(k)x f (k) + B f

σ(k)(k)y(k), (6)
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z f (k) = C f
σ(k)(k)x f (k), (7)

where x f (k) ∈ Rn is the state of the filter, z f (k) ∈ Rnz is the estimation of z(k), and

for any k ∈ [km, km+1), σ (km) = i, A f
i (k), B f

i (k), C f
i (k) are the filter gains to be

determined afterward.
Combining system (Σs ) with filter (Σ f ), the augmented filtering error system (Σe)

is obtained as follows:

ξ(k + 1) = Aσ(k)(k)ξ(k) + Bσ(k)(k)ω(k), (8)

e(k) = Eσ(k)(k)ξ(k), (9)

where ξ(k) =
[
xT (k) xTf (k)

]T
, e(k) = z(k) − z f (k) and

Aσ(k)(k) =
[

Aσ(k) 0
B f

σ(k)(k)Cσ(k) A f
σ(k)(k)

]
, Bσ(k)(k) =

[
Bσ(k)

B f
σ(k)(k)Dσ(k)

]
,

Eσ(k)(k) =
[
Eσ(k) −C f

σ(k)(k)
]
.

Our goal within the paper is to design an l2 − l∞ switched filter of the form (Σ f ),
and find a set of AED-ADT switching signals such that the resulting filtering error
system is GUES with ω(k) = 0 and has a guaranteed l2 − l∞ disturbance attenuation
performance under the zero initial condition, i.e., ‖e‖∞ < γ ‖ω‖2 for a constant
γ > 0 and all nonzero ω(k) ∈ l2[0,∞).

3 Main Results

In this section, a MCLF is firstly constructed by a convex combination of positive
definite matrices so that the restricted conditions of Lyapunov functions at switching
points can be relaxed. And the concrete filter gains are set forth in the quasi-time-
dependent form. Then, the filter is designed to ensure that the filtering error system is
GUES with a prescribed l2 − l∞ performance index.

3.1 Lyapunov Function Design

First of all, a MCLF is given for the filtering error system as follows:

Vi (k) = ξ T (k)Pi (k)ξ(k) = ξ T (k)
L∑

l=1

fil(k − km)Pilξ(k)

=
[
xT (k)
xTf (k)

]T[ ∑L
l=1 fil(k − km)P1

il

∑L
l=1 fil(k − km)P2

il∑L
l=1 fil(k − km)(P2

il)
T ∑L

l=1 fil(k − km)P3
il

][
x(k)
x f (k)

]
, (10)
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where ∀k ∈ [km, km+1), σ(km) = i ∈ N ; Pil =
[

P1
il P2

il
(P2

il)
T P3

il

]
, l ∈ L = {1, 2, . . . , L},

are positive definite matrices; continuous functions fil(k − km), l ∈ L, are defined on
the interval [km, km+1) satisfying fil(k − km) ≥ 0,

∑L
l=1 fil(k − km) = 1.

Now, it is necessary to develop an effective method to construct functions fil(k −
km), i ∈ N , l ∈ L for further executing the filter design. For any i ∈ N , l ∈ L, we
provide

fil(k − km) = a(k − km) + b, ∀k ∈ [km, km+1), (11)

where parameters a and b will be determined in the following.
Set

fil(0) = ail , fil(Hi ) = bil , (12)

where 0 ≤ ail ≤ 1, 0 ≤ bil ≤ 1,
∑L

l=1 ail = 1,
∑L

l=1 bil = 1.
From (11) and (12), a simple calculation gives

a = bil − ail
Hi

, b = ail .

Thus, we have

fil(k − km) = bil − ail
Hi

(k − km) + ail , ∀i ∈ N ,∀l ∈ L,∀k ∈ [km, km+1), (13)

and it can be easily verified that

fil(k − km) ≥ 0,
L∑

l=1

fil(k − km) = 1,

fil(k + 1 − km) − fil(k − km) = bil − ail
Hi

. (14)

Remark 1 In many filtering-related studies of switched linear systems, although the
used Lyapunov functions are of diversified forms, they are essentially the traditional
MLFs [7,16,26]. By contrast, our MCLF has convex structure and quasi-time depen-
dency due to the introduction of functions fil(k − km), l ∈ L, which can play a
vital role in providing the possibility of further extending the feasibility regions of
system parameters and slackening the restricted conditions of Lyapunov functions at
switching points. These can be verified by the excellent performance of our designed
filter in the simulation. And it should be also pointed out that our method is different
from the quasi-time-dependent Lyapunov function proposed in [3,4,17]. Their quasi-
time dependency signifies that Lyapunov function, controller or filter themselves are
established as time-scheduled forms, i.e., each step corresponds to different Lyapunov
functions or updates of controller matrices and filter matrices, which can effectively
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reduce the conservativeness of the obtained results. However, our quasi-time depen-
dency is mainly manifested in the coefficients fil(k − km) of the MCLF (10), which,
integrated with the convexity, helps to reduce the conservativeness of the obtained
filter.

Via the MCLF (10), the filter gains of (Σ f ) are designed as follows:

A f
i (k) =

L∑
l=1

fil(k − km)A f
il , B f

i (k) =
L∑

l=1

fil(k − km)B f
il ,

C f
i (k) =

L∑
l=1

fil(k − km)C f
il , (15)

where k ∈ [km, km+1), A
f
il , B

f
il and C

f
il , i ∈ N , l ∈ L, will be determined later.

Remark 2 Corresponding to the MCLF in (10), the switched filter (Σ f ) is also distinct

from the ones in the extant literature. The filter gains A f
i (k), B f

i (k), C f
i (k) are quasi-

time-dependent ones and of convex structure, which depend on k − km and carry
multiple vertex matrices. For example, A f

i (k) has L vertex matrices A f
il . Such features

are conducive to decreasing the conservativeness of the designed filter, which will be
elaborated below.

3.2 l2 − l∞ Filter Design

Now, it is in a position to cope with the l2 − l∞ filter design problem for the switched
system (Σs).

Theorem 1 Consider the filtering error system (Σe). For scalars 0 < α j < 1, βi j >

1,∀S(i, j) ∈ S(N ), γ > 0, suppose that there exist positive definite matrices P1
jl , P

3
jl ,

invertible matrices M2
j and matrices P2

jl , A
F
jl , B

F
jl , C

F
jl , M

1
jl , M

3
jl , such that the fol-

lowing inequalities hold

⎡
⎣

−(1 − α j )Pjl ∗ ∗
0 −I ∗

Θ31 Θ32 Θ33

⎤
⎦ < 0, ∀ j ∈ N ,∀l ∈ L, (16)

[−γ 2δPjl ∗
Π21 −I

]
< 0, ∀ j ∈ N ,∀l ∈ L, (17)

L∑
l=1

a jl Pjl ≤ βi j

L∑
l=1

bil Pil , ∀S(i, j) ∈ S(N ), (18)

where

Pjl =
[

P1
jl P2

jl
(P2

jl)
T P3

jl

]
, Θ31 =

[
M1

jl A j + BF
jlCi AF

jl
M3

jl Ai + BF
jlCi AF

jl

]
,
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Θ32 =
[
M1

jl B j + BF
jl D j

M3
jl B j + BF

jl D j

]
, Θ33 = Pjl +

L∑
l=1

b jl − a jl

Hj
Pjl − Mjl − MT

jl ,

Mjl =
[
M1

jl M
2
j

M3
jl M

2
j

]
, Π21 =

[
E j −CF

jl

]
, δ = exp

(
−

∑
S(i, j)∈S(N )

N 0
i j ln βi j

)
.

Then, there exists an l2 − l∞ switched filter in the form of (Σ f ) such that the resulting
filtering error system (Σe) is GUES and has the l2 − l∞ performance index γ for any
AED-ADT switching signal satisfying

τ ai j > τ a∗
i j = − ln βi j

ln(1 − α j )
, ∀S(i, j) ∈ S(N ). (19)

Moreover, the filter gains are given as follows:

A f
j (k) =

L∑
l=1

f jl(k − km)A f
jl , A f

jl = (M2
j )

−1AF
jl , (20)

B f
j (k) =

L∑
l=1

f jl(k − km)B f
jl , B f

jl = (M2
j )

−1BF
jl , (21)

C f
j (k) =

L∑
l=1

f jl(k − km)C f
jl , C f

jl = CF
jl , σ (km) = j, k ∈ [km, km+1). (22)

Proof Construct matrices

Mj (k) =
[
M1

j (k) M2
j

M3
j (k) M2

j

]
=

[∑L
l=1 f jl(k − km)M1

jl M
2
j∑L

l=1 f jl(k − km)M3
jl M

2
j

]
.

Noting (14) and (16), (20), (21), one can infer that

⎡
⎣

−(1 − α j )Pj (k) ∗ ∗
0 −I ∗

Θ31(k) Θ32(k) Θ33(k)

⎤
⎦ < 0, (23)

where

Θ31(k) =
[
M1

j (k)A j + M2
j B

f
j (k)C j M2

j A
f
j (k)

M3
j (k)A j + M2

j B
f
j (k)C j M2

j A
f
j (k)

]
,

Θ32(k) =
[
M1

j (k)Bj + M2
j B

f
j (k)Dj

M3
j (k)Bj + M2

j B
f
j (k)Dj

]
,

Θ33(k) = Pj (k + 1) − Mj (k) − (Mj (k))
T .



Circuits, Systems, and Signal Processing (2020) 39:4320–4338 4329

On the basis of Lemma 1, it can be derived that inequality (23) for matrix Mj (k) is
equivalent to the following inequality

[
A
T
i (k)

B
T
i (k)

]
Pi (k + 1)

[
Ai (k) Bi (k)

] −
[

(1 − αi )Pi (k) 0
0 I

]
< 0. (24)

Along the trajectory of system (8), ∀k ∈ [km, km+1), σ (km) = i , we calculate

Vi (k + 1) − (1 − αi )Vi (k)

= ξ T (k + 1)Pi (k + 1)ξ(k + 1) − (1 − αi )ξ
T (k)Pi (k)ξ(k)

=
[

ξ(k)
ω(k)

]T
[
A
T
i (k)

B
T
i (k)

]
Pi (k + 1)

[
Ai (k) Bi (k)

] [
ξ(k)
ω(k)

]
−(1−αi )ξ

T (k)Pi (k)ξ(k)

=
[
ξ(k)
ω(k)

]T
{[

A
T
i (k)

B
T
i (k)

]
Pi (k+1)

[
Ai (k) Bi (k)

]−
[
(1−αi )Pi (k) 0

0 0

]}[
ξ(k)
ω(k)

]
.

(25)

On the other hand, it is easy to obtain

Vi (k) − (1 − αi )
k−km Vi (km) −

k−1∑
s=km

(1 − αi )
k−1−sωT (s)ω(s)

=
k−1∑
s=km

(1 − αi )
k−1−s

[
Vi (s + 1) − (1 − αi )Vi (s) − ωT (s)ω(s)

]
. (26)

Integrating (24) with (25), (26) gives

Vi (k) ≤ (1 − αi )
k−km Vi (km) +

k−1∑
s=km

(1 − αi )
k−1−sωT (s)ω(s),

∀k ∈ [km, km+1), ∀ω(k) ∈ l2[0,∞). (27)

Noting (18), ∀k ∈ [km, km+1), one gets

Vσ(k)(k) ≤ (1 − ασ(km ))
k−km Vσ(km )(km) +

k−1∑
s=km

(1 − ασ(km ))
k−1−sωT (s)ω(s)

≤ (1 − ασ(km ))
k−kmβσ(km−1)σ (km )Vσ(km−1)(km)

+
k−1∑
s=km

(1 − ασ(km ))
k−1−sωT (s)ω(s)

≤ (1 − ασ(km ))
k−kmβσ(km−1)σ (km )

(
(1 − ασ(km−1))

km−km−1
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×Vσ(km−1)(km−1) +
km−1∑
s=km−1

(1 − ασ(km−1))
km−1−sωT (s)ω(s)

)

+
k−1∑
s=km

(1 − ασ(km ))
k−1−sωT (s)ω(s).

In a recurrent fashion, this, integrated with (18) and (27), yields

Vσ(k)(k) ≤ (1 − ασ(km ))
k−km

m−1∏
s=0

βσ(ks )σ (ks+1)(1 − ασ(ks ))
ks+1−ks Vσ(k0)(k0)

+ (1 − ασ(km ))
k−kmβσ(km−1)σ (km )

m−1∑
q=1

( m−1∏
p=q

(1 − ασ(kp))
kp+1−kp

×βσ(kp−1)σ (kp)

kq−1∑
s=kq−1

(1 − ασ(kq−1))
kq−1−sωT (s)ω(s)

)

+ (1 − ασ(km ))
k−kmβσ(km−1)σ (km )

×
km−1∑
s=km−1

(1 − ασ(km−1))
km−1−sωT (s)ω(s)

+
k−1∑
s=km

(1 − ασ(km ))
k−1−sωT (s)ω(s)

≤ e
∑

S(i, j)∈S(N ) N
0
i j ln βi j e

∑
S(i, j)∈S(N )(

ln βi j
τai j

+ln(1−α j ))Ti j (k0,k)
Vσ(k0)(k0)

+
m∑

q=1

(
e
∑

S(i, j)∈S(N) N
0
i j ln βi j e

∑
S(i, j)∈S(N )(

ln βi j
τai j

+ln(1−α j ))Ti j (kq ,k)

×
kq−1∑
s=kq−1

(1 − ασ(kq−1))
kq−1−sωT (s)ω(s)

)

+
k−1∑
s=km

(1 − ασ(km ))
k−1−sωT (s)ω(s). (28)

��

Remark 3 The detailed steps for deriving (28) are omitted since the proof for (28) is
regular and the similar proof can be seen in [7].

Then, the subsequent discussions fall into two parts in the light of ω(k) = 0 or not:
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(1) If ω(k) = 0, (28) becomes

Vσ(k)(k)≤e
∑

S(i, j)∈S(N )N
0
i j ln βi je

∑
S(i, j)∈S(N )(

ln βi j
τai j

+ln(1−α j ))Ti j (k0,k)
Vσ(k0)(k0).

From (19), it follows that
ln βi j
τai j

+ ln(1 − α j ) < 0, and then, we can deduce that

system (
∑

e) is GUES according to Definition 1.
(2) For ∀S(i, j) ∈ S(N ), from 0 < α j < 1, βi j > 1 and (19), we have

0 < 1 − α j < 1, e
∑

S(i, j)∈S(N) N
0
i j ln βi j ≥ 1,

0 < e

∑
S(i, j)∈S(N)

(
ln(1−α j )+ ln βi j

τai j

)
Ti j (kq ,k) ≤ 1.

Thus, under zero initial condition, inequality (28) implies

Vσ(k)(k) ≤ e
∑

S(i, j)∈S(N ) N
0
i j ln βi j

m∑
q=1

kq−1∑
s=kq−1

ωT (s)ω(s) +
k−1∑
s=km

ωT (s)ω(s)

= e
∑

S(i, j)∈S(N ) N
0
i j ln βi j

km−1∑
s=k0

ωT (s)ω(s) +
k−1∑
s=km

ωT (s)ω(s)

≤ e
∑

S(i, j)∈S(N ) N
0
i j ln βi j

k−1∑
s=k0

ωT (s)ω(s)

= δ−1
k−1∑
s=k0

ωT (s)ω(s), (29)

where δ = e−∑
S(i, j)∈S(N ) N

0
i j ln βi j .

Integrated with (14), (17) and (22), Schur lemma yields

E
T
j (k)E j (k) − γ 2δPj (k) < 0, (30)

which together with (29) gives

eT (k)e(k) − γ 2
k−1∑
s=k0

ωT (s)ω(s) ≤ eT (k)e(k) − γ 2δVσ(k)(k)

= ξ T (k)(E
T
σ(k)(k)Eσ(k)(k) − γ 2δPσ(k)(k))ξ(k) < 0. (31)

Therefore, under zero initial condition, ‖e‖∞ < γ ‖ω‖2 is concluded for any
ω(k) ∈ l2[0,∞).

The proof is completed.
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Remark 4 It is easily observed thatwhen L = 1, ourMCLF (10)will reduce to the used
Lyapunov function in [7], and conditions (16), (17) and (18) in Theorem 1 become
inequalities (30), (31) and (32) in Theorem 3 of [7]. This means that Theorem 3 of [7]
can be viewed as the special case of our Theorem 1, i.e., our Theorem 1 generalizes
Theorem 3 of [7].

Remark 5 Because the MCLF (10) and the switched filter (Σ f ) carry more degrees of
freedom, condition (18) can be loosened largely and further smallerβi j can be selected.
Consequently, AED-ADT bounds can be decreased, which enhances the application
flexibility of our designed switching signals. On the other hand, it can be found that the
evaluations of parameters βi j severely affect the magnitude of the l2−l∞ performance
index γ . From (17), the smaller parameters βi j are chosen, the smaller index γ can be
allowed. All the discussions will be verified in the simulation by comparing our result
with the one in [7].

Remark 6 As stated above, our filter design method is based on the available switch-
ing signals. Once all the switching instants or some switching instants are unknown,
our method cannot be utilized. In the future, we will further consider the prediction
algorithms of switching signals, the asynchronous filtering problem [17] and the delay
control method [32], or develop new filter design methods without switching infor-
mation or only with partial switching information.

The following corollaries can be obtained by the similar proof, which ensure that
the resulting filtering error system (Σe) is GUES with an l2 − l∞ performance under
the MDADT and ADT switching strategies, respectively.

Corollary 1 Consider the filtering error system (Σe). For scalars 0 < α j < 1, β j >

1,∀ j ∈ N , γ > 0, suppose that there exist positive definite matrices P1
jl , P

3
jl , invert-

ible matrices M2
j and matrices P2

jl , A
F
jl , B

F
jl ,C

F
jl , M

1
jl , M

3
jl , such that inequalities

(16), (17) hold and

L∑
l=1

a jl Pjl ≤ β j

L∑
l=1

bil Pil , ∀(i, j) ∈ N × N , i 	= j,∀l ∈ L, (32)

where δ = exp

(
− ∑

j∈N N0 j ln β j

)
. Then, there exists an l2 − l∞ switched filter in

the form of (Σ f ) such that the filtering error system (Σe) is GUES and has the l2 − l∞
performance index γ for any MDADT switching signal satisfying

τaj > τ ∗
aj = − ln β j

ln(1 − α j )
, ∀ j ∈ N . (33)

Moreover, the filter gains are given as shown in (20), (21) and (22).

Remark 7 The ATEDW βi j is the key of making the AED-ADT switching superior
to the MDADT switching. For the MDADT switching [33], the parameter β j in (32)
represents the switching cost from all other subsystems to subsystem j , which relies on
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all ATEs S(i, j) ∈ S(N ) ending in j for all i ∈ N . In the case of AED-ADT switching,
the ATEDW βi j in (18) denotes the switching cost from subsystem i to subsystem j ,
which only relies on ATE S(i, j) and has nothing to do with other subsystems or
ATEs. The AED-ADTs τ ai1 j and τ ai2 j , i1 	= i2 may be separated due to the different
ATEs S(i1, j) and S(i2, j), respectively. Therefore, it follows from (19) and (33) that
τ a∗
i j ≤ τ ∗

aj ,∀S(i, j) ∈ S(N ). From this, the MDADT switching can be viewed as the
special case of the AED-ADT switching, and the latter is of better flexibility and less
conservativeness than the former.

Corollary 2 Consider the filtering error system (Σe). For scalars 0 < α < 1, β >

1, γ > 0, suppose that there exist positive definite matrices P1
jl , P

3
jl , invertible matri-

ces M2
j and matrices P2

jl , A
F
jl , B

F
jl ,C

F
jl , M

1
jl , M

3
jl , such that inequalities (16), (17)

hold and

L∑
l=1

a jl Pjl ≤ β

L∑
l=1

bil Pil , ∀(i, j) ∈ N × N , i 	= j,∀l ∈ L,

where α j is replaced as α, and δ = exp(−N0 ln β). Then, there exists an l2 − l∞
switched filter in the form of (Σ f ) such that the filtering error system (Σe) is GUES
and has the l2 − l∞ performance index γ for any ADT switching signal satisfying

τa > τ ∗
a = − ln β

ln(1 − α)
.

Moreover, the filter gains are given as shown in (20), (21) and (22).

Remark 8 For any i ∈ N , it is reasonable that the length of each switching inter-
val of subsystem i is assumed to be no larger than a positive integer τ imax. For any
k ∈ [km, km+1), there exists a constant η ∈ Z≥0 such that k = km + η, 0≤η ≤ τ imax.

Since A f
i (k) = ∑L

l=1 fil(η)A f
il , B f

i (k) = ∑L
l=1 fil(η)B f

il , C
f
i (k) = ∑L

l=1 fil(η)C f
il ,

the filter gains A f
i (k), B f

i (k), C f
i (k) can be calculated and stored in advance by∑L

l=1 fil(η)A f
il ,

∑L
l=1 fil(η)B f

il ,
∑L

l=1 fil(η)C f
il , η = 0, 1, . . . , τ imax, which can

avoid recalculating the filter gains as the updates of time k happen. Furthermore,
the computational complexity of both the filter gains and the LMI conditions in Theo-
rem 1, Corollary 1 and Corollary 2 is closely related to the parameter L , the subsystem
number ns and the dimensions n, ny, nz, nw of the system state, the measured output,
the estimated signal and the disturbance input. Making a compromise of the distur-
bance attenuation level and the computational complexity, the above parameter L
should be selected cautiously. For example, if the underlying switched system carries
large subsystem number ns and state dimension n, large parameter L will generate
enormous computational burden. Appropriate L , such as L = 2andL = 3, should be
chosen.
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Fig. 2 The feasible regions of system parameters a, b, c by Theorem 1 (
, +) and Theorem 3 in [7] (+)

4 Numerical Example

Now, we provide an example to demonstrate the validity of the main results in this
paper. Consider the switched system (Σs) including three subsystems as follows:

A1 =
[
0.6 0
a 0.32

]
, A2 =

[
b 0.1
0.3 0.7

]
, A3 =

[ −1.5 1.75
−2.25 2.5

]
,

B1 =
[
0.2
0.4

]
, B2 =

[
0.35
0.15

]
, B3 =

[
0.15
c

]
,

C1 = [
2 2

]
,C2 = [

1 1.5
]
,C3 = [

1 1
]
,

D1 = −0.2, D2 = 0.2, D3 = 0.3,

E1 = [
0.5 0.2

]
, E2 = [

0.15 0.1
]
, E3 = [

0.1 0.15
]
.

For the usage of the MCLF, we choose parameters

L = 2, a11 = a12 = a21 = a22 = a31 = a32 = 0.5,

b11 = b21 = b31 = 0.4, b12 = b22 = b32 = 0.6.

Under parameters α1 = α2 = α3 = 0.76, β21 = β31 = β12 = β32 = β13 =
β23 = 3.0 and γ 2 = 0.25, the feasibility regions for parameters a = [−0.5, 1], b =
[0, 1], c = [0, 1] will be identified, respectively, via our Theorem 1 and Theorem 3 in
[7], which are depicted in Fig. 2. Intuitively, red marks 
 surround blue marks +, by
virtue of which an initial judgement can be given that our approach is preferable to
the one in [7]. Through statistical analysis, the count ratio of marks 
 to marks + can
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Table 1 Comparison results under the periodic switching path 1 →3 →2 . . .

Criteria Theorem 3 in [7] Theorem 1 in this paper

Parameters β13 = 2.50, β32 =
2.43, β21 = 1.83 α1 =
0.60, α2 = 0.76, α3 = 0.76

β13 = 2.43, β32 =
2.19, β21 = 1.56 α1 =
0.56, α2 = 0.76, α3 = 0.76

AED-ADT bounds τa∗
13 = 3.3388, τa∗

32 =
3.2353, τa∗

21 = 1.1830
τa∗
13 = 3.2353, τa∗

32 =
2.8564, τa∗

21 = 0.7669

Performance index γmin = 0.4359 γmin = 0.3000

Table 2 Comparison results under the periodic switching path 1 → 2 → 3 . . .

Criteria Theorem 3 in [7] Theorem 1 in this paper

Parameters β12 = 2.00, β23 =
2.50, β31 = 2.23α1 =
0.45, α2 = 0.76, α3 = 0.76

β12 = 1.99, β23 =
2.22, β31 = 2.19α1 =
0.44, α2 = 0.76, α3 = 0.76

AED-ADT bounds τa∗
12 = 2.5257, τa∗

23 =
3.3388, τa∗

31 = 1.0044
τa∗
12 = 2.5074, τa∗

23 =
2.9060, τa∗

31 = 0.9548

Performance index γmin = 0.4899 γmin = 0.4690

be obtained: 56.93%. In other words, our Theorem finds much more feasible points
than Theorem 3 of [7]. This corroborates our judgement from a different perspective.

On the other hand, for system parameters a = 0.1, b = 0.7, c = 0.6, Table 1
and Table 2 list the relevant parameters and the corresponding results obtained by our
Theorem 1 and Theorem 3 of [7] under two periodic switching signals, respectively.
Regardless of which switching signal is adopted, theMCLF achieves the tighter AED-
ADT bounds τ a∗

i j and more desirable minimum l2 − l∞ performance indexes γmin .
Choose the periodic switching path 1 → 3 → 2 · · · , and parameters for Theorem

1 shown in Table 1. The corresponding filter parameters can be computed as follows:

A f
11 =

[
0.4082 −0.1918

−0.1007 0.1192

]
, A f

12 =
[

0.4073 −0.1923
−0.1006 0.1195

]
,

A f
21 =

[
0.2695 −0.1708

−0.1223 0.0664

]
, A f

22 =
[

0.2484 −0.2024
−0.1364 0.0453

]
,

A f
31 =

[−2.0189 1.2291
−2.9926 1.7568

]
, A f

32 =
[−2.0189 1.2291

−2.9926 1.7568

]
,

B f
11 =

[−0.0959
−0.1004

]
, B f

12 =
[−0.0962

−0.1003

]
, B f

21 =
[−0.1805

−0.4224

]
,

B f
22 =

[−0.2016
−0.4364

]
, B f

31 =
[−0.5201

−0.7432

]
, B f

32 =
[−0.5201

−0.7432

]
,

C f
11 = [−0.4999 −0.2000

]
,C f

12 = [−0.4999 −0.2000
]
,

C f
21 = [−0.1500 −0.0996

]
,C f

22 = [−0.1500 −0.1000
]
,
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Fig. 3 The system state x(k) and the filter state x f (k) under the switching signal σ(k)

C f
31 = [−0.1001 −0.1499

]
,C f

32 = [−0.1007 −0.1493
]
.

Setting the initial value ξ(0) = [
0.5 0.2 0.3 −0.4

]T , the trajectories of system state
x(k) and filter state x f (k), and the switching signal with τ a13 = 4, τ a32 = 3, τ a21 = 1
are shown in Fig. 3. We also present the filtering error e(k) in Fig. 4. They display that
the designed switched filter (Σ f ) by the MCLF is effective.

5 Conclusion

This paper concerns the problem of l2−l∞ filtering for discrete-time switched systems
with AED-ADT. By the aid of the MCLF approach, the quasi-time-dependent l2 − l∞
switched filter has been designed such that the filtering error system is GUES with a
guaranteed l2 − l∞ performance. It has been pointed out that we obtain more general
theoretic results than the existing results. In the end, an interesting example is offered
to illustrate the effectiveness of the developed results.
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Fig. 4 The filtering error e(k)
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