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Abstract
This paper presents a two-dimensional (2-D) eigenfilter technique todesign2-Dperfect
reconstruction (PR) filterbanks with directional vanishing moment (DVM). In this
paper, we first introduce the DVM constraint for 2-D directional filterbank design.
The proposed DVM constraint is imposed in 2-D eigenfilter formulation to obtain
maximally flat 2-D low-pass analysis filter. Then, we use this designed analysis filter
in 2-D time-domain formulation of PR condition to obtain complementary low-pass
synthesis filters. The PR and DVM constraints are imposed to obtain 2-D low-pass
synthesis filter. It is shown that the proposed 2-D filters satisfy the PR criteria with
prescribed DVM. The performance of 2-D PR filters is evaluated in image denoising
application. The performance of designed filterbank is compared with well-known
existing methods in terms of peak signal-to-noise ratio to validate the results.
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1 Introduction

Finding the accurate and efficient representation of images is a fundamental prob-
lem in all image processing applications. These include feature extraction, denoising,
compression, classification, etc [8]. The efficiency of presentation means the ability to
extract the significant information of an image using small description. This requires
sparsity, which means a large amount of visual information has to be represented by
small transform coefficients. Wavelet filterbanks have proven to be a highly effective
tool for such applications. It is desired to have filterbanks with perfect reconstruction
(PR), better frequency selectivity and desired vanishing moments (VMs) properties.
The construction of lossless compression system is possible if filters satisfy PR prop-
erty. To avoid the phase distortion, it is necessary to have a filterbanks with linear
phase. The VMs lead to smoother basis functions. The design of nonseperable 2-D
filterbanks with all aforementioned properties is a challenging task [4].

The one dimensional (1-D) wavelet filterbanks have become popular over the last
few years as it provides optimal representation for 1-D piecewise smooth signals
[8]. However, this fails to explore geometric regularity which exists in many natu-
ral images. For example, natural images have built in geometric structures (line and
curved singularities) which are resulted from smooth boundaries of physical objects
and act as a key feature in visual information. Moreover, separable 1-D wavelets can
capture only limited directional information. The directional information of image is
an important feature of any image processing applications. To extract the directional
features, we require a 2-D wavelet bases. The conventional 2-D wavelets are con-
structed by taking tensor product of existing 1-D wavelets, which also fail to explore
the curved singularities.

To overcome these issues, many researchers have proposed 2-D nonseparable
filterbank design techniques, such as contourlets [8], directional filterbanks [25], trans-
lational invariant directional filterbanks (TIDFB) [9] and DVM filterbanks [6]. Some
of these approaches do not achieve PR condition. In order to achieve good approxima-
tion, crucial property of 1-D wavelets is to have filters with VMs [18,20]. In 2-D filter
representations, the VMs term is redefined as directional vanishing moment (DVM)
[6], which plays important role in analyzing the geometric structures of the images.
It is known that nonseparable directional filterbanks efficiently handle the orientation
and geometric information. The method proposed in [6] imposes DVM in the criti-
cally sampled directional filterbanks. Researchers show that directional information
plays important role in human visual process which can be efficiently extracted by
2-D directional filterbanks. The 2-D directional filterbank is implemented via l-level
tree structured decomposition that leads to 2l subbands with wedge-shaped frequency
partition [8]. The formulation of directional filterbank is based on Quincunx filter-
banks with fan-shaped filters. The Quincunx filterbanks can be used to split frequency
spectrum of input signal into low-pass and high-pass channels using diamond-shaped
filters and into horizontal and vertical channel using fan-shaped filters. Intuitively,
the wedge-shaped frequency partition of the directional filterbank is realized by an
appropriate combination of directional frequency splitting by the fan-shaped filters
and the rotation operations done by resampling. The choice of fan-shaped filters with
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Fig. 1 2-D two-channel filterbank structure

sharper frequency response and directional sensitivity gives better results in computer
vision, seismic signals processing and image compression applications [2,8,9].

This paper aims to design 2-D PR filterbanks which have filters with DVM. The
filters are designed using 2-D eigenfilter approach (EFA). In this method, DVM and
PR constraints are imposed in EFA design formulation to construct 2-D directional
filters with DVM. The proposed approach is numerically efficient and linear phase
constraints can be easily used in design formulation [27]. Many conventional methods
of 2-D filter design have been appeared in [1,3,11,15,22,24]. These designs are based
on variable transformation and optimization techniques. In commonly used transfor-
mation methods, 1-D prototype of filterbank is designed and mapped into 2-D filters
through McClellan transformation [22]. The limitation of this approach is that we
cannot explicitly control the shape of frequency response of 2-D filters. Moreover,
these filters can achieve near PR (not complete PR). Recently, few design methods of
2-D quincunx filterbanks have been appeared in [13,16,17,21,25]. However, the filters
designed by these methods do not consider the DVM property.

In this paper,we propose amethod to design 2-DPRquincunxfilterbankwithDVM.
In the proposed approach, 2-D low-pass analysis filters are designed by imposingDVM
constraint in the 2-D EFA formulation. The EFA can incorporate both time-domain
and frequency-domain constraints easily in the design. Therefore, the designed low-
pass analysis filter and DVM constraint are used in 2-D time-domain formulation of
PR condition to obtain complementary 2-D low-pass synthesis filter. We consider the
fan-shaped filter design which plays an important role in the directional filterbanks.
The directional filters designed by proposed eigenfilter method satisfy DVM property.
This improves the regularity of proposed 2-D filters. The proposed filters satisfy PR
criteria and have comparable performance to existing 2-D filters.

2 Preliminaries

The two-channel 2-D quincunx filterbank structure is shown in Fig. 1. Here, we use
2-D quincunx sampling which has the down-sampling ratio of 2, i.e., det(D) = 2.
The set of filters H0(z1, z2) and H1(z1, z2) represent the analysis of low-pass and
high-pass filters, respectively. Similarly, the set of filters F0(z1, z2) and F1(z1, z2)
denote synthesis filters. The quincunx sampling is a nonseparable sampling, and it
treats different directional information more effectively than conventional methods.
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The points of quincunx sublattice at (n1 + n2 = even) are kept unchanged, while
points at (n1+n2 = odd) sublattice are set to zero.With these filters, the reconstructed
image obtained is the perfect replica of the original image if it satisfies the following
conditions

H0(z1, z2)F0(z1, z2) + H1(z1, z2)F1(z1, z2) = 2z−d1
1 z−d2

2 (1)

where d represents delay. The alias cancellation condition can be given as

H0(−z1,−z2)F0(z1, z2) + H1(−z1,−z2)F1(z1, z2) = 0. (2)

By choosing high-pass filters as H1(z1, z2) = F0(−z1,−z2) and F1(z1, z2) =
−H0(−z1,−z2), alias cancellation condition (2) satisfies. The product filter can be
defined as P(z1, z2) = H0(z1, z2)F0(z1, z2) which gives

P(z1, z2) + P(−z1,−z2) = 2z−d1
1 z−d2

2 (3)

Hence, the aim of designing a 2-D directional filterbank is the problem of designing
P(z1, z2) by imposing the respective constraints.

3 Proposed Problem Formulation for Design of 2-D Two-Channel PR
Filterbank

In this section, we discuss the proposed EFA with DVM constraint. We first discussed
the DVM constraint imposed in two dimensions. Then, these constraints are used in
proposed EFA design formulation.

3.1 Directional VanishingMoment constraints

The crucial role of wavelet in analyzing transient signal is because of the VMs or
regularity properties of wavelets. The wavelet properties, such as time localization
and VMs, give the sparse representation for piecewise polynomial signals. Majority
of the earlier wavelet filters like Daubechies wavelet filters, and JPEG2000 filters have
been designed by considering VMs as a first criterion. The VMs can be characterized
by imposing zeros in low-pass and high-pass filters of given filterbank.

Consider a 2-D FIR filter (h0(n1, n2)) with quadrantal symmetry, which have 2-D
support of −N1 < n1 < N1, and −N2 < n2 < N2. The filter response H0(ω1, ω2) of
the linear phase filter can be expressed as

H0(ω1, ω2) =
N1−1
2∑

n1=0

N2−1
2∑

n2=0

h(n1, n2)cos(n1ω1)cos(n2ω2). (4)

Assume that H0(z) is the 1-D low-pass filter of analysis filterbanks. This filter is said k
regular if it has k number of zeros at location z = −1 or ω = π on the unit circle. For
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2-D filterbanks, the VMs condition requires the low-pass filter to have Lth-order zero
derivatives that mean zeros at [z1, z2] = [−1,−1] or [ω1, ω2] = [π, π ]. Therefore,
partial derivative of H0(ω1, ω2) is given by

∂ l0+l1H0

∂ω0
l0∂ω1

l1
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

N1∑
n1=−N1

N2∑
n2=−N2

h0(n1, n2)(n1)l0(n2)l1cos(n1ω1)cos(n2ω2),

for L = even

−
N1∑

n1=−N1

N2∑
n2=−N2

h0(n1, n2)(n1)l0(n2)l1sin(n1ω1)sin(n2ω2)

otherwise
(5)

where, L = [l0, l1]T ∈ Z
2 (set of integer values). From above equation, it follows

that when, L ∈ Zo (i.e., set of odd integer values), the Lth-order partial derivative of
H0(ω1, ω2) is automatically zero at [ω1, ω2] = [π, π ]. If Lth order zeros are imposed
at [z1, z2] = [−1,−1] on low-pass filter, then the impulse response h0(n1, n2) must
satisfy the condition given by

N1∑

n1=−N1

N2∑

n2=−N2

(n1)
l0(n2)

l1(−1)n1(−1)n2h0(n1, n2) = 0,

for l0 = 0, 1, . . . 2v1 − 1 and l1 = 0, 1, . . . 2v2 − 1

(6)

Since h0(n1, n2) is a zero-phase filter, the above condition is rewritten as,

⎧
⎪⎪⎨

⎪⎪⎩

h0(0, 0) + 2
N1∑
0

N2∑
0

(−1)n1(−1)n2h0(n1, n2) = 0

2
N1∑
0

N2∑
0

(n1)l0(n2)l1(−1)n1(−1)n2h0(n1, n2) = 0

for l0 = 0, 1, . . . 2v1 − 1 and l1 = 0, 1, . . . 2v2 − 1

(7)

In this design, DVM constraint is formulated in time matrix form as �b̂ = 0,
where vector b̂ ∈ R

(N+1)×(N+1) which contains filter coefficients h0(n1, n2) and
� ∈ R

(L)×(N+1). It is given by

Γ L,n =
{
1 n1 = 0, n2 = 0

2(n1)l0(n2)l1(−1)n1(−1)n2 = 0

for l0 = 1, . . . 2v1 − 1 and l1 = 1, . . . 2v2 − 1

(8)

This matrix is used as a DVM constraint in the EFA problem to design low-pass
and high-pass filters. The linear function of error between passband and stopband is
minimized subject to DVM constraints in EFA.
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3.2 Design of Analysis Low-pass Filter with DVMUsing EFA

In this section, the 2-D EFA is proposed to design 2-D analysis low-pass filter with
DVM constraint. Consider a 2-D FIR filter given in equation (4). The frequency
response of quadrantal symmetric filter can be given as

H0(ω1, ω2) =
N1−1∑

n1=0

N2−1∑

n2=0

a(n1, n2)cos(n1ω1)cos(n2ω2) (9)

where H0(ω1, ω2) is a frequency response to be obtained and a(n1, n2) are the coef-
ficients related to filter impulse response h0[n1, n2] with quadrantal symmetry.
Assume, N1 = N2 = N and defining column vectors a and ĉ(ω1, ω2) as

a = [
a(0, 0), a(0, 1), . . . , a(0, N2) | a(1, 0), . . . ,

a(1, N2) | . . . | a(N1, 0), . . . , a(N1, N2)
]T (10)

ĉ = [
1, cos(ω2), . . . , cos((N2 − 1)ω2) | cos(ω1),

cos(ω1).cos(ω2), . . . , cos(ω1).cos((N2 − 1)ω2) |
cos((N1 − 1)ω1, cos((N1 − 1)ω1).cos(ω2), . . . ,

cos((N1 − 1)ω1)cos((N2 − 1)ω2)
]T (11)

The frequency response for the filter H0(ω1, ω2) can be written in vector form as

H0(ω1, ω2) = aT .ĉ(ω1, ω2) (12)

The objective of the eigenfilter method is to minimize the quadratic measure between
the passband error function ξ p and stopband error function ξs of the filter. This can be
formulated as

ξ = αξ p + βξs where

ξ p = 1

(2π)M

∫∫

passband∈R

[
HD(ωre f ) − H0(ω1, ω2)

]2
dω1dω2

ξs = 1

(2π)M

∫∫

stopband∈R

[
H0(ω1, ω2)

]2
dω1dω2. (13)

where, HD(ω1, ω2) is the ideal frequency response and H0(ω1, ω2) is a frequency
response of 2-D filter which is to be obtained. The α, β are the constants and control
the approximation of accuracies in the passband and stopband. The main objective
is to minimize the error function. This error function can be written as ξ = aT R1a,
where a denotes the real vector, while R1 represents real, symmetric and positive
definite matrix. Here, the objective is to find the vector a. The elements of vector a
correspond to the 2-D filter impulse response h0[n1, n2].
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Thus, the passband and stopband error function can be evaluated as ξ p = aT Rpa
and ξs = aT Rsa, with

Rp = 1

(2π)M

∫∫

passband∈R
[ĉ(ωre f ) − ĉ(ω1, ω2)] × [ĉ(ωre f ) − ĉ(ω1, ω2)]T dω1dω2

and

Rs = 1

(2π)M

∫∫

stopband∈R
[ĉ(ω1, ω2)][ĉ(ω1, ω2)]T dω1dω2

where ωre f denotes the reference frequency of passband region. The total error func-
tion to be minimized in (13) can be expressed as

ξ = αξ p + βξs = aT R1a, where R1 = αRp + βRs. (14)

Here, R1 represents the real, symmetric and positive definite matrix. Here, the aim is
not only to satisfy the objective of minimum error function but also to satisfy the DVM
constraints given in Eq. (8). Thus, this design can be casted as constrained optimization
problem as:

minimize
ξ

ξ = hT R1h

subjectto Γ h = 0 and hT h = 1.
(15)

Using Rayleigh principle [27], eigenvector of R1 which corresponds to minimum
eigenvalue givesminimum ξ . TheDVMconstraints are imposed in the formofΓ h = 0
as described by pei et al. in [23]. To solve this constrained optimization problem, we
note that Γ h = 0 if and only if h spans the null space of Γ . Therefore, any such vector
which satisfies the constraints can be expressed as h = Ub, where columns ofU form
an orthogonal to basis for null space of the matrix Γ . Note that U is a unitary matrix,
i.e., UTU = I and b is any arbitrary vector. With this modification of h, the design
problem becomes

minimize
ξ

ξ = hT R1h = bTUT R1Ub. (16)

Therefore, the eigenvector of UT R1U corresponding to minimum eigenvalue yield
minimum passband and stopband error. Singular value decomposition (SVD) is used
to find the eigenvalue and eigenvector. The optimal solution h is equal to Ub. The
elements of this vector represent the coefficients of analysis low-pass filter with pre-
scribed DVM.
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3.3 Design of Synthesis Low-Pass Filter with PR and DVM constraints Using EFA

The coefficient of polynomial H0(z1, z2) is elements of eigenvector of UT R1U cor-
responding to minimum eigenvalue. The coefficients of polynomial F0(z1, z2) are
obtained using Eq. (3) and the coefficient of polynomial P0(z1, z2). Assume that
h0(n1, n2) and f0(n1, n2) are the zero-phase filters with 2-D support as

h0[n1, n2] = nonzero for − P ≤ n1, n2 ≤ P

f0[n1, n2] = nonzero for − Q ≤ n1, n2 ≤ Q.

Note that in time domain, p[n1, n2] is the 2-D convolution of h0[n1, n2] and f0[n1, n2]
as given below:

p[n1, n2] =
Q∑

k1=−Q

Q∑

k2=−Q

f0[k1, k2].(h0[n1 − k1, n2 − k2])

for − (P + Q) ≤ n1, n2 ≤ (P + Q).

(17)

Since f0[n1, n2] is zero phase, f0[n1, n2] = f0[−n1,−n2]. For zero-phase filter,
f0[n1, n2] with centro-symmetry has the following number of independent coeffi-
cients

(
f0[0, n2], 0 ≤ n2 ≤ Q

f0[n1, n2], 1 ≤ n1 ≤ Q, −Q ≤ n2 ≤ Q

)
. (18)

Therefore, Eq. (17) can be rewritten using independent coefficients of f0[n1, n2] as
follows:

p[n1, n2] = f0[0, 0].h0[n1, n2]+
Q∑

k2=1

f0[0, k2].(h0[n1, n2−k2] + h0[n1, n2 + k2])

+
Q∑

k1=1

Q∑

k2=−Q

f0[k1, k2]. × (h0[n1 − k1, n2 − k2] + h0[n1 + k1, n2 + k2])

for − (P + Q) ≤ n1, n2 ≤ (P + Q).

(19)

Note that h0[n1, n2] and f0[n1, n2] are zero phase, which follows that p0[n1, n2] is
also zero phase, i.e., p0[n1, n2] = p0[−n1,−n2]. To achieve PR, product filter must
satisfy

p[n1, n2] = 1 for n1 = n2 = 0

p[n1, n2] = 0 otherwise
(20)
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This expresses p[n1, n2] = 0 for all samples on quincunx locations and represented
by NL . Then,

NL =N − 1

2
+

⌊
N .(2N + 1))

2

⌋
, when N = odd integer

NL =N

2
+ N .(2N + 1)

2
, when N = even integer

Thus, from (19) and (20), it is noted that we can solve NL + 1 equations for 2Q2 +
2Q + 1 number of unknown variables. This corresponds to independent coefficients
of f0[n1, n2]. Similar to analysis filter design, we impose PR and DVM constraints
to obtain low-pass synthesis coefficients. The independent coefficients f0[n1, n2] are
arranged in vector f . Therefore, Eq. (19) is rewritten as

Cf = d, (21)

whereC is thematrix of size (NL +1)×(2Q2+2Q+1) and is obtained fromEq. (19).
The vector f contains the unknown coefficients of f0[n1, n2] of size (2Q2+2Q+1)×1
and d = [1 0 · · · 0]T . Equation (21) gives multiple solutions but goal is to find one
optimal solution. So, constraints are rewritten as

Ĉf = 0 where Ĉ = C − d.ĉt(ω0)

HD(ω0)
(22)

Here, ĉt(ω0)matrix andHD(ω0) are related to equivalent formof the zero reference fre-
quency condition (refer [27]). Hence, 2-D filter design problem becomes constrained
(DVM and PR) optimization problem as

minimize
ξ

ξ = f T R2 f

subjectto Γ f = 0, Ĉ f = 0 and f T f = 1.
(23)

Here, R2 represents the real, symmetric and positive definite matrix. To solve this
constrained optimization problem, we note that Γ f = 0 if and only if f spans the null
space of Γ . Therefore, any such vector which satisfies the constraints can be expressed
as f = Ub, where columns of U form an orthogonal to basis for null space of the
matrix Γ . Note thatU is a unitary matrix, i.e.,UTU = I and b is any arbitrary vector.
The objective function is minimized with PR (22) and DVM constraints (8).

This can be expressed as ξ = bTUTR2Ub. The optimal solution b of this error
function is the eigenvector of the matrix UTR2U. This eigenvector is corresponding
to minimum eigenvalue of the matrix R2. Finally, the optimal solution f is equal to
Ub. The elements of this vector represent the coefficients of synthesis low-pass filter
f0[n1, n2].
Design example: To design 2-D fan-shaped analysis low-pass filter h0(n1, n2), we

consider ωp1 , ωp2 and ωs1 , ωs2 which describe the passband and stopband cut-off
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Fig. 2 Frequency response of the proposed fan-shaped analysis filters and synthesis filters

frequencies. We consider the low-pass filter size N1 = N2 = 23, ωp1 = ωp2 = 0.4π ,
ωs1 = ωs2 = 0.6π , α = β = 0.5 and ωre f = (0, 0). For this h0(n1, n2), we design
corresponding synthesis filter f0(n1, n2) with Q = 25. The analysis low-pass filter
h0(n1, n2) is quadrantal symmetric and its first quadrant coefficients denoted by hI

are given in Eq. (24), where, its center value is -0.8158. The frequency response of the
proposed 2-D filters is shown in Fig. 2.

hI =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −0.0023 0 −0.0022 0 −0.0021 0 −0.0019 0 −0.0016 0 −0.0015
−0.0041 0 −0.00025 0 −0.0015 0 −0.0015 0 −0.0013 0 −0.0012 0

0 −0.0069 0 0.0027 0 −0.00024 0 −0.00057 0 −0.00053 0 −0.00049
−0.0043 0 −0.01041 0 0.0069 0 0.0015 0 0.00076 0 0.00061 0

0 −0.0057 0 −0.0146 0 0.0123 0 0.0039 0 0.0026 0 0.0023
−0.0044 0 −0.0072 0 −0.0197 0 0.0193 0 0.0071 0 0.0052 0

0 −0.0054 0 −0.0089 0 −0.0262 0 0.0286 0 0.0116 0 0.0096
−0.0043 0 −0.0065 0 −0.0109 0 −0.0347 0 0.0417 0 0.01898 0

0 −0.0051 0 −0.0078 0 −0.0136 0 −0.0472 0 0.0636 0 0.0349
−0.0042 0 −0.0061 0 −0.0093 0 −0.0174 0 −0.0683 0 0.1117 0

0 −0.0050 0 −0.0073 0 −0.0115 0 −0.0242 0 −0.1159 0 0.3449
−0.0041 0 −0.0060 0 −0.0089 0 −0.0153 0 −0.03962 0 −0.3488 -0.8158

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(24)

4 Experimental Results

To illustrate the effectiveness of the proposed filter with DVM, we have carried out
experiments on image denoising application.

4.1 Image Denoising

The performance of the designed filters has been tested in the denoising application.
Image denoising is an exemplary issue and has been studied for a long time. However,
it remains a challenging and open task. The brief review of recently appeared denois-
ing techniques has been studied in [10]. In general, image denoising techniques are
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Fig. 3 Denoising scheme using directional filterbank with proposed filters

classified as spatial domain and transform domain methods. The aim of spatial domain
methods is to remove noise by calculating the gray value of each pixel based on the cor-
relation between pixels/image patches in the original image [14]. Furthermore, spatial
domain methods can be divided into two categories, namely spatial domain filtering
and variational denoising methods. However, transform domain filtering methods first
transform the given noisy image to another domain, and then they apply a denois-
ing procedure on the transformed image according to the different characteristics of
the image and its noise. The larger coefficients represent the high-frequency part,
i.e., the details or edges of the image and smaller coefficients represents the noise.
Initially, transform domain methods were developed from the Fourier transform, but
since then, a variety of transform domain methods gradually emerged, such as wavelet
domain methods [29], and block-matching and 3-D filtering (BM3D) [7]. Recently,
CNN-based methods have been developed rapidly and have performed well in many
computer vision tasks [12,19]. The use of a CNN for image denoising can be tracked
back, where a five-layer network was developed. In recent years, many CNN-based
denoising methods have been proposed [5,28].

The proposed filters are used in denoising scheme as shown in Fig. 3. The denoising
scheme mainly consists of two stages: a Laplacian pyramid (LP) decomposition [8]
and directional filterbank (DFB) decomposition. The proposed filters are used in direc-
tional decomposition as shown in Fig. 3. Laplacian pyramid decomposes the standard
images (e.g., Barbara (512 × 512)) into approximation information and radial band-
pass subbands with different directional information. Then, DFB is applied to each
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Fig. 4 Denoising results of Barbara image a noisy image σ = 20 b denoised image with CT c CTSD d
TIWT e STICT f TICT g BM3D h Proposed Method

radial bandpass subbands where maximum fine structural details of Barbara image for
different directions are extracted efficiently. The DFB in second step can be imple-
mented by using tree structured decomposition. In these experiments, the images are
decomposed upto three-level (N = 3) directional decomposition. The subband images
of DFB are decimated by the following subsampling matrices

Q0 =
[
1 −1
1 1

]
Q1 =

[
1 1

−1 1

]
R0 =

[
1 1
0 1

]

R1 =
[
1 −1
0 1

]
R2 =

[
1 0

−1 1

]
R3 =

[
1 0
1 1

]
.

(25)

Noise generally contained high-frequency component due to which it lies in the high-
frequency subbands. Therefore, we threshold the detail subbands to suppress the noise
content present in the image and reconstruct the original image. The noise is suppressed
using hard thresholding, and it is estimated by using Bayes’ shrinkage rule. We have
tested the performance of designed 2-Dfilters on four standard commonly used images,
such as Lena (512 × 512), Peppers (512 × 512), Boat (512 × 512) and Barbara
(512 × 512) [26]. The test images are contaminated first by adding a zero-mean
Gaussian white noise with a standard deviation of σ . For all the denoising schemes, we
assumed that σ is unknown, and we estimated it using the robust median estimator as
given in [9]. These noisy images are then used in the denoising scheme. The denoising
performance of the proposedfilters is comparedwith the existingwell-knownmethods,
such as 1-D wavelets [20], Contourlet transform (CT) [8], ContourletSD [8], TIWT
[9], STICT [9], TICT [9] and BM3D [7]. The conventional ‘PKVA’ filters have been
used in the CT [8] and TICT [9] methods. In order to obtain an insightful analysis, the
qualitative objective measures, such as signal-to-noise ratio (SNR), peak signal-to-
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Fig. 5 Comparison of relative intensity profiles of denoised image with known methods for Barbara (512×
512) image

Table 2 Energy distribution of
first subband

Method TIWT [9] STICT [9] TICT [9] Proposed

Energy 4.81e9 2.38e9 5.81e9 3.061e10

noise ratio (PSNR) are measured. PSNR is commonly used to measure the distortion.
For an original image X and its reconstructed version Y , the PSNR is defined as

PSN R = 20 log10

(
2P − 1√
MSE

)
(26)

where

MSE = 1

N0N1

N0−1∑

i0

N1−1∑

j0

[Y (i0, j0) − X(i0, j0)]2, (27)

and each image has P bits/sample and dimension N0 × N1.
Table 1 depicts the SNR and PSNR values of denoising results obtained for afore-

mentioned standard images. The standard deviation of the input noise is considered
between σ = 10 to σ = 70. From the results, it is observed that the proposed 2-D
filters perform better in denoising and results are shown in Fig. 4. For clear illustration,
we have compared the intensity profiles at 315th row of denoised Barbara image by
proposed method with the existing methods along with the noisy image as shown in
Fig. 5. From the intensity profiles, it is clear that the proposed method gives superior
results. The subband energy distributions of Barbara image is calculated at first-level
decomposition for proposed filters and existing filters. The energies of first subband
are presented in Table 2. It is clear that proposed filters give better energy compaction
as compare to existing methods.
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5 Conclusion

In this paper, the design of two-dimensional quincunx filterbank has been proposed
based on 2-D eigenfilter approach with directional vanishing moment. The proposed
filters satisfy the PR criteria and have comparable performance with existing 2-D
filters. The performance of the proposed filters has been tested in image denoising
applications. In order to obtain insightful analysis, the quantitative measures such as
SNR and PSNR have been measured and compared with the existing methods. It has
been observed that the proposed filters give notable denoising results.
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