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Abstract
In this paper, we consider distributed estimation problems where a set of agents are
used for jointly estimating an interesting parameter from the noise measurements.
By using the adaptation-then-combination rule in the traditional diffusion least mean
square (DLMS), a DLMS is proposed by introducing a correction step with a gain
factor between the adaptation and combination steps. An explicit expression for the
network mean-square deviation is derived for the proposed algorithm, and a sufficient
condition is established to guarantee themean stability. Simulation results are provided
to verify theoretical results, and it is shown that the proposed algorithm outperforms
the traditional DLMS.

Keywords Distributed estimation · Correction based · Diffusion LMS · Adaptive
networks

1 Introduction

Distributed estimation, that estimates the unknownparameter vector of interest through
the noisy observation data of each node, has recently received much attention. Adap-
tive networks are attractive solutions for distributed estimation problems. An adaptive
network consists of a group of nodes with data processing, learning, and data transmis-
sion capabilities. These nodes are connected together in a variety of topologies to form
an interconnected network. Nodes in the network can interact with their neighbors to
exchange information and collaborate to estimate common target parameters. As a
research hotspot in distributed networks, distributed estimation has a wide range of
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practical applications, including biomedicine, sensory networks, environmental mon-
itoring, target location, smart agriculture, and counter-terrorism [20].

The problem of distributed estimation in adaptive networks has received more
and more attention, and a large number of distributed estimation algorithms have
been proposed. In addition, there are at least two types of the communication modes
between nodes in a distributed network: the consensus strategy [2,17,19,25] and the
diffusion strategy [5–7,22,23]. However, it is known that traditional diffusion strategy
outperforms traditional consensus strategy [26]. Therefore, we choose the diffusion
network structure in this paper. Diffusion networks are sought after by researchers and
have been widely applied in cognitive radio, environmental monitoring, and industrial
automation. In [24], the diffusion least mean-square (DLMS) algorithm was proposed
to improve the estimation performance of the algorithm. The adapt-then-combine
(ATC) DLMS algorithm and the combine-then-adapt (CTA) DLMS algorithm were
proposed according to the order of fusion and adaptation in [3]. In order to improve
the convergence speed of the algorithm, the researchers presented a variable step size
DLMS algorithm to accelerate the convergence speed by dynamically changing the
step size in real time [18]. Aiming at the problem of noise influence in regression
vector, a compensatory diffusion LMS algorithm was studied in [1]. In [9], a DLMS
algorithm based on data selection, which enabled nodes to decide whether to spread
data according to transmission criteria, was designed to reduce the communication
volume of nodes to a certain extent. In [10], the authors considered the influence of
malicious nodes on the network under specific attacks and have introduced a DLMS
algorithm based on reputationmechanism. The principle is to assign the corresponding
reputation value according to the contribution made by the node. In wireless sensor
networks, energy saving is an important research content, and the regression vector
may be a non-Gaussian distribution. Therefore, a quantized minimum error entropy
criterion was proposed in the literature [4], which was only used to transmit error
signals between nodes and effectively reduced the amount of information transmission.

It is worth pointing out that improving the estimation performance of the least
mean-square algorithm itself has been largely ignored despite their irreplaceable sig-
nificance in parameter estimation. As a result, we focus on designing an effective
strategy to improve the steady-state performance of the algorithm. In [26], the author
proposed an exact diffusion strategy with guaranteed exact convergence for deter-
ministic optimization problems. The exact diffusion algorithm has proven to remove
the bias that is characteristic of distributed solutions for deterministic optimization
problems [26]. In addition, the algorithm was shown to be applicable to a larger set
of combination policies than earlier approaches in the literature [26]. The exact dif-
fusion resembles standard diffusion strategy, with the addition of a “correction” step
between the adaptation and combination step. Inspired by this paper, we directly add
the “correction” step between the adaptation and combination in the DLMS algorithm.
Nevertheless, the estimated performance of the algorithm is not improved. Therefore,
we have thought of adding a gain factor to the correction step as shown in the third
part and propose correction-based diffusion LMSAlgorithms. In comparisonwith [24]
which have focused on DLMS algorithms, the correction-based diffusion LMS algo-
rithm performs estimating unknown parameters more efficiently. Simulation results
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illustrate the theoretical findings and reveal the enhanced learning abilities of the
proposed filters.

The structure of this paper is as follows. In Sect. 2, we develop an estimation
problem and propose a solution. The algorithm is presented in Sect. 3. In Sect. 4, we
analyze the performance of the algorithm. In Sect. 5, we simulate the algorithms and
theoretical results.

Notation: In this paper, we adopt normal font letters for scalars, boldface lowercase
letters for columnvectors, and boldface uppercase letters formatrices. The symbol (·)T
denotes matrix transpose, and the symbol (·)−1 denotes matrix inverse. The operators
diag{·}, col{·}, tr(·), andE{·} denote the (block) diagonalmatrix, the column vector, the
trace of a matrix, the expectation, respectively. The symbol ⊗ denotes the Kronecker
product. The symbol vec{·} refers to the standard vectorization operator that stacks
the columns of a matrix on top of each other. The notation ‖·‖2 denotes the Euclidean
norm of a vector, and |·| denotes the (element-wised) L1-norm of a scalar or vector.
We use indexes k and � to denote nodes and use i to denote time. Other notations will
be introduced if necessary.

2 Problem Formulation

Consider a network of N wireless sensors, spatially distributed over some region. At
every time instant i , each node k can access to a zero-mean observation dk(i), and
a zero-mean M−dimensional row regression vector uk(i). We assume the data to be
related via a linear model as follows:

dk(i) = uk(i)wo + vk(i) (1)

where wo is an M−dimensional unknown column vector, and vk(i) is a zero-
mean measurement noise of variance σ 2

v,k . We assume covariance matrix Ru,k =
E{uk(i)T uk(i)} is positive definite, and letRdu,k = E{dk(i)uk(i)T }, whereRdu,k is
a cross-correlation vector.

We estimate the unknown parameterwo byminimizing the following cost function:

wo = argmin
w∈RM

J glob(w) =
N∑

k=1

E{|dk(i) − uk(i)w|2} (2)

which is strongly convex, second-order differentiable, and minimized at wo.
The optimal estimator is given by [21]

wo =
(

N∑

k=1

Ru,k

)−1( N∑

k=1

Rdu,k

)
(3)

It is worth pointing out that centralized networks have the disadvantages of the
poor performance in dealing emergencies and in processing the transmitted data in
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real time [3].Hence,we focus ondesigningdistributed network topology for estimating
unknown parameters.

Note the entry a�,k of the matrix A, which can represent the topology of a network,
satisfies

1T A = 1T , A1 = 1, a�,k = 0 if � /∈ Nk (4)

where 1 denotes an N−dimensional column vector consisting of all ones. Let a�,k

denotes the weight that is used to scale the data that flows from node � to k. Let

A
Δ= [a�,k] ∈ RN×N denotes the matrix that collects all these coefficient.
Now, we consider that it is feasible to replace the global cost with the local costs

as follows:

J glob(w) =
N∑

�=1

J�(w) (5)

where J glob(w) = E{|d�(i) − u�(i)w|2} denotes the cost function in � node.

By using the property of combination coefficients a�,k = ak,� and
N∑

k=1
ak,� = 1, we

can rewrite Eq. (5) as follows:

J glob(w) =
N∑

�=1

(
N∑

k=1

ak,�

)
J�(w) (6)

It only exchanges the order and data with neighbor nodes in k node, so

J glob(w) =
N∑

k=1

⎛

⎝
∑

�∈Nk

a�,k

⎞

⎠ J�(w)

=
N∑

k=1

J loc� (w) (7)

Thus, when the combination coefficients are symmetric and convex, we will find
out that optimizing the global cost in view of individual costs (2) is equivalent to
optimizing the global cost in view of local costs (7). Hence, we can represent the global
optimization problem in terms of the local optimization problem. In the following
papers, we only give the algorithm of each node k.

3 Diffusion Adaptive Solutions

In order to estimatewo more accurately, the diffusion least mean-square algorithms are
proposed, which include the ATC algorithm and the CTA algorithm. Here, we focus
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on the algorithm using the adapt-then-combine cooperation rule as it shows better
performance than the combine-then-adapt cooperation strategy. The ATC diffusion
LMS is implemented by [11]

⎧
⎪⎨

⎪⎩

ϕk,i = wk,i−1 + μuTk,i (dk,i − uk,iwk,i−1) (8a)

wk,i =
∑

�∈Nk

a�,kϕ�,i (8b)

where μ is a constant step size parameter, wk,i is an estimate at i iteration for each
node k, and ϕk,i is the intermediate variable. The coupling coefficient a�,k , which is
the � and k entity of the matrix A that is a double-stochastic matrix satisfied Eq. (4).

We note that the mean-square error value of DLMS algorithm still needs to be
reduced, although it already has good estimation performance. It is of importance to
design an effective strategy to improve the performance of the algorithm. Therefore,
we hope to design a distributed algorithm to improve steady-state performance of the
algorithm. The exact diffusion algorithm has been proposed to remove the bias that is
characteristic of distributed solution for deterministic optimization problems, and the
algorithm is as follows [26,27]:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ϕk,i = wk,i−1 + μ∇ Jk(wk,i−1) (9a)

φk,i = ϕk,i + wk,i−1 − ϕk,i−1 (9b)

wk,i =
∑

�∈Nk

ā�,kφ�,i (9c)

where ā�,k is the � and k entry of the matrix Ā that satisfies Ā = (IN + A)/2. The
symbol∇ Jk(wk,i−1) denotes the gradient vector of Jk relative tow, which is a convex
and differentiable function for deterministic optimization problems. φk,i and ϕk,i are
intermediate variables.

It is observed that the “correction” step has been added to the algorithm between
the adaptation and combination step.

We apply this idea of adding “correction” step between combination and adapta-
tion to the DLMS algorithm. Therefore, we design a correction-based diffusion LMS
algorithm by adding a gain factor before the difference between wk,i−1 and ϕk,i−1
from the previous iteration. The algorithm is as follows:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ϕk,i = wk,i−1 + μuTk,i (dk,i − uk,iwk,i−1) (10a)

φk,i = ϕk,i + λ(wk,i−1 − ϕk,i−1) (10b)

wk,i =
∑

�∈Nk

a�,kφ�,i (10c)

where both ϕk,i and φk,i are intermediate variables, λ is a positive gain factor, and
a�,k is the coupling coefficient.

It is observed that correction-based diffusion LMS algorithm is different from the
exact diffusion strategy, with the addition of a gain factor. Another difference is that
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the exact diffusion is to study deterministic optimization problem, while diffusion
LMS is to study parameter estimation problem with noise in measurement equation.

Before proceeding with this paper, we introduce the following assumptions:

Assumption 1 The regressor vector uk,i arises from a zero-mean random process that
is temporally stationary, temporally white, and independent in time and space.

Assumption 2 The noise vk,i is zero-mean Gaussian, which is identically independent
distributed in time and also spatially independent and is independent of other signals.

Assumption 3 The regressor vectors {uk,i } are independent of {w�,i } for all � and for
j < i .

These assumptions are commonly used in the adaptive filtering literature since they
help simplify the analysis, and the performance results obtained under this assumption
matchwell the actual performanceof stand-alonefilters for sufficiently small step sizes.

4 Performance Analysis

In this section, we will analyze the convergence and mean-square error performance
of the algorithm (10) which is proposed in the third part.

4.1 Error Vector Recursion

We define the error quantities

w̃k,i = wo − wk,i , ϕ̃k,i = wo − ϕk,i , φ̃k,i = wo − φk,i (11)

By substituting Eq. (11) into Eq. (10), we get the following

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ϕ̃k,i = w̃k,i−1 − μ · uTk,i (uk,i w̃k,i−1 + vk,i ) (12a)

φ̃k,i = ϕ̃k,i + λ(w̃k,i−1 − ϕ̃k,i−1) (12b)

w̃k,i =
∑

�∈Nk

a�,k φ̃�,i (12c)

Then, by doing the dimension expansion, we have

⎧
⎪⎨

⎪⎩

ϕ̃i = (IMN − μ · Di )w̃i−1 − μ · gi (13a)

φ̃i = ϕ̃i + λ
(
w̃i−1 − ϕ̃i−1

)
(13b)

w̃i = AT φ̃i (13c)

where

AΔ=A ⊗ IM (14)
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w̃i
Δ=col{w̃1,i , w̃2,i , ......., w̃N ,i } (15)

ϕ̃i
Δ=col{ϕ̃1,i , ϕ̃2,i , ......., ϕ̃N ,i } (16)

φ̃i
Δ=col{φ̃1,i , φ̃2,i , ......., φ̃N ,i } (17)

gi
Δ=col{uT1,iv1,i , ......., uTN ,ivN ,i } (18)

Di
Δ=diag{uT1,iu1,i , ......., uTN ,iuN ,i } (19)

Then, it can be verified that the network error vector w̃i for the diffusion strategy
(10) evolves according to the following recursion:

w̃i = B1,i w̃i−1 + B2,i−1w̃i−2 − μAT gi + λμAT gi−1 (20)

where

B1,i = AT [(λ + 1) IMN − μDi ] (21)

B2,i−1 = −λAT (IMN − μDi−1) (22)

Remark 1 In an extreme case when λ = 0, the error vector recursion (20) of the
correction-based diffusion LMS algorithm equals to the error vector recursion of the
DLMS algorithm.

4.2 Mean Stability Analysis

Since {vk,i } is a zero-mean measurement noise and is independent of the regressor
vectors {uk,i }. Therefore, taking the expectation of both sides of (20), we get

E{w̃i } = B1E{w̃i−1} + B2E
{
w̃i−2

}
(23)

where

B1 = E{B1,i } = AT [(λ + 1) IMN − μRu] (24)

B2 = E{B2,i−1} = −λAT (IMN − μRu) (25)

Ru = E{Di } = diag{Ru,1, Ru,2, ......, Ru,N } (26)

In order to facilitate the analysis below, we extend the equation (23) as follows

E

{[
w̃i

w̃i−1

]}
=
[ B1 B2
IMN 0MN

]
E

{[
w̃i−1
w̃i−2

]}

= BE
{[

w̃i−1
w̃i−2

]}
(27)
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Recursion (27) converges as i → ∞ if the matrix B is stable. SinceA is a double
random matrix, we get

ρ (B) = ρ

([ B1 B2
IMN 0MN

])

≤ ρ

([
(λ + 1)IMN − μRu −λ(IMN − μRu)

IMN 0MN

])

≤ ρ

([
λIMN −IMN

0MN IMN − μRu

])

< 1 (28)

Thus, the stability of the algorithm (10) is ensured by choosing μ and λ such that:

0 < μ <
2

λmax(Ru,k)
and 0 < λ < 1 (29)

whereλmax(Ru,k) is themaximumeigenvalue of Ru,k .Weobserve that the deviation
reduces to 0, when i → ∞.

It can be seen from condition (29) that the gain factor λ is not directly related to
the step size μ, but only when the conditions of the step size and the gain factor are
simultaneously established, the algorithm (10) converges.

Remark 2 When the gain factor satisfies the constraint condition (29), the step size
condition of the algorithm is the same as the step size condition of theDLMS algorithm
to guarantee stability.

4.3 Mean-Square Deviation Behavior Analysis

To perform the mean-square-error analysis, we shall use the Kronecker product oper-
ator [8] and the vectorization operator vec(·). First, we write the results by extending
the equation (20).

w̃i
i−1 = Bi w̃

i−1
i−2 + A2g

i
i−1

= (
A1 + A2 · (D1,i + D2,i−1

))
w̃i−1
i−2 + A2g

i
i−1 (30)

where

w̃i
i−1 =

[
w̃i

w̃i−1

]
(31)

gii−1 =
[

gi
gi−1

]
(32)

Bi =
[ B1,i B2,i−1
IMN 0MN

]
(33)
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A1 =
[

(λ + 1)AT −λAT

IMN 0MN

]
(34)

A2 =
[−μAT λμAT

0MN 0MN

]
(35)

D1,i =
[ Di 0MN

0MN 0MN

]
(36)

D2,i−1 =
[
0MN 0MN

0MN Di−1

]
(37)

To analyze the convergence in mean-square-error sense, we consider evaluating a
weighted variance of the error vector w̃i . Let Σ1 denotes an arbitrary nonnegative
definite matrix that we are free to choose.

Let

Σ =
[

Σ1 0
0 0

]
(38)

We have

E
∥∥w̃i

∥∥2
Σ1

= E

∥∥∥w̃i
i−1

∥∥∥
2

Σ
(39)

Thus, we consider the variance of the weight error vector w̃i
i−1, weighted by any

positive-definite matrix Σ . According to assumption 1, 2, and 3, we obtain:

E
∥∥w̃i

∥∥2
Σ1

= E

∥∥∥w̃i
i−1

∥∥∥
2

Σ

= E

{∥∥∥
(
A1 + A2 · (D1,i + D2,i−1

))
w̃i−1
i−2 +A2gii−1

∥∥∥
2

Σ

}

= E

∥∥∥w̃i−1
i−2

∥∥∥
2

Σ ′ + E

∥∥∥A2gii−1

∥∥∥
2

Σ
+ 2E

{
(w̃i−1

i−2)
T Bi

TΣ A2gii−1

}
(40)

where matrix Σ ′ is give by:

Σ ′ = BTΣB − Ru,1AT
2 Σ A2Ru,1 − Ru,2AT

2 Σ A2Ru,2

+ E

{
DT
1,i A

T
2 Σ A2D1,i

}
+ E

{
DT
2,i−1A

T
2 Σ A2D2,i−1

}
(41)

where

B = A1 + A2 · (Ru,1 + Ru,2
)

(42)

=
[ B1 B2
IMN 0MN

]
(43)

Ru,1 = E

{
DT
1,i

}
=
[ Ru 0MN

0MN 0MN

]
(44)



Circuits, Systems, and Signal Processing (2020) 39:4136–4154 4145

Ru,2 = E
{
D2,i−1

} =
[
0MN 0MN

0MN Ru

]
(45)

By performing the vectorization operator of the positive definite matrix Σ , we
obtain σ=vec(Σ). Similarly, let σ ′=vec(Σ ′). According to the property vec(AΣB) =
(BT ⊗ A)σ , where A and B are the arbitrary matrices, we get

vec(BTΣB) = (BT ⊗ BT )σ (46)

vec(Ru,1AT
2 Σ A2Ru,1) =

(
Ru,1AT

2 ⊗ Ru,1AT
2

)
σ

= (
Ru,1 ⊗ Ru,1

) (
AT
2 ⊗ AT

2

)
σ (47)

vec(Ru,2AT
2 Σ A2Ru,2) =

(
Ru,2AT

2 ⊗ Ru,2AT
2

)
σ

= (
Ru,2 ⊗ Ru,2

) (
AT
2 ⊗ AT

2

)
σ (48)

Assume now that the regressors are Gaussian zero-mean random vectors. Then, for
any Hermitian matrix H it holds [21]:

E

{
uTk,iuk,iHuT�,iu�,i

}
= Ru,kHRu,� + βδk�Ru,kTr(HRu,k) (49)

where β = 1 if the regressors are complex, and β = 2 if the regressors are real. And
δk� indicates the correlation coefficient of uk,i and u�,i .

Consider the matrices K 1 = E

{
DT
1,i QD1,i

}
and K 2 = E

{
DT
2,i−1QD2,i−1

}
,

where Q = AT
2 Σ A2, we obtain

K =
⎡

⎢⎣
RT

u,1Q11Ru,1 · · · RT
u,1Q1NRu,N

...
. . .

...

RT
u,N QN1Ru,1 · · · RT

u,N QNNRu,N

⎤

⎥⎦

+
⎡

⎢⎣
Ru,1rT1 q1,1 · · · 0M

...
. . .

...

0M · · · Ru,N rTN qN ,N

⎤

⎥⎦ (50)

qk,� = vec(Qk,�), rk = vec(Ru,k) (51)

K 1 = diag{K , 0MN }
= RT

u,1QRu,1 + Ru,1Zm (52)

where Zm =diag{rT1 q1,1, · · · , rTN qN ,N , 0, · · · , 0}. Taking the vector operator of the
above matrix K , we get

vec(K 1) = (
Ru,1 ⊗ Ru,1

)
vec(Q) + (I2MN ⊗ Ru,1)Lmvec(Q)

= (
Ru,1 ⊗ Ru,1 + (I2MN ⊗ Ru,1)Lm

)×
(
AT
2 ⊗ AT

2

)
σ (53)



4146 Circuits, Systems, and Signal Processing (2020) 39:4136–4154

where Lm is given as follows:

Lm = diag{Lm,1, · · · ,Lm,N , 0, · · · , 0} (54)

Lm,k =
⎡

⎢⎣
Ik ⊗ e1

...

Ik ⊗ eM

⎤

⎥⎦⊗ rTk (55)

Similarly, we also have

vec(K 2) = (
Ru,2 ⊗ Ru,2

)
vec(Q) + (I2MN ⊗ Ru,2)Lnvec(Q)

= (
Ru,2 ⊗ Ru,2 + (I2MN ⊗ Ru,2)Ln

)×
(
AT
2 ⊗ AT

2

)
σ (56)

where Ln is given as follows:

Ln = diag{0, · · · , 0,Ln,1, · · · ,Ln,N } (57)

Ln,k =
⎡

⎢⎣
IN+k ⊗ e1

...

IN+k ⊗ eM

⎤

⎥⎦⊗ rTk (58)

where Ik is a 2N × 2N matrix with a unit entry at position K and zeros elsewhere,
ek is a M × 1 column vector with a unit entry at position K and zeros elsewhere.

Then, we have

vec
(
Σ ′) = Fσ (59)

where

F =
(
BT ⊗ BT

)
+ ((I2MN ⊗ Ru,1)Lm + (I2MN ⊗ Ru,2)Ln)

(
AT
2 ⊗ AT

2

)
σ

(60)

The second term of Eq. (40) can be written as:

E

∥∥∥A2gii−1

∥∥∥
2

Σ
= E

{
(gii−1)

T AT
2 Σ A2gii−1

}

= vec((λ2 + 1)H1)
T σ (61)

where

H1 =
[

μ2σ 2
v ATRuA 0MN

0MN 0MN

]
(62)

The third term of Eq. (35) can be written as:

E

{
Bi

TΣ A2Gi
i−1

}
= vec(−λH2)

T σ (63)
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where

H2 =
[

μ2σ 2
v B1ATRuA 0MN

μ2σ 2
v ATRuA 0MN

]
(64)

Finally, we have

E

∥∥∥w̃i
i−1

∥∥∥
2

σ
= E

∥∥∥w̃i−1
i−2

∥∥∥
2

Fσ
+ vec

(
(λ2 + 1)H1 − 2λH2

)
σ (65)

4.3.1 Convergence Analysis

A necessary and sufficient condition for the convergence of E
∥∥∥w̃i

i−1

∥∥∥
2

σ
is thatF is a

stable matrix, namely, ρ(F) < 1. A simpler, approximate condition as shown below
can be obtained for small step sizes [16]:

F = E{BT⊗BT } ≈ BT⊗BT (66)

which F is stable if B is stable. This condition is the same as the condition for mean
stability (29) and can be easily checked.

4.3.2 Steady-State Performance

Notice that the stability ofF guarantees that I −F will be invertible. Thus, we have

lim
i→∞E

∥∥∥wi
i−1

∥∥∥
2

(I−F)σ
= vec((λ2 + 1)H1 − 2λH2)σ (67)

Then, choosing

σ = (I − F)−1vec(diag(ek) ⊗ IM ) (68)

where ek is a 2N−dimension column vector that has a position unit entry at k and
zeros elsewhere. Then,

MSDk = E
∥∥w̃k,∞

∥∥2

= vec((λ2 + 1)H1 − 2λH2)(I − F)−1 × vec(diag(ek) ⊗ IM ) (69)

where MSDk denotes the mean-square deviation of node k. Then, the network mean-
square deviation (MSD) as follows:
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MSDnetwork Δ= 1

N

N∑

k=1

MSDk

= 1

N

N∑

k=1

vec((λ2 + 1)H1 − 2λH2)(I − F)−1 × vec(diag(ek) ⊗ IM )

(70)

Remark 3 From Eq. (70), we can see that the performance of the correction-based
diffusion LMS algorithm is related to the gain factor. In an extreme case when λ =
0, the performance of the correction-based diffusion LMS algorithm equals to the
performance of the DLMS algorithm.

5 Simulation Results

5.1 Example 1

In this section, in order to analyze the performance of correction-based diffusion LMS
algorithm, we choose a network topology consisting of 20 nodes. The combination
matrix A satisfies the double-stochastic property. The entrya�,k satisfies theMetropolis
rule [11–14] as follows:

a�,k =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1
max(nk ,n�)

, if � �= k, � ∈ Nk

1 − ∑
�∈Nk
� �=k

a�,k, if � = k

0, if � /∈ Nk

(71)

Figure 1 depicts the network topology that is generated according to matrix A with
N = 20 nodes.

The initial estimate wk,1 and the initial intermediate value ϕk,1 in the k node are,
respectively, selected to be wk,1 = [0, 0]T , ϕk,1 = [0, 0]T . The regression vectors
uk,i are a 1×2 zero-mean Gaussian distributed with covariance matrix Ru,k = I2.
The noises vk,i are a zero-mean Gaussian random variable, independent of any other
signal with variance σ 2

v,k = 0.25. In addition, we assume the estimated parameter

wo = [1, 2]T .
We compared the proposed algorithm when gain factor is taken different values. To

guarantee almost the same initial convergence rate, we set the step size atμ = 0.02 for
all the algorithms. And the results are averaged over 100 independent experiments.
Figure 2 shows the learning curve for correction-based DLMS algorithm when the
gain factor is taken λ = 0, λ = 0.2, λ = 0.4, and λ = 0.6, and λ = 0.8, respectively.
Figure 3 shows the learning curve for correction-based DLMS algorithm when the
gain factor is taken λ = 0.8, λ = 0.85, λ = 0.9, λ = 0.95, and λ = 0.98, respectively.
As can be seen from the figure, when the gain factor takes different values, learning
curve will also be different. From Fig. 2, we can observe that when the gain factor is
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Fig. 1 Network topology consisting of 20 nodes
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Fig. 2 The learning curve for correction-based DLMS algorithm when the gain factor is taken λ = 0,
λ = 0.2, λ = 0.4, λ = 0.6, and λ = 0.8, respectively

between 0 and 0.8, the MSD gradually decreases as the gain factor increases. From
Fig. 3, we can observe that the MSD is proportional to the gain factor if the gain factor
is chosen between 0.8 and 0.98. Therefore, we obtain that the learning curve with a
gain factor of 0.8 exhibits better performance than learning curves with other gain
values.

We paint the theoretical mean-square deviation that was derived in Sect. 4. Figure 4
shows the theoretical MSD when the gain factor λ takes different values. By contrast,
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Fig. 3 The learning curve for correction-based DLMS algorithm when the gain factor is taken λ = 0.8,
λ = 0.85, λ = 0.9, λ = 0.95, and λ = 0.98, respectively
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Fig. 4 The theoretical MSD when the gain factor λ takes different values

it is obvious that theoretical value of the MSD with a gain factor of 0.8 outperforms
the theoretical MSD with other gain values.

We simulate the theoretical value of the MSD analyzed in Sect. 4 and compare
the theoretical value with the simulated value of the algorithm as shown in Fig. 5.
It can be observed from the figure that the theoretical value of the DLMS algorithm
is −33.161dB, and the theoretical value of our proposed algorithms is −34.236dB
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Fig. 5 Simulation values and theoretical values of two algorithms include DLMS algorithm [11] and C-
DLMS algorithm

when the gain factor is 0.8. The difference between the two is about 1dB. It is obvious
that our theoretical results are well matched to the simulation results. In addition, we
compare the adapt-then-combine (ATC) DLMS algorithm, the combine-then-adapt
(CTA) DLMS algorithm, and the correction-based diffusion LMS algorithm, as shown
in Fig. 5, we can observe that correction-based diffusion LMS algorithm has better
convergence performance than the other two algorithms.

5.2 Example 2

To verify the performance of the proposed algorithm in different networks, consider
a distributed sensor network consisting of 12 nodes. These sensors are randomly
distributed in an area of 100 × 100. When the distance between two sensors is less
than R = 20m, data transmission is allowed. The final network topology is shown in
Fig. 6 [15].

The unknown parameter wo is set to a 4 × 1 random vector, the measurement
noise vk,i is randomly selected between (0.1, 0.2), and the regression vector is set to
a 0−mean Gaussian vector with Ru,k = I2, and the step size μ is chosen to be 0.02.

Figure 7 shows the learning curve for correction-based DLMS algorithm when the
gain factor is taken λ = 0, λ = 0.2, λ = 0.4, and λ = 0.6, and λ = 0.8, respectively.

Figure 8 shows the learning curve for correction-based DLMS algorithm when the
gain factor is taken λ = 0.8, λ = 0.85, λ = 0.9, λ = 0.95, and λ = 0.98, respectively.

It is obvious that theoretical value of the MSDwith a gain factor of 0.8 outperforms
the theoretical MSD with other gain values.

Simulation results suggest that our proposed algorithm performs better than the
least mean-square algorithm when the gain factor is chosen to be appropriate.
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Fig. 6 Network topology
consisting of 12 nodes
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Fig. 7 The learning curve for correction-based DLMS algorithm when the gain factor is taken λ = 0,
λ = 0.2, λ = 0.4, λ = 0.6, and λ = 0.8, respectively

6 Conclusion

In this paper, we proposed a correction-based diffusion least mean-square algorithm.
Then, we analyzed the stability and mean-square error performance of the algorithm
and derived sufficient conditions to ensure the convergence of the algorithm.

1. The correction-based diffusion leastmean-square algorithm proposed outperforms
the original diffusionLMS, andbetter performance canbeobtained if the correction
factor is properly selected.
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Fig. 8 The learning curve for correction-based DLMS algorithm when the gain factor is taken λ = 0.8,
λ = 0.85, λ = 0.9, λ = 0.95, and λ = 0.98, respectively

2. In the traditional LMS algorithm, the convergence of the algorithm is only related
to the step size. However, the convergence of the proposed algorithm is affected
not only by the step size but also by the gain factor.

Finally, we expect our proposed algorithm to be applied to other situations, such
as cyber attacks, equality constraints, and so on. Next, we will study the algorithm in
the case of cyber attacks.
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