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Abstract
Robust principal component analysis (RPCA) has recently seen ubiquitous activity for
dimensionality reduction in image processing, visualization and pattern recognition.
Conventional RPCAmethodsmodel the low-rank component as regularizing each sin-
gular value equally. However, in numerous modern applications, each singular value
has different physicalmeaning and should be treated differently. This is one of themain
reasons why RPCA techniques cannot work well in dealing with many realistic prob-
lems. To solve this problem, a novel hierarchical Bayesian RPCAmodel with adaptive
singular value penalty is proposed. This model enforces the low-rank constraint by
introducing an adaptive penalty function on the singular values of the low-rank compo-
nent. In particular, we impose a hierarchical Exponent-Gamma prior on the singular
values of the low-rank component and the Beta-Bernoulli prior on sparsity indica-
tors. The variational Bayesian framework and the Markov chain Monte Carlo-based
Bayesian inference are considered for inferring the posteriors of all latent variables
involved in low-rank and sparse components. Numerical experiments demonstrate the
competitive performance of the proposed model on synthetic and real data.
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1 Introduction

Robust principal component analysis (RPCA) has been a common tool instead of prin-
cipal component analysis (PCA) [12,16,23,30,34,35,40] for dimensionality reduction
in numerous modern applications such as face modeling [21,39], video surveillance
[18], subspace clustering [25]. This ismotivated by the theoretical advances for extract-
ing low-dimensional information from the observed high-dimensional data matrix and
addressing the fragility of PCA with respect to outlier sparse noise [1,5,11]. Essen-
tially, RPCA incorporates low-rank and sparse constraints on the observed matrix and
searches the best low-rank approximation of the observed data.

A typical RPCA assumes that the observed matrix Y ∈ R
m×n can be decomposed

into a low-rank component L ∈ R
m×n (with the rank r << min{m, n}) and a sparse

component S ∈ R
m×n (corresponding to the sparse outliers). The objective is to

recover the low-rank component L and the sparse component S. A standard approach
is to find L and S from Y by solving

min
L,S

rank(L) + ν‖S‖0, s.t. Y = L + S, (1)

where ν is a tuning parameter and ‖S‖0 is the number of nonzero entries in S. Unfor-
tunately, (1) is a non-deterministic polynomial (NP)-hard problem. To overcome this
problem, several methods based on the nuclear norm and �1-norm minimization have
been proposed, which relaxed the rank function into the nuclear norm and replaced the
�0-norm with the �1-norm. Subsequently, one has the following convex optimization
problem

min
L,S

‖L‖∗ + ν‖S‖1, s.t. Y = L + S, (2)

where ‖L‖∗ is the nuclear norm (the sum of singular values) of L , and ‖S‖1 is the
�1-norm (the sum of absolute values of the entries) of S. Candès et al. [5] showed that
L and S can be exactly recovered from Y with high probability under broad condition
by solving the optimization problem (2).

Many effective methods [1,4,11,13–15,24,29,38] have been presented to solve the
optimization problem (2). On the one hand, heuristic deterministic approaches includ-
ing singular value thresholding (SVT) [4], accelerated proximal gradient algorithm
(APG) [38] and augmented Lagrange multiplier (ALM) [24] have been developed.
On the other hand, there has been a significant interest in Bayesian approaches. For
example, Gao [13] and Luttinen et al. [29] proposed the probabilistic RPCA mod-
els by introducing the heavy-tail random noise component. Ding et al. [11] modeled
the entries of sparse component S and the singular values of low-rank component L
with Beta-Bernoulli prior and proposed using Markov chain Monte Carlo (MCMC)
method to approximate inference. Babacan et al. [1] presented the sparse Bayesian
learning (SBL) principles for solving probabilistic RPCA models, which started from
a matrix factorization formulation and enforced the low-rank constraint in estimating
the sparse component. In real scenarios, noises commonly appear in themeasurements.
The deterministic models cannot deal with the noises well since the convergence of the
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solution and its stability are influenced by the noises [36,37]. In contrary, the proba-
bilistic models can deal with noises well. For example, in [7,43], complex noises were
added in probabilistic RPCA models to improve their recovery performances in real
scenarios. By exploiting structural dependencies between the values and locations of
the sparse component, Han et al. [19] proposed Bayesian RPCA with the structured
sparse component. Overall, these probabilistic RPCA models offer three main advan-
tages over the deterministic methods. Firstly, it is not necessary to know the prior
knowledge about the rank of the low-rank component and the way to estimate the
unknown rank is similar to the automatic relevance determination strategy. Secondly,
algorithmic parameters are insensitive to the initialization of parameters since they are
treated as stochastic quantities in the Bayesian framework. Thirdly, the probabilistic
RPCA models allow us to exploit and explain complex noise structure in observation
matrixY , which are robust to a broad of noises and provide high recovery performance.

However, the present probabilistic RPCA models obviously impose the low-
rank constraint on each singular value of the low-rank component L equally and
ignore the physical meaning, i.e., the prior knowledge, on these singular values [1,9–
11,19,26,27,42]. In numerous modern applications, the weight distributions of each
singular value of the low-rank component L are not truly uniformly distributions, and
should be treated differently so that the information contained in the small singular
values covered by that of the big singular values can be recovered well. There have
been nonconvex low-rank constraints used in some deterministic RPCA models. For
example, Hu et al. [22] proposed the truncated nuclear norm regularization (TNNR)
by minimizing the sum of the largest few singular values; Lu et al. [28] proposed to
minimize the rank using a family of nonconvex surrogates of �0-norm on the singular
values. By now, however, these works do not extend to the probabilistic RPCAmodels.

Motivated by the trajectory of deterministic methods in addressing the afore-
mentioned problem, in this paper, we present a novel hierarchical Bayesian RPCA
model with adaptive singular value penalty for decomposing the observed matrix
into low-rank and sparse components. To boost the performance of recovering low-
rank component of RPCA model, we enforce the low-rank constraint by introducing
an adaptive penalty function on the singular values of the low-rank component. In
particular, we impose a hierarchical Exponent-Gamma prior on the singular values
of the low-rank component and the Beta-Bernoulli prior on sparsity indicators. The
exponential prior for low-rank matrix recovery has been widely used and researched,
and the Gamma prior penalizes the singular values (see Sect. 2 for details); thus,
an Exponent-Gamma framework is employed on the singular values of the low-rank
component, which provides more flexibility-weighted structures for the learning of
the low-rank component. The zero elements in singular values of low-rank compo-
nent are further guaranteed to be exactly zero by introducing the binary latent factor
indicators [19]. The variational Bayesian framework and the Markov chain Monte
Carlo (MCMC)-based Bayesian inference are considered for inferring the posteriors
of all latent variables involved in low-rank and sparse components. Besides, different
initial values of the input parameters may affect the outcome. The optimal parameters
should be selected carefully [32]. We discussed the possible initial conditions that
provided satisfactory results.
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The rest of this paper is organized as follows. Section 2 presents the motivations.
The proposed Bayesian robust principal component analysis model with the adaptive
penalty on the singular values (APSV-BRPCA) is proposed in Sect. 3. A variational
Bayesian inference algorithm is employed to estimate the posterior distributions in
Sect. 4. We present an analysis of the APSV-BRPCA approach in Sect. 5. Experi-
ments including synthetic and real data are shown in Sect. 6. Finally, Sect. 7 gives the
conclusion.

2 Motivations

The Bayesian model presented in this paper is closely related to some deterministic
models. In this section, we provide insights into understanding the low-rank Bayesian
model with the adaptive penalty on singular values.

In sparse Bayesian learning, the penalty function (i.e., the log-likelihood of the
singular value vector λ) is assumed to be an exponential prior

f (λ) = − ln p(λ) = constant + γ ‖X‖∗, (3)

where p(λ) = ∏r
i=1 γ exp(−γ λi ), r is the rank of X and f (λ) is penalty function.

This penalty function is equal to the nuclear norm of matrix x

min
x∈Rn

‖x‖∗, s.t. y = Ψ x, (4)

where ‖x‖∗ = |λ|1 = ∑r
i=1 λi , λ = [λ1, . . . , λr ] is the singular value vector of x .

To improve the �1-minimization problem for compressive sensing, the reweighted
�1 minimization [6] is given by

min
x∈Rn

∑

i

wi |xi |, s.t. y = Ψ x, (5)

where wi is positive weight.
Meanwhile, the prior model (3) corresponding to the traditional nuclear norm can

be further elaborated by introducing the hierarchical Exponent-Gamma prior

p(λ|γ ) =
r∏

i=1

γi exp(−γiλi ),

p(γi ) = Gamma(γi |a, b),

(6)

whereλi represents the i th singular value andγ = [γ1, . . . , γr ] is aweightedparameter
vector of the singular values. Here, the penalty function as calculated in model (3) is
given by

f (λ) = − ln p(λ|γ ) = constant +
r∑

i=1

γiλi . (7)
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Consequently, model (7) is actually related to the reweighted �1-norm (5),
which means the new hierarchical prior (6) adaptively imposes weights on differ-

ent singular values so that it potentially improves the flexibility of sparse Bayesian
learning.

3 APSV-BRPCAModel

The Bayesian model treats its parameters as stochastic quantities and uses the hier-
archical Bayesian framework for the factorized form of measurements to connect
stochastic parameters. Generally, the observed data matrix Y ∈ R

m×n is assumed to
be the superposition of three parts: the low-rank component L ∈ R

m×n , the sparse
component S ∈ R

m×n and the noise term N ∈ R
m×n , i.e., Y = L + S + N . Uti-

lizing singular value decomposition, any matrix L of rank r can be decomposed as
L = UΛV T , where U and V are m × r and n × r matrices, respectively, and diago-
nal matrix Λ = diag(λ1, . . . , λr ) ∈ R

r×r is consisted of nonzero singular values of
L . Then the proposed factorized form of measurements for the Bayesian frame is as
follows:

Y = U (DΛ)V T + B ◦ E + N , (8)

where ◦ denotes theHadamard product. The diagonalmatrix D and the sparse indicator
matrix B are binary matrices which are used for enforcing sparsity.

3.1 Hierarchical Low-RankModel

The low-rank component proposed in (8) is given by L = U (DΛ)V T . Our main goal
is to add the adaptive penalty on the singular values in Bayesian RPCA model. To
track this issue, as mentioned in Sect. 2, the hierarchical prior of Λ is drawn from an
Exponent-Gamma distribution

λk ∼ Exp(λk |γk),
γk ∼ Gamma(a0, b0),

k = 1, . . . , r ,

where Exp(λk |γk) = γkexp(−γkλk).
The diagonal matrix D = diag(d1, . . . , dr ) has binary entries along the diagonal,

i.e., dk ∈ {0, 1}, k = 1, . . . , r . Then DΛ is still a diagonal matrix. In the Bayesian
model, diagonal matrix D decouples the rank learning and the singular value learning
[11]. We can infer the magnitudes of the singular values using Λ and the rank of
L by r = ||D||0. An appropriate choice for modeling D is based on a product of
Bernoulli-Beta prior distribution

dk ∼ Bernoulli(dk |πk),

πk ∼ Beta(πk |θ0, η0), k = 1, . . . , r . (9)
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Note that the sparse of diagonal elements of D is controlled by the hyperparameters
θ0 > 0 and η0 > 0. Specifically, the expectation of πk is θ0

θ0+η0
, thus one can set

θ0
θ0+η0

� 1 (e.g., θ0 = min{ 1r , 1
150 }, η0 = 1− θ0) to encourage the sparse of diagonal

elements of D.
The columns of matricesU = [u·i ] and rows of V = [v j ·] are assumed to be drawn

from Gaussian distributions

u·i ∼ N (u·i |0, 1

m
Im), i = 1, . . . , r ,

v j · ∼ N (v j ·|0, Ir ), j = 1, . . . , n.

(10)

3.2 Sparse Model

The sparse component proposed in (8) is given by S = B ◦ E , where B is a binary
matrix. Again, the binary matrix is used for enhancing the recovery of the sparse
component, such that the Bayesian model can keep the sparse nature of E . Each
column of the binary matrix B = [b· j ] is modeled as follows:

b· j ∼
m∏

i=1

Bernoilli(bi j |ωi ), j = 1, . . . , n,

ωi ∼ Beta(ωi |α0, β0), i = 1, . . . ,m,

(11)

where α0 = min{ 1n , 1
150 }, β0 = 1 − α0.

The element ei j in E follows a Gaussian-Gamma distribution

ei · ∼ N (ei ·|0, ø−1 In), i = 1, . . . ,m,

ø ∼ Gamma(τ |c0, d0).
(12)

If necessary, one can learn different noise precisions for different parts of E . But it
will result in overfitting because of limited observations and too many parameters. To
avoid the overfitting, we use one precision τ to model the element ei j .

3.3 Noisy ObservationModel

One advantage of probability RPCA is the robustness for the additive interference.
The elements ni j in N are assumed drawn from a Gaussian distribution as follows:

ni j ∼ N (ni j |0, β−1), i = 1, . . . ,m, j = 1, . . . , n,

β ∼ Gamma(β|e0, f0).
(13)

The noise precision is assumed unknown and learnt within the model inference. As
discussed above, to avoid the overfitting and improve the adaptivity, the same precision
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Fig. 1 APSV-BRPCA model

parameter β is imposed on the noise ni j . The common choice in sparse Bayesian
learning such as [8,19,41] has shown that it can reduce model complexity and increase
robustness.
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Given the prior defined as above mentioned, the conditional distribution for the
observation model is as follows:

p(Y |U , D,Λ, V , B, E) = N (Y |U (DΛ)V T + B ◦ E, β−1 Imn). (14)

To facilitate the illustration of the proposedBayesianmodel, Fig. 1 shows the complete
graphical model.

4 Variational Bayesian Inference

Bayesian inference is evaluating the posterior distributions of unknowns given the
observation. However, the posterior distribution is computationally intractable since
the marginal distribution p(Y ) is not calculated analytically. In this paper, to deal with
the tractable joint posterior distributionproblem, the approximate posterior distribution
factorized with respect to the partition q(Θ) = ∏

k
qk(Θk) = qk is considered, and

the variational Bayesian method [3] is used to obtain the Bayesian inference of q(Θ).
In particular, the variational Bayesian method estimates the posterior distribution of
each unknown parameter by holding the other parameters fixed [3].

The objective of the variational Bayesian method is to select the parameters to
minimize the Kullback–Leibler (KL) divergence between q(Θ) and the true posterior
distribution p(Θ|Y ), i.e.,

min
q(Θ)

K L(q(Θ)‖p(Θ)) =
∫

q(Θ) ln
q(Θ)

p(Θ|Y )
dΘ,

whereΘ={U , D,Λ, V , π, λ, γ, B, E, ω, τ, β} denotes the set contained all parameter
variables. It is equivalent to the following problem

max
q(Θ)

−K L(q(Θ)‖p(Θ)) =
∫

q(Θ) ln
p(Θ,Y )

q(Θ)p(Y )
dΘ.

Since K L(q(Θ)‖p(Θ)) ≥ 0 and
∫
q(Θ)dΘ = 1, the key procedure is to estimate

the marginal likelihood p(Y ) with a maximal lower bound, i.e.,

ln p(Y ) ≥ L (θ) =
∫

q(Θ) ln
p(Θ,Y )

q(Θ)
dΘ.
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The problem is developed to maximize the lower bound L (θ).

L (θ) =
∫ ∏

k

qk[ln p(Θ,Y ) −
∑

k

ln qk]dΘ

=
∫ ∏

k

qk ln p(Θ,Y )
∏

k

dΘk −
∑

k

∫ ∏

j

q j ln qk
∏

j

dΘ j

=
∫

qk[ln p(Θ,Y )
∏

j 	=k

(q jdΘ j )]dΘk −
∑

k

∫

qk ln qkdΘk

=
∫

qk[ln p(Θ,Y )
∏

j 	=k

(q jdΘ j )]dΘk −
∫

qk ln qkdΘk −
∑

j 	=k

∫

q j ln q jdΘ j

=
∫

qk ln p(Θk,Y )dΘk −
∫

qk ln qkdΘk −
∑

j 	=k

∫

q j ln q jdΘ j

= −K L(qk‖p) −
∑

j 	=k

∫

q j ln q jdΘ j ,

(15)

where ln p(Θk,Y ) = EΘ\Θk [ln p(Θ,Y )] = ∫
ln p(Θ,Y )

∏

j 	=k
(q jdΘ j ) and

∫
q jdΘ j

= 1 ( j = 1, · · · ). The expectation EΘ\Θk is taken about the set Θ with Θk removed.
Clearly, the bound in (15) is maximized when qk(Θk) = p(Θk, y). In this case, the
KL divergence is equal to zero. Consequently, the optimal posterior estimation qk(Θk)

with other variables fixed is as follows:

ln qk(Θk) = EΘ\Θk [ln p(Y ,Θ)] + C, (16)

where C is a constant. In the next subsection, we calculate each parameter in its
turn holding other parameters fixed with respect to their most recent distributions and
separately show the update rules for each parameter. For notational simplicity, the
expectation of the approximate posterior q(·) is denoted by 〈·〉.

4.1 Estimation of Low-Rank Component

The parameters involved in the low-rank component are U , D, Λ, V , d, π , λ, γ .
Invoking the prior model (10), the observed model (14), one can obtain the posterior
distribution of the row ui · of U ,

q(ui ·) = N (ui · | μui · ,Σ
U ), (17)

with mean and covariance

ΣU = (〈β〉〈DΛV T VΛT DT 〉 + mIr )
−1,

μT
ui · = 〈β〉ΣU 〈VΛT DT 〉T (yi · − 〈bi ·〉 ◦ 〈ei ·〉)T .
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Similarly, for each row of V (i.e., v j ·), we get

q(v j ·) = N (v j · | μvi · ,Σ
V ), (18)

where

ΣV = (〈β〉〈DTΛTUTUDΛ〉 + Ir )
−1 ,

μT
v j · = 〈β〉ΣV 〈UΛD〉T (y· j − 〈b· j 〉 ◦ 〈e· j 〉).

The required expectations in (17) and (18) can be calculated as follows:

〈DΛV T VΛT DT 〉 = 〈dT d〉 ◦ 〈λT λ〉 ◦ 〈V T V 〉,
〈DTΛTUTUDΛ〉 = 〈dT d〉 ◦ 〈λT λ〉 ◦ 〈UTU 〉,
〈UTU 〉 = mΣU + 〈UT 〉〈U 〉,
〈V T V 〉 = nΣV + 〈V T 〉〈V 〉,
〈dT d〉 = Σd + 〈dT 〉〈d〉,
〈λT λ〉 = Σλ + 〈λT 〉〈λ〉,

where d =diag(D) and λ= diag(Λ) are row vectors, Σd= diag(Var(dk)) and
Σλ =diag(Var(λk)) are diagonal matrices.

The posterior approximation of D is a Bernoulli distribution

q(dk) = Bernoulli

(
ξdk

ξdk + ζ dk

)

, (19)

where

ξdk = exp{〈ln πk〉 − 〈β〉
2

∑

i j

[〈u2ikv2jkλ2k〉 − 2(yi j − 〈bi j 〉〈ei j 〉)〈λkuikv jk〉

+ 2〈u−k
i · D−kΛ−k(v−k

j · )T λkuikv jk〉]},
ζ dk = exp{〈ln(1 − πk)〉},

a−k means that the kth coordinate of a is deleted,

〈dk〉 = ξdk

ξdk + ζ dk
,

〈u2ikv2jkλ2k〉 = 〈u2ik〉〈v2jk〉〈λ2k〉,
〈u−k

i · D−kΛ−k(v−k
j · )T λkuikv jk〉 = {〈uTi ·ui ·〉 ◦ 〈λT λ〉 ◦ 〈vTj ·v j ·〉}T·k〈dk〉,

〈dk〉 = (〈d1〉, . . . , 0, . . . , 〈dr 〉),
〈uTi ·ui ·〉 = ΣU + 〈uTi · 〉〈ui ·〉,
〈vTj ·v j ·〉 = ΣV + 〈vTj ·〉〈v j ·〉.
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According to the prior model (9), one can find q(πk) follows a Beta distribution,

q(πk) = Beta(πk | 〈dk〉 + θ0, 1 − 〈dk〉 + η0). (20)

Then we have

〈ln πk〉 = ψ(〈dk〉 + θ0) − ψ(θ0 + η0 + 1),

〈ln(1 − πk)〉 = ψ(1 − 〈dk〉 + η0) − ψ(θ0 + η0 + 1),

where ψ(x) = d ln�(x)
dx is a digamma function.

The variational posterior of λk is a truncated Gaussian distribution

q(λk) = N (λk | μλk , σ
2
λk

)

1 − Φ(ε)
I{λk>0}, ε = −μλk

σλk

, (21)

where

σ 2
λk

= (〈β〉
∑

i j

〈u2ikv2jkd2k 〉)−1,

μλk = σ 2
λk

⎧
⎨

⎩

∑

i j

[(yi j − 〈bi j 〉〈ei j 〉)〈uikdkv jk〉

−〈λ−kU−k
i D−k(v−k

j · )T uikdkv jk〉]〈β〉 − 〈γk〉
⎫
⎬

⎭
,

Ui = diag(ui ·) is a diagonal matrix, φ(x) = N (x | 0, 1), Φ(x) is a standard Gaussian
distribution function. Then we can get

〈λk〉 = μλk + σλk

φ(ε)

1 − Φ(ε)
,

Var(λk) = σ 2
λk

[1 + ε
φ(ε)

1 − Φ(ε)
− (

φ(ε)

1 − Φ(ε)
)2],

〈λ−kU−k
i D−k(v−k

j · )T dkuikv jk〉 = {〈uTi ·ui ·〉 ◦ 〈dT d〉 ◦ 〈vTj ·v j ·〉}T·k〈λk〉,
〈λk〉 = (〈λ1〉, . . . , 0, . . . , 〈λr 〉).

Similarly, the posterior approximation of γ can be derived as follows:

q(γk) = Gamma(γk | a0 + 1, b0 + 〈λk〉). (22)

Then we have

〈γk〉 = a0 + 1

b0 + 〈λk〉 .
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4.2 Estimation of Sparse Component

The parameters involved in the sparse component are E , B, ω, τ . With the Bernoulli
(11) and the Gaussian observation likelihood (14), bi j follows a Bernoulli distribution,

q(bi j ) = Bernoulli

(
ξbi j

ξbi j + ζ bi j

)

, (23)

where

ξbi j = exp{〈lnωi 〉 − 〈β〉
2

(〈e2i j 〉 − 2〈ei j 〉(yi j − 〈ui ·DΛvTj ·〉))},
ζ bi j = exp{〈ln(1 − ωi )〉}.

Similarly, the approximate posterior of each column e· j is as follows:

q(e· j ) = N (e· j | μe· j ,Σe· j ), (24)

where

Σe· j = (〈τ 〉Im + 〈β〉〈Bj 〉)−1,

μe· j = 〈β〉Σe· j 〈Bj 〉T (y· j − 〈UDΛvT· j 〉),

where Bi = diag(〈b· j 〉) is a diagonal matrix.
The posterior approximation of ωi is a Beta distribution

q(ωi ) = Beta(ωi | α0 +
n∑

j=1

〈bi j 〉, β0 + n −
n∑

j=1

〈bi j 〉), i = 1, 2, . . . ,m,

〈lnωi 〉 = ψ(α0 +
n∑

j=1

〈bi j 〉) − ψ(α0 + β0 + n),

〈ln(1 − ωi )〉 = ψ(β0 + n −
n∑

j=1

〈bi j 〉) − ψ(α0 + β0 + n). (25)

The variational posterior of τ is as follows:

q(τ ) = Gamma(τ | c0 + 0.5mn, d0 + 0.5
n∑

j=1

〈eT· j e· j 〉),

〈τ 〉 = c0 + 0.5mn

d0 + 0.5
∑n

j=1〈eT· j e· j 〉
, 〈eT· j e· j 〉 = tr(Σe· j ) + 〈e· j 〉T 〈e· j 〉. (26)
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4.3 Estimation of Noise Precision

Finally, the variational distribution of β is a Gamma distribution,

q(β) = Gamma(β | e0 + 0.5mn, f0 + 0.5〈‖Y −UDΛV T − B ◦ E‖2F 〉),
〈β〉 = e0 + 0.5mn

f0 + 0.5〈‖Y −UDΛV T − B ◦ E‖2F 〉 , (27)

where

〈‖Y −UDΛV T − B ◦ E‖2F 〉 =‖Y − 〈U 〉〈D〉〈Λ〉〈V T 〉 − 〈B〉 ◦ 〈E〉‖2F
+ tr(〈UTU 〉〈DΛV T VΛT DT 〉)
− tr(〈UT 〉〈U 〉〈DΛV T 〉〈VΛT DT 〉)
+ |〈B ◦ B〉 ◦ 〈E ◦ E〉|1

− tr((〈B〉 ◦ 〈E〉)T (〈B〉 ◦ 〈E〉)),

〈B ◦ B〉 = Σ B + 〈B〉 ◦ 〈B〉, Σ B = (Var(bi j )), 〈E ◦ E〉 = Σ E + 〈E〉 ◦ 〈E〉, and
Σ E = (diag(Σe· j )).

In summary, the VB procedure approximates the posterior distributions of the
unknowns iteratively and the whole algorithm is outlined in Algorithm 1.

Algorithm 1 VB for APSV-BRPCA
Input: The measurement Y, parameters a0, b0, c0, d0,
e0, f0, θ0, η0, α0, β0, initialmatricesU , D,Λ, V , B, E
Output: The low-rank component L and the sparse
component S

1: while not converged do.
2: Update U using (17).
3: Update V using (18).
4: Update D using (19).
5: Update Λ using (21).
5: Update B using (23).
6: Update E using (24).
7: Update N using (27).
8: end while.
9: Set L = U (DΛ)V T , S = B ◦ E .

5 Discussion andMCMC-Based Bayesian Inference

5.1 The Connection Between APSV-BRPCA and Deterministic Approach

There exists a connection between the proposed APSV-BRPCA and WNNM-RPCA
[6,11,17]. To see the connection clearly, we show the negative logarithm of the full
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posterior density function of the proposed APSV-BRPCA model as follows:

− log p(Θ|Y ,H )

=‖ Λ ‖ω,∗ − log[gBB(D;H )] + m

2

R∑

j=1

‖u·, j‖22 + 1

2

n∑

i=1

‖vi,·‖22 + τ

2
‖E‖2F

− log[gBB(B;H )] + β

2
‖Y − L − S‖2F

− log[Gamma(γ |H )Gamma(τ |H )Gamma(β|H )] + C, (28)

whereC denotes a constant,Θ is the set of allmodel parameters, gBB(·|H ) is theBeta-
Bernoulli prior in (9) or (11), andH represents the set of all model hyperparameters.

For the low-rank component, rather than employing a constraint on Frobenius
matrix norm to impose the sparseness of the singular values by using a Gaussian
prior, we employ an Exponent-Gamma prior to obtain a constraint on weight nuclear
norm, together with a Beta-Bernoulli distribution to encourage the sparseness of the
singular values (like [11]). Note that for the low-rank component, an exponent prior is
imposed on the singular values so that a big weight for a small nonzero singular value
is desired. The main difference between the proposed APSV-BRPCA model and the
WNNM-RPCA model is that we use numerical methods to estimate the distribution
of unknown parameters, while one effectively seeks a single solution to minimize a
function in WNNM-RPCA.

5.2 Convergence Analysis

The convergence of the proposed algorithm can be transformed into the convergence
of the variational Bayesian method because the proposed algorithm is derived based
on the variational Bayesianmethod. The expression (16) of the optimal solution q(Θk)

depends on the expectation of other factors q(Θ j ) for j 	= k. To obtain the maximum
value of the lower bound (15), all the factors need to be circulated. One needs to
initialize all the factors q(Θ j ) for conducting the variational inference. Then, using
the current solution of all other factors, we can estimate each factor in turn with the
updated value obtained in (16). Since the bound is convex for each of the factors
q(Θ j ), convergence is guaranteed [2,20].

5.3 MCMC-Based Bayesian Inference

The posterior density function can also be approximated using Gibbs sampler. In the
Gibbs sampler, the Markov chain Monte Carlo (MCMC) analysis is implemented and
the posterior distributions of model parameters are approximated by samples drawing
from the corresponding conditional posterior distributions, respectively. The MCMC-
based Bayesian inference method is summarized in Algorithm 2, where ys represents
the sth column in Y and (a|−) represents random variable a given all the other ran-



4124 Circuits, Systems, and Signal Processing (2020) 39:4110–4135

dom variables in the model, N (μ,Σ)+ represents a truncation normal distribution
from 0.

Algorithm 2 MCMC-based Bayesian Inference for APSV-BRPCA
Input: The measurement Y, randomly initialize parameters Θ =
{a0, b0, c0, d0, e0, f0, θ0, η0, α0, β0,U , D, Λ, V , B, E}
Output: {Θ(i)}i=Nburn−in+1:Nburn−in+Ncollect }
for i ter = 1 to Nburn−in + Ncollect do

% low-rank component
for s = 1 to R do

ỹ−s
j ← y j −U (DΛ)vTj · + dssλssv jsu·s − b· j ◦ e· j for j = 1, . . . , n

(u·s |−) ∼ N (μ, Σ),Σ = (β
∑n

j=1 λ2ssd
2
ssv

2
js + mIm )−1, μ = βΣ

∑n
j=1 λssdssv js ỹ

−s
j

(dss |−) ∼ Bernoulli( q1
q0+q1

), q0 = 1 − ps , q1 =
ps exp (− β

2
∑n

j=1(λ
2
ssv

2
jsu

T·su·s − 2λssv jsuT·s ỹ−s
j ))

(λss |−) ∼ N (μ, Σ)+,Σ = (β
∑n

j=1 d
2
ssv

2
jsu

T·su·s )−1, μ = Σ(β
∑n

j=1 dssv jsuT·s ỹ−s
j − γs )

(v js |−) ∼ N (μ, Σ), Σ = (βλ2ssd
2
ssu

T·su·s + 1)−1, μ = βΣλssdssuT·s ỹ−s
j for j = 1, . . . , n

(ps |−) ∼ Beta(θ0 + dkk , η0 + 1 − dkk )
(γs |−) ∼ Gamma(a0 + 1, b0 + λkk )

end for
% sparse component
ỹ j ← y j −U (DΛ)vTj · for j = 1, . . . , n

(bi j |−) ∼ Berboulli( q1
q1+q0

), q1 = ωi exp (− β
2 (e2i j − 2ei j ỹi j )), q0 = 1−ωi for i = 1, . . . ,m, j =

1, . . . , n
(ei j |−) ∼ N (μ, Σ), Σ = (τ + βb2i j )

−1, μ = βΣbi j ỹi j for i = 1, . . . ,m, j = 1, . . . , n

(ωi |−) ∼ Beta(α0 + ∑n
j=1 bi j , β0 + n − ∑n

j=1 bi j ) for i = 1, . . . ,m

(τ |−) ∼ Gamma(c0 + 0.5mn, d0 + 0.5
∑n

j=1 e
T· j e· j )

% noise component
(β|−) ∼ Gamma(e0 + 0.5mn, f0 + 0.5‖Y −UDΛV T − B ◦ E‖2F )

% collecting samples
if i ter => Nburn−in then

Θ i ter−Nburn−in ← Θ

end if
end for

5.4 Computational Complexity

In each iteration of theVB inference, thematrix inversion is required and leads tomuch
computational cost. More specifically, to obtain the approximate posterior of each col-
umn e· j , one needs to calculate the inverses of n m-order matrices. The computational
complexity is nO(m3) in each iteration. In addition to the above computational cost,
the rest posterior parameters can be rapidly computed. For theMCMC-based Bayesian
inference, the computational complexity of each sampling is approximately the same
as the VB method.
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6 Experiments

In this section, we illustrate the recovery accuracy and efficiency of the proposed
APSV-BRPCA algorithm compared with four state-of-the-art methods: augmented
Lagrangemultipliermethod (ALM) [24],weight nuclear normminimization forRPCA
(WNNM-RPCA) [17], Bayesian robust principal component analysis (BRPCA) [11],
and sparse Bayesian methods for low-rank matrix estimation (VBRPCA) [1]. All
experiments are implemented in Matlab R2014b on a PC with 4.0GHz CPU and
31.4GB RAM.

6.1 Parameter Setting

In our experiments, very small values (e.g., 10−6) are assigned to the parameters
c0, d0, e0, f0, θ0, η0, α0, β0, respectively. Such strategies can lead to broad hyperpri-
ors. Next, we illustrate the choice of tuning parameters a0 and b0. In [17], an effective
reweighted strategy is proposed to assign weights on different singular values by the
following formula

ωl
k = C

σk(Ll) + ε
, (29)

where σk(Ll) is the kth singular value in the lth iteration and ωl
k is the correspond-

ing regularization parameter in the lth iteration, C is chosen as the square root of
matrix size, i.e., C = √

mn and ε is a small positive number to make the inequal-
ity ε < min(

√
C, C

σ1(Y )
) hold. Comparing (29) with the expectation of the posterior

of weight γk in (22), we can see that the tuning parameters a0 and b0 correspond
to the parameters C and ε, respectively. Hence, we let a0 ∈ (0,

√
mn] and let

b0 ∈ (0,min(
√
C, C

σ1(Y )
)]. We randomly generate a synthetic matrix of size 300×300

with rank rank(L). The low-rank component of the synthetic matrix consists of a
product of two matrices generated from a standard Gaussian distribution. The sparse
component consists of nonzero entries drawn uniformly in the range [−100, 100] and
located uniformly at random.We use notations ρr = rank(L)/N and ρs = ‖S‖0/N 2,
where N = 300andρr , ρs ∈ {0.05, 0.15, 0.25, 0.3} represent the rank and the sparsity,
respectively. The noiseless case and the noisy case with σ 2 = 10−3 are considered.
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Fig. 2 The noiseless case: reconstruction errors of low-rank ‖L− L̂‖F/‖L‖F for varying ranks and sparsity
computed by APSV-BRPCA

The experimental results with a0 ∈ (0, 40] and b0 ∈ (0, 7] are shown in Figs. 2 and
3. It can be seen that the preferable parameter b0 can be obtained in the range [4, 7],
and the parameter a0 can be chosen in the range [1, 40]. The experiments of synthetic
matrices of sizes 100 × 100, 500 × 500 and 1000 × 1000 show the same results.
Meanwhile, the experiment results demonstrate that the tuning parameters a0 and b0
are robust for different ranks, sparsity and noise levels. Without loss of generality, we
set the tuning parameters a0 = 10 and b0 = 4 in all experiments.

6.2 Synthetic Experiments

In synthetic experiments, we randomly generate two low-rank square matrices with
sizes 200 × 200, 500 × 500 and ranks 5, 20, respectively. Each of these matrices is
generated by the product of twomatrices which obey a standard Gaussian distribution.
The magnitudes of nonzero entries in S are drawn uniformly in the range [−100, 100].
The sparsity levels ρ of different sparse matrices with sizes 200 × 200, 500 × 500
are 0.05 and 0.08, respectively. We introduce the following metrics to evaluate the
recovery performance: the reconstruction errors of low-rank and sparse components,
rank(X̂), ||Ŝ||0 (the number of nonzero elements). For synthetic matrices with sizes
200× 200, the noiseless case and the noisy case with σ 2 = 10−2 are considered. The
noise with variance σ 2 = 10−3 is added to synthetic matrices with size 500 × 500.
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Fig. 3 The noise case: reconstruction errors of low-rank ‖L − L̂‖F/‖L‖F for varying ranks and sparsity
computed by APSV-BRPCA

Experimental results are shown in Table 1. To avoid the random disturbance of
Gaussian noise, the experiment results are calculated by averaging the results of 100
independent trials. From Table 1, it can be seen that WNNM-RPCA achieves minimal
error among all algorithms in the noiseless case. However, its performance is not
robust for noise and corrupted as the noise level increases. The Bayesian algorithms
achieve greater robustness than deterministic approaches. The reason may be that the
Bayesian approaches regard the noise as a random variable. In addition, the proposed
APSV-BRPCA algorithm has the best performance compared with other algorithms
in the noisy case.

We demonstrate the ability of APSV-BRPCA by varying ranks, sparsity and
noise levels. In this experiment, synthetic matrices with size 100 × 100 are gen-
erated. For each triple tuple (ρr , ρs, σ

2), σ 2 ∈ {0, 10−4, 10−3, 10−2}, ρr , and
ρs ∈ {0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4} represent the noise variance, the rank
and the sparsity, respectively. We conduct ten random experiments. The following
criterion proposed in [11] is employed to measure the successful reconstruction
of L , i.e., (‖L − L̂‖F/‖L‖F ) ≤ Th, where Th is a threshold depending on the
noise level. The noise standard deviations of different thresholds Th with magnitudes
10−4, 5 × 10−3, 10−2, 10−1 are σ 2 = 0, 10−4, 10−3 and 10−2, respectively.

Figure 4 depicts the fraction of successful recovery of different algorithms for each
triple tuple. The experimental results show that the proposedAPSV-BRPCA algorithm
has more comprehensive ability than other methods in terms of recovery accuracy and
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Fig. 4 Fraction of successful recovery for varying ranks, sparsity, and noise levels, computed by ALM,
WNNM-RPCA, VBRPCA, BRPCA and APSV-BRPCA. Given a tuple (ρr , ρs , σ

2), white represents that
all the 10 trials are successfully recovered, and black means no trials is successfully recovered

robustness. As shown in Fig. 5, the MMSE demonstrates the effectiveness of the
proposed algorithm.

6.3 Video Example

In this section, we investigate the application of background subtraction with dif-
ferent methods. The objective of background subtraction is to reconstruct the static
background and the moving foreground from the video sequence [11]. Background
subtraction can be considered as a binary segmentation of video sequences, in which
the video sequences consist of the invariant background and the time-varying fore-
ground. A video stream can be modeled as the combination of low-rank and sparse
components, since static backgrounds of different frames are the same, while moving
foregrounds are relatively sparse. If we stack the video frames as columns of a matrix,
the low-rank component represents the static background and the sparse component
corresponds to the moving foreground. Under this assumption, we can use RPCA to
reconstruct low-rank and sparse components from the video stream. A video surveil-
lance with slow-changing foreground is considered for examining the performance of
different algorithms.

The video sequence is sampled from a shopping center [11], which consists of 158
frames with resolution 144×192. We stack the video sequence as an observed matrix
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Fig. 5 MMSE for rank equals 0.05 where MMSE= mean( ||Ŷ−Y ||F||Y ||F ) and varying sparsity and noise levels,

computed by ALM, WNNM-RPCA, VBRPCA, BRPCA and APSV-BRPCA. Given a tuple (0.2, ρs , σ 2),
color point represents that mean of the 10 trials

of size 27648× 158. The noiseless case is shown in Fig. 6. It can be observed that the
proposed algorithm and BRPCA can effectively distinguish the slow foreground and
the static background and achieve better results than ALM and WNNM-RPCA. Fur-
thermore, theGaussian noisewithmean 0 and variance 25 is added to the observed data
and the result is shown in Fig. 7. It suggests that our approach gets satisfied results in
discovering the low-rank background and sparse foreground from the observed matrix
and shows that ALM algorithm, WNNM-RPCA algorithm and VBRPCA algorithm
are sensitive to noise.

To evaluate the reconstruction performance of different algorithms, we plot the
background standard deviation and error bars for the noiseless case and the noisy
case with σ 2 = 25 in Figs. 8 and 9, respectively. For each pixel, the background
standard deviation is defined as the standard deviation of the extracted background of
the video sequence, and the error bars are calculated as the standard deviation of the
original noiseless video sequence minus the summation of extracted background and
foreground. From Fig. 8, we observe that the error bars of the proposed algorithm and
BRPCA are similar; however, the extracted background via the proposed algorithm is
more robust. In Fig. 9, it can be seen that, for most inferred pixels, the proposed algo-
rithm presents more accurate entries of background standard deviation than BRPCA.
At the same time, we can also observe that the proposed algorithm achieves the lowest
error bars. It demonstrates the ability of our method in dealing with the real data.
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Fig. 6 Reconstruction of the background and the foreground. First row: original image; second row: recon-
struction of the low-rank component (background); bottom row: reconstruction of the sparse component
(foreground)
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Fig. 7 Reconstruction of the background and the foreground under noisy observation. The additive white
Gaussian noise has variance σ 2 = 25. First row: original image; second row: reconstruction of the low-rank
component (background); bottom row: reconstruction of the sparse component (foreground)
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Fig. 8 The noise-free case: background standard deviation (first row) and error bars (second row) of the
proposed APSV-BRPCA algorithm and BRPCA algorithm

7 Conclusion

In this paper, we propose a novel Bayesian RPCA model by introducing new penalty
strategies on the singular values of the low-rank component. The key ingredient of the
proposed method is the adaptive penalty on the singular values, which uses a more
realistic low-rank prior model that goes beyond the simple low-rank prior. Specif-
ically, in the proposed Bayesian RPCA model, an Exponent-Gamma framework is
employed, which adaptively imposes weights on different singular values so that it
potentially improves the flexibility of the exiting Bayesianmodels. The parameters can
be estimated by variational Bayesian inference andMCMC-based Bayesian inference.
Meanwhile, the proposed model is closely related to the deterministic models, such
as the reweighted �1 minimization. We systematically compare the recovery perfor-
mance of different Bayesian and deterministic models to demonstrate the advantages
of the proposed model. In comparison with the numerical experiment results of these
models, we observe that the proposed Bayesianmodel hasmore comprehensive ability
than other methods in noise cases. Moreover, the real case shows that the proposed
Bayesian model achieves the lowest error bars and is more robust. These experimental
evaluations with simulated and real data demonstrate the superiority of the proposed
Bayesian model.

One main limitation of the proposed model in practical applications is that the
measurement noise is assumed to be Gaussian distribution. In the real cases, the noises
in measurements are complex and may copy with non-Gaussian distributions. In the
future research, we shall focus on the non-Gaussian noises. Besides, to achieve faster
convergence and better reconstruction performance, some optimal algorithms, such
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Fig. 9 The noise case where the additive white Gaussian noise has variance 25 and mean 0: background
standard deviation (first row) and error bars (second row) of the proposed APSV-BRPCA algorithm and
BRPCA algorithm

as [31] and [33], are going to be used to select the optimal values of the parameters in
the future research.
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