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Abstract
An identification method for fractional order models with time delay is presented. The
proposed method, based on the output error optimization, simultaneously estimates
model orders, coefficients and time delay from a single noisy step response. Analytical
expressions for logarithmic derivatives of the step input are derived to evaluate the
Jacobian and the Hessian required for the Newton’s algorithm for optimization. A
simplified initialization procedure is also outlined that assumes an integral initial order
and uses estimated coefficients as the initial guess. Simulation results are presented
to demonstrate the efficacy of the proposed approach. Convergence of the Newton’s
method and the Gauss–Newton scheme are also studied in simulation. Identification
results from noisy step response data for time delay models with different structures
are presented.

Keywords Step response · Fractional order · Parameter estimation · Time delay ·
Optimization

1 Introduction

Fractional ordermodel identification faces an additional challenge as it requires to esti-
mate themodel orders on a large space.Moreover, if there is a time delay, the parameter
estimation problem becomes further complicated due to the nonlinear appearance of
the delay term in the model equation. To overcome these issues, several approaches
have been adopted in the literature. Victor et al. [40] used a two-stage algorithm to
estimate the orders using an optimization approach and estimated the model coeffi-
cients by solving a least-squares equation. Narang et al. [25] used a similar approach
for time delay models. There are only a few methods for simultaneous estimation
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of all parameters of fractional order models [36]. However, these methods are not
applicable for the step input, although the characteristics of step responses of frac-
tional order models have been studied in the literature [22,35,37]. To the best of
the knowledge of the author, there is no reported method that simultaneously esti-
mates orders, coefficients and the delay from the step response. Ahmed [1] presented
a method for estimation of coefficients and delay, however, for known fractional
orders.

In this article, an output error approach for simultaneous estimation ofmodel orders,
coefficients and time delay is proposed by adopting theNewton and theGauss–Newton
optimization algorithms. The optimization approach requires estimation of the output
sensitivity functions. For fractional order models, these functions include the loga-
rithmic derivatives of the input signal. Victor and Malti [39] and Victor et al. [40]
commented that simulating the logarithmic derivative is not trivial and used a numeri-
cal approach to calculate the sensitivity functions. The contribution of this article lies
in its presentation of the analytical expressions for the logarithmic derivatives of the
step input signal and derivations of the analytical expressions for the Jacobian and the
Hessian required for the Newton’s algorithm. The efficacy of the algorithm lies in its
ability to identify all the parameters simultaneously.

The output error approach is the most commonly used methodology for fractional
order model identification [10,17,31,39,40]. Other approaches include an extension
[18] of the so-called simplified refined instrumental variable algorithm [41], use
of the state variable filter [8], fractional Laguerre basis function modeling [3], fre-
quency domain identification [26], ARX model development using fractional order
and orthonormal basis filter [23], integral-based approach [34] and so on. Fractional
order nonlinear system identification problem has also been addressed in the litera-
ture [19,33]. The time delay adds an extra degree of complexity to any identification
method due to its nonlinear appearance. Narang et al. [25] extended the linear filter
method [2] for fractional ordermodel identification that iteratively estimates themodel
parameters and the delay. Tavakoli-Kakhki and Tavazoei [36] and Yuan et al. [42] also
considered time delay estimation.

Motivations for addressing the fractional order identification problem arises from
the advantages of the use of the fractional order models [4,20] and the use of such
models for real-life applications.Reported applications include thermal processes [12],
processes involving diffusivemass transfer [5],Archimedeswave swing [38], vibration
suppression [24], health monitoring [15] and other engineering applications, see, e.g.,
[22,40]. Anothermotivation is the use of fractional order controllers.With introduction
of the TID controller [16], the P I λDμ controller [30], the CRONE controller [29]
and the lead-lag compensator [32], fractional order representation of process and
controllers are gaining more and more attention.

The remainder of the article is organized as follows. The proposed methodology
is outlined in Sect. 2 that includes the optimization algorithm, expressions for the
logarithmic derivatives and the initialization procedure. Simulation results along with
the simulationmethod for fractional order differentiation and integration are presented
in Sect. 3. Concluding remarks are drawn in Sect. 4.
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2 Mathematical Formulations

The proposed identification method is outlined in this section. The method is based
on the output error optimization. Analytical expressions for logarithmic derivatives of
the step input required to evaluate the Jacobian and the Hessian are also presented.

For convenience in presentation, both time and Laplace domain expressions are
used interchangeably. The Laplace domain expressions are presented in terms of ‘s’
while an equivalent symbol ‘p’ is used to represent the derivative operator in the time
domain. Considering that step response methods are typically used for models with
parsimonious structures, mathematical derivations are provided for two structures as
in (1) and (2). We will refer to these two structures as Class I and Class II models,
respectively, throughout the manuscript. Although the method is demonstrated using
these two structures, the same approach can be followed for a general structure with
more parameters.

Class I : G(s) = be−δs

sα + a
(1)

Class II : G(s) = be−δs

sα2 + a1sα1 + a0
(2)

2.1 Parameter Estimation

For a single input single output system, the relation between the input and the output
can be expressed using the following Laplace domain expression.

Y (s) = G(s, θ)U (s) + E(s) (3)

where Y (s) and U (s) are the input and the output, respectively, G(s, θ) is the model
transfer function with θ = [θ1, . . . , θn] as the set of parameters with n being the total
number of parameters. E(s) represents the noise in the output measurements. For a
fractional order model, the parameter vector contains the coefficients of the numerator
and the denominator polynomials, the time delay as well as the fractional orders of the
derivatives. The objective of an identification algorithm is to estimate the parameters
θ from a set of time domain measurements [u(tk) y(tk)], k = 1, 2, . . . N with N being
the number of available data points. The goal of the output error approach is to estimate
θ , by minimizing a norm of the errors between measured and model outputs.

E(s, θ) = Y (s) − G(s, θ)U (s) (4)

An equivalent time domain expression for the error is given by

e(t, θ) = y(t) − G(p, θ)u(t) (5)

The lower case letters correspond to the variables in the time domain. Using the
notation ek = e(tk, θ), the goal of an output error algorithm can be defined as to
minimize the following objective function
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f (θ) =
N∑

k=1

e2k =‖ e ‖2 (6)

A number of different approaches can be taken for solution of the optimization prob-
lem.We follow theNewton’s algorithm to simultaneously estimates all the parameters.
In this approach, estimated parameters at an iteration step i + 1 is given by

θ i+1 = θ i −
[
H(θ i )

]−1
g(θ i ) (7)

where g(θ) is the gradient of f (θ) given by

g(θ) = 2Ae (8)

with A being the Jacobian matrix.

A = [∇e1 ∇e2 · · · ∇eN
]

(9)

The columns of A are the first derivative vectors ∇ek of the components of e, i.e.,

A jk = ∂ek
∂θ j

j = 1, . . . , n k = 1, . . . , N (10)

where θ j is the j-th element of θ . The Hessian, H is defined as

H = ∇2 f (θ) (11)

For the Hessian, it requires

∂2

∂θl∂θ j

N∑

k=1

e2k = 2
∂

∂θl

N∑

k=1

ek
∂ek
∂θ j

= 2
N∑

k=1

∂ek
∂θl

∂ek
∂θ j

+ 2
N∑

k=1

ek
∂2ek

∂θl∂θ j
(12)

So the Hessian is given by

H = 2AAT + 2
N∑

k=1

ekRk (13)

where AT is the transpose of A, and

Rk =

⎛

⎜⎜⎜⎝

∂2ek
∂θ21

∂2ek
∂θ1∂θ2

· · · ∂2ek
∂θ1∂θn

...
. . .

...
...

∂2ek
∂θn∂θ1

∂2ek
∂θn∂θ2

· · · ∂2ek
∂θ2n

⎞

⎟⎟⎟⎠ (14)
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The main disadvantage of the above approach, namely the Newton’s method is that it
requires formulae fromwhich the second derivativematrix can be evaluated. However,
there are methods closely related to this approach which use only the first derivatives.
One such approach is the finite difference Newton method. In this approach, to esti-
mate H(θ i ), increments in each coordinate direction of the output error are taken by
differences in gradient vectors [11]. Another approach is the so-called quasi-Newton
methods which approximate [H(θ)]−1 by a symmetric positive definite matrix and
update it as the iteration proceeds.

The second term in (13) contains ek as multipliers which are reasonably small
especially as the iteration approaches the optimum. This led to the assumption that H
can be approximated as

H ≈ 2AAT (15)

Thus, the basic Newton’s method becomes the Gauss–Newton method when (15) is
used. Accordingly, the solution of θ in the (i + 1)-th iteration step is given by

θ i+1 = θ i −
[
AAT

]−1
Ae (16)

The basic Newton’s method as well as the Gauss–Newton method may not be suitable
for many cases since H may not be positive definite when θ i is remote from the
solution. Moreover, convergence may not occur even when H is positive definite
[11,21]. To avoid the latter case,Newton’smethodwith line search can be implemented
where the Newton correction is used to generate a search direction [11]. Following
this approach (7) is modified as

θ i+1 = θ i − λi
[
H(θ i )

]−1
g(θ i ) (17)

The Gauss–Newton solution can also be modified similarly. The advantages and dis-
advantages of Newton’s method and the Gauss–Newton method have been widely
addressed in the literature [11]. An advantage of the Gauss–Newton method is that
the second derivative matrix is approximated using the first-order derivatives. On the
other hand, the Gauss–Newton method is equivalent to making a linear approximation
of the residuals and hence the method is valuable either for the residuals or the degree
of nonlinearity to be small [11]. While a detailed study of applicability of these two
approaches is beyond the scope of this article, observations from extensive simulation
results will be presented in the result section.

The optimization step follows a standard procedure. Using an initial guess of the
parameters, the Jacobian and Hessian are evaluated and the parameters are iteratively
updated until convergence. Next sections provide the analytical expressions for the
matrices required to evaluate the Jacobian and the Hessian.

2.1.1 Class I Model

The parameter vector for the Class I model in (1) is given by θ = [a b δ α]T . So, the
column elements of the Jacobian can be expressed in the Laplace domain as
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∇Ek(s) =
[

be−δs

(sα+a)2
−1e−δs

sα+a
bse−δs

sα+a
bsαe−δs

(sα+a)2
ln(s)

]T
U (s) (18)

An equivalent time domain expression is given by

∇ek =
[

b
(pα+a)2

−1
pα+a

bp
pα+a

bpα ln(p)
(pα+a)2

]T
u(tk − δ) (19)

Here, ln(s) and ln(p) are logarithms of the derivative operator, expressed in theLaplace
and time domain, respectively. The logarithmic operation is on the operator s or p.
Similarly, the matrix Rk can be obtained in the time domain as

Rk =

⎡

⎢⎢⎢⎢⎢⎣

−b
(pα+a)3

1
(pα+a)2

−bp
(pα+a)2

−bpα ln(p)
(pα+a)3

1
(pα+a)2

0 p
(pα+a)

pα ln(p)
(pα+a)2

−bp
(pα+a)2

p
(pα+a)

−bp2

(pα+a)
−bpα+1 ln(p)

(pα+a)2

−bpα ln(p)
(pα+a)3

pα ln(p)
(pα+a)2

−bpα+1 ln(p)
(pα+a)2

−bpα(pα−a) ln(p) ln(p)
(pα+a)3

⎤

⎥⎥⎥⎥⎥⎦
u(tk − δ)

(20)

2.1.2 Class II Model

For the Class II model as in (2), the parameter vector θ = [a1 a0 b δ α2 α1]T .
Denoting D(p) = pα2 + a1 pα1 + a0, the expressions for the elements of A and Rk
for the Class II model can be given as

∇ek =
[

bpα1

[D(p)]2
b

[D(p)]2
−1
D(p)

bp
D(p)

bpα2 ln(p)
[D(p)]2

ba1 pα1 ln(p)
[D(p)]2

]T
u(tk − δ) (21)

Rk =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2bp2α1
[D(p)]3

−2bpα1

[D(p)]3
pα1

[D(p)]2
−bpα1+1

[D(p)]2−2bpα1

[D(p)]3
−2b

[D(p)]3
1

[D(p)]2
−bp

[D(p)]2
pα1

[D(p)]2
1

[D(p)]2 0 p
D(p)

−bpα1+1

[D(p)]2
−bp

[D(p)]2
p

D(p)
−bp2

D(p)

−2bpα2+α1 ln(p)
[D(p)]3

−2bpα2 ln(p)
[D(p)]3

pα2 ln(p)
[D(p)]2

−bpα2+1 ln(p)
[D(p)]2

bpα1 (pα2−a1 pα1+a0) ln(p)
[D(p)]3

−2ba1 pα1 ln(p)
[D(p)]3

a1 pα1 ln(p)
[D(p)]2

ba1 pα1 ln(p)
[D(p)]2

−2bpα2+α1 ln(p)
[D(p)]3

bpα1 (pα2−a1 pα1+a0) ln(p)
[D(p)]3

−2bpα2 ln(p)
[D(p)]3

−2ba1 pα1 ln(p)
[D(p)]3

pα2 ln(p)
[D(p)]2

a1 pα1 ln(p)
[D(p)]2

bpα2 ln(p)
[D(p)]2

ba1 pα1 ln(p)
[D(p)]2

bpα2 (−pα2+a1 pα1+a0) ln(p) ln(p)
[D(p)]3

−2ba1 pα2+α1 ln(p) ln(p)
[D(p)]3

−2ba1 pα2+α1 ln(p) ln(p)
[D(p)]3

ba1 pα1 (pα2−a1 pα1+a0) ln(p) ln(p)
[D(p)]3

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

u(tk − δ)

(22)
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Evaluation of A and Rk needs estimation of ln(p)u(ti ) as well as ln(p) ln(p)u(ti ).
Victor et al. [40] suggested numerical estimation of the Jacobian as logarithm of the
derivative operator is not trivial to simulate. We use analytical expressions to evaluate
the logarithmic derivatives of the input signal.

2.2 Evaluation of the Logarithmic Derivative

The above methodology is applicable irrespective of the input type. As this article is
concerned with the step input, analytical expressions for logarithmic derivatives of the
step, expressed as in (23), is derived.

u(t) = hΩ(T ) (23)

where h is the size of the step input and Ω(T ) is the unit step function defined as

Ω(T ) =
{
0 f or t < T
1 f or t ≥ T

(24)

The log derivative, ln(p) of a constant, c, is expressed [4,14] as

ln(p)c = −c(γ + ln t) (25)

where γ is the Euler–Mascheroni constant [27] given by

γ = lim
m → ∞

⎛

⎝
m∑

q=1

1

q
− lnm

⎞

⎠ (26)

The numerical value for the Euler-Mascheroni constant can be approximated as γ ≈
0.57721. Following the above expressions, ln(p) of a step signal can be obtained as

ln(p)hΩ(T ) = −h(γ + ln t)Ω(T ) (27)

Also, estimation of Rk requires evaluation of ln(p) ln(p) which can be obtained from

ln(p) ln(p)hΩ(T ) = ln(p)[−h(γ + ln t)Ω(T )] (28)

[4] derived the logarithmic derivative of the logarithmic function as

ln(p) ln t = −ζ(2) − (γ + ln t) ln t (29)

where ζ is the Riemann zeta function, also known as the Hurwitz function [27] given
as

ζ(v) = lim
m → ∞

m∑

q=1

1

qv
(30)
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Following (30), ζ(2), can be obtained as [13]

ζ(2) = 1

12
+ 1

22
+ 1

32
+ · · · = π2

6
≈ 1.645 (31)

Using (28) and (29), ln(p) ln(p) for the step input signal can be obtained as

ln(p) ln(p)hΩ(T ) = h
[
ζ(2) + (γ + ln t)2

]
Ω(T ) (32)

2.3 Implementation Issues

2.3.1 Initialization

Initialization plays an important role and poses a significant challenge for optimization
schemes. In the proposed methodology, initialization of model orders, coefficients and
the delay are required. For orders, we propose to initiate the optimization algorithm
assuming integer values. For example, for a Class I model an order of 1 is used
as the initial guess. For Class II models, a second-order model is used as the initial
guess. Regarding the coefficients, we propose to estimate an integer order model using
conventional identificationmethod. In this article, the integral equation approach [9] is
used to estimate the initial coefficients assuming amodelwithout delay. The estimation
procedure is detailed below. For the time delay, the initial guess can be obtained from
the step response. We suggest to use a small initial value for the delay.

To describe the integral equation approach let us take an example differential equa-
tion representing the input–output relation of a process.

y(t) = ν

p2 + μ1 p + μ0
u(t) + ε1(t) (33)

Here, ν is the numerator coefficient and μ1 and μ0 are the denominator coefficients in
the second-order model. The relation can be presented in the equation error form as

d2y(t)

dt2
+ μ1

dy(t)

dt
+ μ0y(t) = νu(t) + ε2(t) (34)

The equation is then integrated to get

y(t) + μ1y
[1](t) + μ0y

[2](t) = νu[2](t) + ε(t) (35)

where for any variable, y(t), y[ j](t) is its j-th order integral for time limit 0 to t . The
estimation equation (35) can be reformulated to get it in a least-squares solution form

ψ(t) = φT (t)ϑ + ε(t) (36)
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where

ψ(t) = y(t), φT (t) = [−y[1](t) −y[2](t) u[2](t)
]
, ϑ = [

μ1 μ0 ν
]T

Equation (36) can be written for t = t1, t2 . . . tN and combined to give the estimation
equation

Ψ = Φϑ + ε (37)

with

Ψ (t) =

⎡

⎢⎢⎣

ψ(t1)
ψ(t2)
. . .

ψ(tN )

⎤

⎥⎥⎦ , Φ(t) =

⎡

⎢⎢⎣

φT (t1)
φT (t2)

. . .

φT (tN )

⎤

⎥⎥⎦ (38)

The parameter vector ϑ is then obtained as the solution of the least-squares equation
as

ϑ = (ΦTΦ)−1ΦTΨ (39)

2.4 Overall Algorithm

The overall methodology is summarized as Algorithm 1 taking the Class II model as
an example. The same algorithm is applicable for model with other structures when
appropriate equations are used.

3 Simulation Results

3.1 Simulation Environment

For the general fractional differentials and integrals of a function ω(t), the Grunwald-
Letnikov (GL) definition (41) is commonly used; see, e.g., [28].

t0D
ρ
t ω(t) = lim

η → 0
1

ηρ

∣∣∣ t−t0
η

∣∣∣∑

j=0

(−1) j
(

ρ

j

)
ω(t − jη) (41)

Here, t0 and t are the limits of the operator, η is the step size and ρ is the order with
ρ > 0 means a derivative operation and ρ < 0 means integral operation. Also |.|
means the integer part and

(
ρ

j

)
= Γ (ρ + 1)

Γ ( j + 1)Γ (ρ − j + 1)
(42)

with Γ (.) being the Euler’s Gamma function.
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Algorithm 1: Identification algorithm for Class II models.

Step 1-Initialization:

– i = 0
– Assume initial orders as integers; [α02 α01 ] = [2 1].
– obtain initial estimates [a02 a01 b0] = [μ2 μ1 ν] by solving (39).
– Assume an initial delay δ0.
– θ0 = [a02 a01 b0 δ0 α02 α01 ]T .
– Choose λ0.

Step 2-Parameter estimation:

– Evaluate ∇ek using (21) and Rk using (22).
– Evaluate A using (9) and g(θ) using (8); evaluate H using (13) for the Newton’s method or (15) for
the Gauss–Newton method.

– Estimate θ i+1 using (17).

Step 3-Repetition:

– Estimate fractional change of each parameter as

Δθ i+1
j =

∣∣∣∣∣∣

θ i+1
j − θ ij

θ i+1
j

∣∣∣∣∣∣
(40)

for all j where θ ij is the i-th estimate of the j-th element of θ .

– whilemax(Δθ i+1
1 , Δθ i+1

2 , · · · ) > tolerance, i = i+1, updateλi , if required, and repeat Steps 2-3;
otherwise, go to Step 4.

Step 4-Termination: When all of the parameters converge, θ i is taken as the final estimate.

For numerical computation, a revised version of (41), presented in [6] is used where

t0D
ρ
t ω(t) = lim

η → 0
1

hρ

∣∣∣ t−t0
η

∣∣∣∑

j=0

w
(ρ)
j ω(t − jη) (43)

where w
(ρ)
j can be evaluated recursively from

w
(ρ)
0 = 1 (44)

w
(ρ)
j =

(
1 − ρ + 1

j

)
w

(ρ)
j−1 j = 1, 2, · · · (45)

In this work, MATLAB is used to perform the required numerical calculations. The
step input is considered to be noise free. The step responses generated for correspond-
ing fractional order models are corrupted with white Gaussian noise. Monte Carlo
simulations (MCS) are performed by changing the ‘seed’ for the noise signal. The
noise-to-signal ratio (NSR) is defined as the ratio of the variance of the noise to that
of the signal. The results presented in this section are from 100 MCS. The presented
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estimated parameters are the mean of 100 estimates. Parameters are presented along
with their standard deviations. The model structures are assumed to be known.

3.2 Convergence of Iteration Schemes

The previous section outlines both the Newton’s algorithm and the Gauss–Newton
algorithm. Convergence issues with both of the approaches have been discussed in the
optimization literature [7,11]. In this section, a set of simulation results are presented
to show the convergence of the two schemes. The following Class I model is used for
this purpose.

G(s) = 1.2e−7s

20sα + 1
(46)

A set of models having different values of α are used. For model (46), the parameter
vector is identified as θT = [a b δ α] = [0.05 0.06 7 α]. In the above format
G(s) = K

τ sα+1 , the parameter vector is presented as [τ K δ α] = [20 1.2 7 α].
Although the coefficients are identified as a, b, we present those as τ and K for the
sake of numerical convenience and clarity in interpretation. A total of 1000 data points
are used in each cases with a sampling interval 0.1. A unit step signal is used. The
order is initialized with a value of 1. An integer order model is identified using the
integral equation approach, and the estimated values are used for initialization. The
delay is initialized with a value of 1. λ is set at 0.5.

Figure 1 shows the trajectories of all parameters and the error from initialization to
convergence. TheNewton’s algorithmwas found to show smooth trajectories for all the
parameters. On the other hand, the Gauss–Newton algorithm required less iterations
for responses without overshoots. For the responses with overshoots (α > 1) both
algorithms required almost the same number of steps.

The above results are obtained using noise free data. To demonstrate the perfor-
mance of the two schemes for noisy data, results are shown in Table 1 for data with
NSR 10%.Mean values of 100 MCS are presented along with corresponding standard
deviations for model (46) with α = 1.7.

These results show that both of the algorithms perform comparably in terms of
quality of the estimates. The convergence rates are 100% for both cases with an initial
guess of 1 for the delay. The convergence rate is defined as the % of times out of
100 MCS for which the algorithm converged. To compare the performance of the two
algorithms in terms of convergence rate, results are presented in Fig. 2 for model (46)
with α = 1.7. This model represents a step response with overshoot. As seen from
the figure, the Newton’s algorithm showed high convergence rate of 100% or close to
it for a wide range of initial guess of delay from 0.1 to 13. On the other hand, for the
Gauss–Newton approach, the convergence rate was close to 100% only for the range
of initial delay from 1 to 4. Similar data are generated for a model with α = 0.7,
which represents a step response without any overshoot; for this case, the convergence
rates are at or near 100% for a range of initial delay from 1 to 12 for both algorithms.
However, the required number of iterations for the Newton’s algorithm is twice as
many as that of the Gauss–Newton algorithm.
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Fig. 1 Convergence of parameters and error for the Newton’s algorithm (left) and Gauss–Newton algorithm
(right)
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Table 1 Performance of Newton’s algorithm and Gauss–Newton algorithm

Algorithm Parameter Iteration required

α ≡ 1.7 τ ≡ 20 K ≡ 1.2 δ ≡ 7

Newton’s 1.699 19.933 1.2 6.95 12.3

(0.0055) (0.3609) (0.0044) (0.129) (1.1)

Gauss–Newton 1.699 19.937 1.2 6.95 11

(0.0057) (0.3631) (0.0045) (0.13) (1.3)

Fig. 2 Convergence rate for the
Newton’s and Gauss–Newton
algorithm with different initial
delay for model (46) with
α = 1.7
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Based on extensive simulation results, the following remarks can be made

– With a suitable initial guess of the delay and the initial assumption of an integer
order model, both of the schemes are able to provide satisfactory estimates of the
parameters.

– For responseswith overshoots, theNewton’s algorithm converges for awider range
of initial guess of the delay compared to the Gauss–Newton scheme.

– For responseswithout overshoots, theGauss–Newton algorithm requires less num-
ber of iterations.

Based on these observations, the Gauss–Newton method is used for the following
studies.

3.3 Effect of Data Quality

Two important quality measures for sampled data, namely the length of data and the
noise-to-signal ratio are considered to study the effects of data on parameter estimates.

Table 2 shows the identified parameters and their standard deviations for different
data lengths. For all these cases, the NSR is 10%. The results show that satisfactory
estimates are obtained for data length as low as 100 for the Class I model. As expected,
the results show better consistency for larger data sets. Also the required numbers of
iteration decreased slightly with the increase in data length.
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Table 2 Effect of data length and sampling interval on parameter estimates

Parameter Estimated values

N = 100 N = 250 N = 500 N = 1000 N = 2000
Δt = 1 Δt = 0.4 Δt = 0.2 Δt = 0.1 Δt = 0.05

α ≡ 1.4 1.3928 1.4018 1.4009 1.3975 1.4005

(0.1472) (0.0226) (0.0163) (0.0116) (0.0086)

K ≡ 1.2 1.1893 1.1999 1.1991 1.1999 1.1991

(0.1211) (0.0105) (0.0068) (0.0052) (0.0036)

τ ≡ 20 20.17 20.37 20.10 19.92 20.08

(4.185) (1.766) (1.239) (0.8645) (0.6577)

δ ≡ 7 6.455 6.862 6.852 6.924 6.958

(1.134) (0.4756) (0.3519) (0.2271) (0.1561)

Iteration 15.4 12.8 11.9 10.9 10.4

required (9.2) (5.6) (3.9) (2.0) (1.1)
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Fig. 3 Effect of noise on parameter estimates for the model (46) with α = 1.4

Figure 3 shows the effect of noise on parameter estimates.A total of 1000 data points
are used for all cases. The results show satisfactory performance of the algorithm in
terms of mean and standard deviation for NSR as high as 50%.

3.4 Identification of Different Class I Models

A list of Class I models with different orders is considered in this section. The param-
eters presented are the means of 100 MCS with the corresponding standard deviations
in the parentheses. NSRs for each cases are 10% and 1000 data points are used. The
convergence rates for each of the cases are 100%. The number of iterations varies
between 11 and 18 with less iterations required for higher values of α. Initial guess of
the time delay is 1 for all cases and an integer order of 1 is used as initial guess. Initial
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Table 3 Identification results for
different Class I models

True models Estimated models

0.2
s+0.1 e

−3s 0.2(±0.024)
s1(±0.04)+0.1(±0.01)

e−2.94(±0.26)

0.1
s1.22+0.05

e−6s 0.1(±0.007)
s1.218(±0.017)+0.0502(±0.003)

e−5.91(±0.286)

0.5
s0.7+0.2

e−2s 0.51(±0.055)
s0.71(±0.035)+0.2(±0.019)

e−1.96(±0.25)

0.06
s1.8+0.05

e−7s 0.06(±0.001)
s1.8(±0.004)+0.05(±0.001)

e−6.96(±0.12)

Table 4 Class II model identification results

True models Estimated models

0.1
s2+0.25s+0.1

e−2.4s 0.1(±0.01)
s2.01(±0.1)+0.25(±0.04)s1(±0.06)+0.1(±0.01)

e−2.35(±0.18)

0.04
s2.39+0.2s1.18+0.02

e−3s 0.04(±0.008)
s2.39(±0.09)+0.2(±0.02)s1.18(±0.03)+0.02(±0.004)

e−2.94(±0.38)

0.01
s1.8+0.5s0.8+0.01

e−4s 0.01(±0.002)
s1.8(±0.1)+0.049(±0.02)s0.78(±0.12)+0.01(±0.02)

e−3.89(±0.64)

guess of coefficients are obtained assuming an integer order model. The mean values
of the estimated parameters match quite well with the corresponding true values; also
the standard deviations are comparable for a NSR of 10%.(Table 3)

3.5 Identification of Class II Models

Table 4 shows the identification results for a set of Class II models. Models with both
integer and fractional orders are considered. For each case, 2000 data points are used
and data are corrupted with a noise having NSR 10%. An initial guess of 1 is used for
the delay and integer orders [α2 α1] = [2 1] is used for initialization. Convergence
rates are 100% for all cases. The obtained results are quite satisfactory in terms of the
mean and standard deviations.

4 Concluding Remarks

The step has not been used as input for simultaneous estimation of orders, coefficients
and the delay for fractional order models. Also none of the optimization methods for
fractional order identification estimates the logarithmic derivatives of input signals
which are required to evaluate the Jacobian and the Hessian. This article provides
analytical expressions for logarithmic derivatives of the step input and those for the
Jacobian and the Hessian; the resulting optimization scheme does not need to resort
to numerical approximations. A simplified initialization procedure is also presented
which, in fact, requires a choice of the delay only; however, convergence for a wide
range of initial guess of the delay is observed. The orders are initially assumed to be
integers. Initial value of the coefficients is obtained assuming an integral order model.
Simulation results show the robustness of the optimization scheme in the presence of
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noise. Satisfactory results are obtained for data length as low as 100 and for NSR as
high as 50% for different models. The required number of iteration steps is in the range
10–20. Quality of parameter estimates and low number of iteration required show the
performance and efficiency of the algorithm.
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