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Abstract
In this paper, a new method is proposed for estimating the frequency of a complex 
sinusoidal signal in multiplicative and additive noise. The proposed method is based 
on the linear prediction property of the signals’ autocorrelation function. This fre-
quency estimation method is a closed-form algorithm which can directly estimate 
the frequency without peak searching. The performance of the proposed frequency 
estimator is investigated by computer simulations. Simulation results demon-
strate that the performance of the proposed technique is reasonable and is close to 
Cramer–Rao bound.

Keywords Multiplicative noise · Linear prediction · Generalized eigenvalue 
problem · Frequency estimation · Yule–Walker equations · Autoregressive processes

1 Introduction

Frequency estimation in multiplicative and additive noise is an important step in 
many applications in signal processing and communications. For example, fre-
quency estimation is vital in many systems such as sonars and radars. In radars, for 
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instance, the Doppler frequency should be estimated which depends on the velocity 
of the target. Similarly, in array processing, the spatial frequency should be esti-
mated that depends on the direction of arrival (DOA) of the source [11, 14, 15]. 
In addition, in the field of speech processing, frequency estimation can be used to 
estimate maximum voiced frequency (MVF) which can separate the periodic and 
aperiodic components of sounds [8]. To observe time variations in the vocal tract 
system characteristics, frequency estimation can be applied to the tracking of speech 
formant frequencies [21]. Modal analysis is discussed in [19] as another application 
of frequency estimation.

On the other hand, multiplicative noise is used for modeling some important pro-
cesses in signal processing applications. In wireless communications, the fading pro-
cess is modeled as multiplicative noise [1, 2, 12, 10, 3, 27]. This fading is due to the 
local scatterers around the mobile unit [22]. In radars, the constant amplitude model 
is insufficient for pulse-to-pulse fluctuating targets; therefore, the random amplitude 
is typically modeled by multiplicative noise. In addition, the multiplicative noise is 
suitable for modeling the jammers in radar systems [25, 18]. Furthermore, investi-
gation of the multiplicative noise is necessary in backscattered acoustic signals [1] 
in array processing [26], synthetic aperture radar (SAR) imagery systems [28], and 
some recent applications such as vehicle speed estimation and pseudo-maximum 
likelihood estimation of ballistic missiles [5, 16].

The problem of frequency estimation in multiplicative noise has been investigated 
in [20, 23, 29, 9, 4]. The estimation algorithm used in [23] is based on maximiz-
ing the likelihood function and estimates the frequency by an iterative method. This 
algorithm does not give a closed-form estimate and cannot estimate the frequency 
directly. The algorithm in [23] estimates the frequency by the estimation of signal 
parameters via rotation invariance technique (ESPRIT) method. Another method is 
presented in [24], which is based on a subspace algorithm and finds the frequency 
by multidimensional search. The nonlinear least squares (NLS) method [4, 20] is 
based on peak searching and cannot estimate the frequency directly. Another method 
used for frequency estimation is the multiple signal classification (MUSIC) method 
[9].

In this paper, we propose a closed-form algorithm for frequency estimation of 
complex sinusoidal signals in multiplicative and additive noise. The proposed 
method is based on the linear prediction property of the autocorrelation function 
(ACF) of the signal. The predictor is order one, and its coefficient can be obtained 
by over determined linear equations. These equations can be considered as a gener-
alized eigenvalue problem. By solving the generalized problem using the method in 
[7], the predictor coefficient is estimated. Finally, we can find the frequency using 
the angle of predictor coefficient. Five cases are considered for the multiplicative 
noise. In the first case, the multiplicative noise is assumed to be white having a 
nonzero mean. In the second case, the multiplicative noise is assumed to be white 
zero mean. In the third case, the noise is considered as a colored noise with expo-
nential ACF. In the fourth case, we extend the proposed method to multi-component 
signal frequency estimation. In the last case, we apply the proposed method to a real 
application of radial velocity estimation for fluctuating targets.
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The main contribution of this paper is frequency estimation using linear prediction 
instead of autoregressive (AR) modeling. It is well known that the estimates obtained 
by AR modeling may be biased. The estimates obtained by linear prediction approach 
can be unbiased, as the quasi-Yule–Walker equations proposed by the authors start 
from zero lag instead of one lag in the Yule–Walker equations.

The rest of the paper is organized as follows: The signal model is given in Sect. 2. In 
Sect. 3, the methodology is presented. Simulation results and comparisons are provided 
in Sect. 4. Conclusions are presented in Sect. 5.

2  Signal Model

The complex sinusoidal signal in multiplicative and additive noise is modeled as:

where ω0 is the normalized angular frequency to be estimated ( �0 ∈ [−�,�) ) and 
θ is the phase of the signal. The observation noise v(n) is additive complex white 
Gaussian noise with zero mean. The multiplicative noise z(n) is a random process 
with mean μ:

where w(n) is white noise with zero mean. It is also assumed that w(n) and v(n) are 
mutually independent with variances �2

v
 and �2

w
 , respectively. It is worth noting that 

parameters �0,�, �, �
2
v
 and �2

w
 are unknown. The main goal of this paper is to esti-

mate ω0 from the observations x(n);n = 0, 1,… ,N − 1 . All of the random processes 
are under Wide-Sense Stationary (WSS) hypothesis.

3  Proposed Method

The proposed method is based on the linear prediction property of the autocorrelation 
sequence of observations. Five cases for multiplicative noise are considered. In each 
case, the autocorrelation sequence of observations is computed by an unbiased relation 
and is then used to derive the estimator.

If the signal is defined as:

Then the ACF of the signal is:

(1)x(n) = z(n)ej(�0n+�) + v(n)

(2)z(n) = � + w(n)

(3)s(n) = z(n)ej(�0n+�)

(4)

rs(k) = E{s(n)s∗(n − k)}

= E
{
z(n)ej(�0n+�)z∗(n − k)

(
e−j(�0(n−k)+�)

)}

= ej�0kE{z(n)z∗(n − k)}

= ej�0k
(
�2 + �2

w
�(k)

)
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The signal in the presence of both multiplicative and additive noises is as 
follows:

Finally, the ACF of the observed signal is:

where

It follows that:

Using the prediction property of rps(k) = �2ej�0k, we have:

where

Therefore, we can see that the frequency can be estimated by calculating the 
phase of the perdition coefficient a.

Case 1 The signal with additive and multiplicative white noise and � ≠ 0

It follows from (9) and (10) that:

Evaluating (12) for k = 0, …q and arranging equations in matrix form give

where

(5)→ rs(k) = �2ej�0k + �2
w
�(k)

(6)x(n) = s(n) + v(n)

(7)

rx(k) = E{x(n)x∗(n − k)}

= E{(s(n) + v(n))(s∗(n − k) + v∗(n − k))}

= E{s(n)s∗(n − k)} + E{s(n)v∗(n − k)} + E{v(n)s∗(n − k)} + E{v(n)v∗(n − k)}

rx(k) = rs(k) + rv(k)

(8)rv(k) = �2
v
�(k)

(9)rx(k) = �2ej�0k +
(
�2
w
+ �2

v

)
�(k)

(10)rps(k) − arps(k − 1) = 0

(11)a = ej�0

(12)rx(k) − arx(k − 1) =
(
�2
w
+ �2

v

)
�(k) − a

(
�2
w
+ �2

v

)
�(k − 1)

(13)(R − �G)� = 0

(14)

R =

⎛⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎣

rx(0) rx(−1)

rx(1) rx(0)

rx(2) rx(1)

⋮ ⋮

rx(q) rx(q − 1)

⎤⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎠
, G =

⎛⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎣

1 0

0 1

0 0

⋮ ⋮

0 0

⎤⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎠
, � =

�
1

−a

�
and � =

�
�2
w
+ �2

v

�
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The R and G are (q + 1) × 2 matrices, and v is a(2 × 1) vector.
Using generalized eigenvalue problem in [6], we can find â , and then, 

�̂�0 = phase (â) . The steps for solving the generalized eigenvalue problem are as fol-
lows [7]:

1. Construct the following matrices

2. Using the matrices in step 1 form:

where O and I are the zeros matrix and the identity matrix, respectively.
3. By solving the generalized eigenvalue problem as �� = ��� , the eigenvalues and 

eigenvectors can be obtained.
4. λ and x choose to be the minimum eigenvalue and its associated eigenvector, 

respectively, of this generalized eigenvalue problem. This choice is supported by 
the simulation results given in Sect. 4.

5. We select two first elements of x to obtain v. The second element of v gives us an 
estimate of − a.

Case 2 The signal with additive and multiplicative white noise and � = 0

In this case, the term related to the signal in autocorrelation is removed. There-
fore, we cannot directly use linear prediction.

In the case where μ = 0, the observed signal is:

By squaring the observed signal, we have:

The expectation of y(n) is equal to:

An approximation of (19) is given by:

The randomness e(n) is due to omitting of the expectation in (20). We can roughly 
approximate e(n) as a white noise with variance �2

e
 . It follows that:

(15)�o = �H .�,�1 = �H� +�H�,�2 = �H�

(16)� =

[
�� �

� �

]
,� =

[
�1 −�2

� �

]

(17)� = 0 → x(n) = w(n)ej(�0n+�) + v(n)

(18)y(n) = x2(n) = w2(n)ej2(�0n+�) + v2(n) + 2v(n)w(n)ej(�0n+�)

(19)E{y(n)} = �2
w
ej2(�0n+�) + �2

v

(20)y(n) ≈ �2
w
ej2(�0n+�) + e(n)

(21)y(n) − ay(n − 1) = e(n) − ae(n − 1)

(22)ry(k) − ary(k − 1) = �2
e
�(k) − a�2

e
�(k − 1)
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where the a parameter is ej2�o .

Similar to Case 1, the equation can be considered as a quadratic eigenvalue 
problem. By solving the quadratic eigenvalue problem [7], we can find â so 
�̂�0 = (0.5) ∗ phase(â) . In this case, the estimated frequency must be multiplied by 
0.5, so the range of frequencies must be between ( − �

2
,
�

2
).

Case 3.1 The signal with additive white and multiplicative colored AR(1) noise
At first, we assume that the multiplicative colored noise is generated by [17]:

where b is supposed to be a positive real value and e(n) is a white Gaussian 
noise with zero mean and variance �2

e
 . It is worth noting that in the case of b = 0, 

z(n) = e(n), so the colored noise is converted to zero mean white noise (see Case 2).
The ACF of the colored multiplicative noise is:

Here, the ACF of the observed data is:

For k ≥ 0, we can find out:

where

Assuming b is a positive number, we can find â and �̂�0 = phase(â).

Case 4 Multi-component signal spectral estimation
If we suppose that two fluctuating targets exist, the observation is modeled as:

where z(n) is a multiplicative white Gaussian noise with mean μ1 and variance σz
2, 

β(n) is a multiplicative white Gaussian noise with mean μ2 and variance �2
�
 and v(n) 

is an additive white Gaussian noise with zero mean and variance �2
v
 . It is assumed 

that z(n) and β(n) are mutually uncorrelated.
We consider the signal in the absence of the observation noise as the following:

The ACF of the signal can be computed as:

(23)z(n) = bz(n − 1) + e(n)

(24)rz(k) =
�2
e

1 − b2
b|k|

(25)rx(k) = rz(k)e
j�0k + �2

v
�(k)

(26)rx(k) − arx(k − 1) = �2
v
�(k) − a�2

v
�(k − 1)

(27)a = bej�0

(28)x(n) = z(n)ej�1n + �(n)ej�2n + v(n)

(29)s(n) = z(n)ej�1n + �(n)ej�2n

(30)rs(k) = �2
1
ej�1k + �2

2
ej�2k +

(
�2
z
+ �2

�

)
�(k)
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It can be considered as follows:

where rps1(k) = �2
1
ej�1k and rps2(k) = �2

2
ej�2k.

Using the prediction property of rps1(k) = �2
1
ej�1k, we have:

where

Similar to (32), we use linear prediction for rps2(k) = �2
2
ej�2k:

where

Taking Z transform on Eqs. (32) and (34), we obtain:

Multiplying (36) by 
(
1 − bz−1

)
 and (37) by ( 

(
1 − az−1

)
 , we get:

Adding Eqs. (38) and (39) yields:

It results

By taking inverse Z transform on the above equation, we have:

Substituting Eq. (31) into (42), we can obtain:

(31)rx(k) = rps1(k) + rps2(k) +
(
�2
w
+ �2

v

)
�(k)

(32)rps1(k) − arps1(k − 1) = 0

(33)a = ej�1

(34)rps2(k) − brps2(k − 1) = 0

(35)b = ej�2

(36)
(
1 − az−1

)
rps1(z) = 0

(37)
(
1 − bz−1

)
rps2(z) = 0

(38)
(
1 − bz−1

)(
1 − az−1

)
rps1(z) = 0

(39)
(
1 − az−1

)(
1 − bz−1

)
rps2(z) = 0

(40)
(
1 − az−1

)(
1 − bz−1

)
(rps1(z) + rps2(z)) = 0

(41)
(
1 − az−1

)(
1 − bz−1

)
(rps(z)) = 0

(42)rps(k) − arps(k − 1) − brps(k − 1) + abrps(k − 2) = 0

(43)
rx(k) − arx(k − 1) − brx(k − 1) + abrx(k − 2) = h(�(k) − a�(k − 1) − b�(k − 1) + ab�(k − 2))
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where h = �2
z
+ �2

�
+ �2

v

Similar to previous cases, Eq.  (43) can be arranged in matrix form 
( (R − �G)� = 0 ) and solved for a, b and h by constructing a generalized eigenvalue 
problem as follows:

where

and � = h = �2
z
+ �2

�
+ �2

v

The R and G are (q + 1) × 3 matrices, and v is (3 × 1) vector. In comparison with 
the previous cases, in this case the number of columns of matrices is increased by 
one.

Using the estimates, the spectrum of observations can be obtained as follows:

Case 5 Real application example: Doppler frequency estimation for fluctuating mov-
ing targets in radar systems

The linear frequency modulated (LFM) signals are common in radar systems. 
One of their important applications is to estimate the range and radial velocity of the 
targets. This goal is achieved by transmitting the known LFM signal as follows [13]:

where fo is the carrier frequency and α denotes the frequency rate.
In the case of a fluctuating target, the received signal in the absence of the addi-

tive noise is given by:

where u(n) is considered as a complex white Gaussian noise due to target fluctua-
tion. Time delay nd for the target is obtained by:

where R,  Ro and vo are the range, the initial range and the velocity of the target, 
respectively.

The goal is to estimate the velocity of the moving target in the presence of target 
fluctuation. Multiplying the conjugate of the received signal by the transmitted sig-
nal, we will have:

(44)

R =

⎛⎜⎜⎜⎝

⎡⎢⎢⎢⎣

rx(0) rx(−1) rx(−2)

rx(1) rx(0) rx(−1)

⋮

rx(q)

⋮

rx(q − 1)

⋮

rx(q − 2)

⎤⎥⎥⎥⎦

⎞⎟⎟⎟⎠
, G =

⎛⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎣

1 0 0

0 1 0

0

⋮

0

0

⋮

0

1

⋮

0

⎤⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎠
, � =

⎡⎢⎢⎣

1

−a − b

ab

⎤⎥⎥⎦

(45)
�̂�(𝜔) =

1

|||
(
1 − ae−j𝜔

)(
1 − be−j𝜔

)|||
2

(46)xT (n) = ej2�fonej��n
2

(47)xR(n) = u(n)ej2�fo(n−nd)ej��(n−nd)
2

(48)nd =
2R

c
=

2

c
(Ro − von)
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where (.)*stands for complex conjugate.
With a little approximation, we can neglect the term e−j��n2d , and by substituting 

(48) into (49), we will have:

Now, we have:

where

We can suppose that z(n) is a complex white noise. Moreover, in (51), the term 
8��vo

c
 is equal to ωo which can be estimated by the proposed method.

4  Simulations and Comparisons

Several computer simulations have been conducted to illustrate the performance of 
the proposed method and compare it with the method in [20], the ESPRIT method, 
the MUSIC method and the CRB.

Under the assumptions that the multiplicative noise z(n) in (3) is a Gaussian sta-
tionary random process and v(n) is an additive Gaussian white noise, for Cases 1–2, 
the Cramer-Rao bound (CRB) for the parameter ω0 can be approximated by [23]:

For Case 3, the SNR is defined as:

(49)xb(n) = xT (n)x
∗
R
(n) = u∗(n)ej2�fond ej2�n�nd e−j��n

2
d

(50)xb(n) = u∗(n)e
j4�foRo

c e
j4�

c
(�Ro−fovo)ne

−j4��von
2

c

(51)c(n) = xb(n − 1)x∗
b
(n) = z(n)e

j8��von

c

(52)z(n) = u∗(n)u(n − 1)e
−j4��Ro

c e
−j4��vo

c e
j4�fovo

c

(53)CRB (�0) =
6

N
(
N2 − 1

)
SNR

(54)SNR =
�2

�2
v

(
1 + m2

A

)
=

�2 + �2
w

�2
v

(55)mA =
�w

�

(56)SNR =
�2
e(

1 − b2
)
�2
v
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All processes are generated with Gaussian distribution. The number of simula-
tion runs is 500. Five cases are considered, and the results are shown in Figs. 1, 
2, 3, 4, 5 and 6, respectively. In Figs. 1, 2, 3 and 4, the number of data samples 
is 32. In Fig. 5, the number of data samples is 100, in Fig. 6, this number is 32, 
and in the last figure this number is different. The mean squared errors (MSEs) 
of the frequency estimation for different SNRs are presented in Figs. 1, 2 and 3. 
In Fig. 1, the multiplicative noise is a white Gaussian noise with μ = 2. In Fig. 2, 

SNR(dB)
0 5 10 15 20 25

M
SE

(d
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-80
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-60

-50

-40

-30

-20

-10

0

10 Mean squared error(MSE) frequency estimation N=32
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Proposed method
MUSIC
ESPRIT

Method in [20]

Fig. 1  MSE versus SNR. N = 32, μ = 2, �0 = 0.3 radian∕sample
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B)

-80

-70

-60

-50

-40

-30

-20

-10

0
Mean squared error(MSE) frequency estimation N=32
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Fig. 2  MSE versus SNR. N = 32 , μ = 0, �0 = 0.3 radian∕sample



3605Circuits, Systems, and Signal Processing (2020) 39:3595–3609 

the multiplicative noise is a white Gaussian noise with μ = 0. In Fig. 3, the multi-
plicative noise is a colored noise generated by (23), in which the parameters are 
set to �2

e
  = 1 and b = 0.8. In Figs. 1, 2 and 3, the SNR varies from 0 to 25 dB with 

step size 2 dB. In the proposed method, the parameter q is set to 8.
It can be seen from Figs. 1 and 2 that the performance of the proposed method 

is close to CRB (except for low SNRs) and better than the algorithm presented in 
[20], the ESPRIT method and the MUSIC method.

SNR(dB)
0 5 10 15 20 25

M
SE

(d
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-80

-70

-60

-50

-40

-30

-20

-10

0 Mean squared error(MSE) frequency estimation N=32
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MUSIC
ESPRIT

Method in [20]

Fig. 3  MSE versus SNR. N = 32, μ = 0, b = 0.8, �0 = 0.3 radian∕sample
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-30

-20

-10

0 Mean squared error(MSE) frequency estimation N=32

Proposed method
MUSIC
ESPRIT

Method in[20]
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Fig. 4  MSE versus frequency. N = 32, μ = 2, b = 0.8



3606 Circuits, Systems, and Signal Processing (2020) 39:3595–3609

According to Fig. 3, in the case of colored multiplicative noise, the proposed 
method can still estimate the frequency better than the other algorithms.

To show the uniformity of performance in the proposed method, the frequency 
is changed from 0 to 1.4 with step size 0.1. Other simulation parameters are the 
same as Fig. 1. The results are shown in Fig. 4. It can be seen from this figure that 
the performance of the proposed method is uniform in this frequency range.

To show the advantage of the proposed method regarding resolution per-
formance in the multi-target case, we consider two signals at frequencies 

Frequency(radian/sample)
0 0.5 1 1.5 2 2.5 3

Am
pl

itu
de

0

0.2

0.4

0.6

0.8

1

1.2

1.4 Estimate of the spectrum for two targets

Proposed method
MUSIC

Fig. 5  Spectrum versus frequency. N = 100, �1 = 1 (radian∕sample) and �2 = 1.25 (radian∕sample)
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Fig. 6  MSE versus velocity. N = 32, R
o
= 3 km, v

o
= 500 m∕s, � = 5
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�1 = 1(radian∕sample) and �2 = 1.25(radian∕sample) . The number of data samples 
is 100, SNR = 5 dB and q = 80. The multiplicative noise is generated by a complex 
white Gaussian process with μ = 2. In this case, we compare the performance of 
the proposed method with the MUSIC method. The result is shown in Fig. 5. From 
Fig. 5, it is understood that the resolution of the proposed method is better than that 
of the MUSIC method. In other words, the proposed method can precisely separate 
the two targets while the MUSIC method fails to separate the targets.

Figure 6 shows the performance of the proposed method and the other methods in 
velocity estimation in Case 5. It can be seen from Fig. 6 that the performance of the 
proposed method in velocity estimation is better than the other methods in terms of 
the mean squared error. Moreover, it is worth emphasizing that the proposed method 
can estimate the velocity in this case without knowing parameters Ro, fo and α.

Figure 7 shows the performance of the proposed method and the other methods in 
frequency estimation in Case 1 versus data samples. It can be seen from Fig. 7 that 
the performance of the proposed method in frequency estimation is better than the 
other methods in terms of the mean squared error in several data samples.

5  Conclusion

In this paper, the frequency estimation of complex sinusoidal signals in multiplica-
tive and additive noise is addressed. The proposed method is based on the linear pre-
diction property of autocorrelation function. The problem of frequency estimation 
is converted into a noisy autoregressive parameter estimation one. Five cases of sig-
nal and noise are considered in autocorrelation domain. For each case, the resulting 
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Fig. 7  MSE versus data samples (N). SNR = 7 dB, � = 2 , �0 = 0.3 radian∕sample
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equations are solved by generalized eigenvalue problem. This frequency estimator 
can directly estimate the frequency without peak searching.

Simulation results have confirmed that the performance of the proposed method 
is better than the other existing methods. Monte Carlo simulation results confirm the 
effective performance of the proposed method. Furthermore, it has been shown that 
the performance of the proposed method is close to CRB at high SNRs. It is worth 
noting that simulation results match with the mathematical model.
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