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Abstract
The availability of multi-sensor and multi-resolution images obtained through earth
observation satellites has given rise to a greater need for fusion technology. Fusion
can provide comprehensive information about a particular scene or area by bringing
the information of two or more images into a single plane. The technique has been
in use for the past three decades, and several methodologies have been introduced in
the literature. However, with the invention of new sensors and technology, the number
of challenges has increased. While several review and survey papers have explored
different aspects of fusion, this paper provides a comprehensive discussion of the tools
available and the implications of their use for the fusion of remote sensing images.
Tools based onmulti-resolution analysis (MRA) andmulti-geometric analysis (MGA)
are widely used in the field of image fusion. We provide a detailed study of MRA- and
MGA-based tools, their effectiveness, and the impacts of the corresponding fusion
schema in retaining the desired information.

Keywords Fusion · Multi-resolution analysis · Multi-geometric analysis · Remote
sensing

1 Fusion of Multi-Sensor Images

Fusion is a process that uses mathematical techniques to produce a single image from
a set of input images obtained through different sensors or modalities [8,59,83]. The
fused image provides the advantage of reliability based on redundant information,
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Fig. 1 Types of sensing

and is more informative as a result of the complementary information [6,9]. These
advantages are reflected in computer processing and human visual perception [35,47].

The goal of a fusion system is to provide a composite image which can be used as
essential preprocessed data for various applications such as target detection, tracking,
identification, and security defense systems. It also has applicability in medical fields
such a diagnostics [17,36,49]. Single sensor data often do not provide sufficient infor-
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mation about a scene or object; the combination of data from different sensors solves
this issue through the fusion process [61,104].

Multi-sensor image fusion has been an ongoing problem for the past three decades
for remote sensing data available from earth observation satellites [39]. Fusion is an
application-dependent process; the desired information will be fused according to
application need [9,26]. Let us consider the following scenarios, depicted in Fig. 1, to
understand fusion.

In Fig. 1, three scenarios for sensing the same object are provided. The object and
background are the same in each case.

1. Scenario 1: Two sensors having the same capability are kept at different distances.
2. Scenario 2: Two sensors having different capabilities are kept at the same distance.
3. Scenario 3: Two sensors having different capabilities are kept at different distances.

As Fig. 1 and Table 1 suggest, fusion combines complementary information with
supplementary information to provide comprehensive information about a particular
object or scene [23,95]. For fusion to succeed, the researcher should be aware of the
supplementary and complementary information through the input images [12,75]. The
third scenario is usually well suited for fusion of remote sensing images fusion.

Fusion categorization is depicted in Fig. 2.
Fusion can be categorized into three types:

1. Pixel-level fusion
2. Feature-level fusion
3. Decision-level fusion

Pixel-level fusion is a basic type of fusion in which the pixel values are manipulated
usingminimum ormaximum conditions [60]. Structural information is ignored, which
leads to undesirable or poor results [5,90]. Thus, while pixel-level fusion has advan-
tages such as low-level complexity and applicability to all types of images [1,4], it
ignores structural components and features, resulting in poor information gain [74].
Feature-based systems, by contrast, provide optimal quality of fused products based
on the types of features selected [52,52]. Feature selection is trivial in this method,
because the sensors provide different features [66]. In a feature-based system, the sup-
plementary and complementary information of the fusion product should be analyzed
and computed in order to ensure adequate results [62,91]. Finally, decision-level fusion
is carried out after classification is performed [76]. Although this type carries high
computational cost, the results are much more promotable than those of the other two
methods [3,31]. Each type of fusion has pros and cons; methods are chosen depending
on the application desired.

For remote sensing data, some of the prerequisites for fusion are provided below
[1].

1. Geometric corrections
2. Radiometric corrections
3. Feature extraction
4. Labeling
5. Ground observations
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Fig. 2 Types of fusion

To perform the fusion of remotely sensed images, the default prerequisites should be
carried out first [103].

What should an image fusion processing algorithm provide?

1. Pattern conservation: the ability of the fusion process to retain the structural infor-
mation present in the input imageswhen they are transformed into the fusedproduct

2. Artifact-free: avoidance of any inconsistencies or artifacts in the final product that
will affect the subsequent process

3. Shift and rotational invariance: the algorithm should not depend on the orientation
of the inputs [89]

4. Stability: the final fused product should contain maximum details of the supple-
mentary information from the input images [103]

5. Consistency: the algorithm should be consistent in terms of the resultant product
6. Time complexity: as fusion is a real-time practical application, time complexity

plays an important role in addition to results
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Fusion algorithms must be written based on the above-mentioned constraints.

2 Related Reviews on Fusion

The development of algorithms for the fusion of multi-sensor images presents an inter-
esting challenge for researchers, andmany techniques have been proposed.Algorithms
continue to increase in complexity because of increasing data availability. Several
reviews have been published on different aspects of multi-sensor fusion. In this sec-
tion, we provide a detailed summary of the existing survey literature.

In [7], the authors presented a comprehensive discussion on the operators used for
data fusion and the impact of the operators on algorithm behavior. In [54], the authors
discussed the fundamentals of fusion, as well as the tools utilized for image fusion
and their various characteristics.

In [69], the authors provided a review of multi-sensor fusion in remote sensing,
and presented a comprehensive analysis of pixel-based approaches. In [88], the author
introduced a protocol to determine the efficiency of fusion using reference metrics.
This approach is now widely used to improve fusion algorithms based on the ref-
erence metrics. In [79], the authors presented fusion techniques for remote sensing
applications. They described three different applications that utilize the fused image
as a primary source for post-processing. In [72], the authors introduced a new con-
cept called ARSIS, which involves three operations for fusion. Operation 1 performs
information extraction from Image 1, operation 2 performs inference of the missing
information from Image 2 using information extracted from Image 1, and operation 3
performs construction of the synthesized output. The authors tested theARSIS concept
in different schemes with good success rates.

In [28], the authors provided guidelines for data fusion. They discussed the benefits
of fusion and the parameters considered (generalized for all types of fusion). In [80],
the authors presented a comprehensive review of image fusion algorithms. They noted
that image fusion algorithms dedicated for use in military applications are especially
prominent in the published literature.

In [93], the authors undertook a detailed comparative analysis of image fusion
algorithms, which included a comprehensive analysis of generalized fusion algorithms
within the context of their proposed framework. In [73], the authors discussed pan-
sharpening algorithms, providing a comprehensive analysis and detailing how spectral
and structural information can be retained when performing pan sharpening.

In [2], the authors presented a detailed survey of wavelet-based methods utilized
for fusion, including a comparative analysis of different wavelet-based methods and
a discussion of the information gain after fusion using the experimental results. In
[105], the authors discussed quality metrics that can be used to assess the performance
of fusion algorithms in terms of spectral, spatial, and structural information gain. The
methods used for quality assessment and their impact on algorithm behavior were
detailed in the paper.

In [22], the authors presented a detailed survey on existing techniques used in the
fusion of remote sensing data. They included an exhaustive discussion of conventional
techniques, wavelet-based methods, and fuzzy-based approaches, and the spectral and
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spatial fidelity of the existing fusion methods were evaluated. In [98], the authors
provided a survey of pixel-based methods in image fusion, with an emphasis on the
fusion rules used and the implications of the rules and their impact on fusion.

In [102], the authors discussed recent developments, future prospects, and chal-
lenges in the fusion of remote sensing data. They discussed fusion of multi-source
data from remote sensing and the pros/cons with respect to algorithm complexity and
performance, as well as future trends and associated challenges. In [40], the authors
presented a general discussion of multispectral image fusion techniques. A detailed
survey of existing methods was provided, including an analysis of performance with
respect to spectral and structural information preservation.

In [107], the authors compared several commercial packages for fusion of remote
sensing data, and examined the challenges and performance issues through experimen-
tal testing. In [41], the authors presented a review of multi-sensor data fusion. They
discussed the concepts of the various fusion methodologies currently available and
associated challenges. Future directions and prospects were also briefly addressed.

As the above discussion reveals, the state of the art in the fusion domain has
addressed problems regarding the fundamentals of fusion, tools used and their lim-
itations, pixel- and wavelet-based approaches, fusion used for defense applications,
recent developments, and current trends. Some of the reviews are based on an evalu-
ation of fusion methods by reference metrics, parameter considerations, and quality
assessments. The existing state of the art in remote sensing is limited by the general
factors which affect the fusion algorithms. Image fusion constraints have not been
discussed so far in the literature in the context of the tools utilized for fusion. Since
multi-resolution analysis (MRA) and multi-geometric analysis (MGA) are the most
widely used tools in image fusion, the paper is concentrated on the review of MRA-
and MGA-based techniques and addressing the performance issues of MRA- and
MGA-based fusion algorithms. In the complete review, we have ignored hyperspec-
tral pan-sharpeningmethods, since extensive studies have recently reported [50,67,87]
on the state of the art.

2.1 Image Representation and Image Fusion

Image representation can be classified as spatial- or frequency-based. Spatial rep-
resentation ignores the frequency components during processing, and frequency
representation ignores the spatial content during processing. MRA was introduced to
address these basic issues [55]. Multi-resolution processing was efficiently achieved
using a tool called wavelets [19]. Wavelets have advantages such as space-frequency
localization [16,34]. However, while wavelets are best suited for image processing
tasks, they also have certain disadvantages, which will be discussed later. One of the
properties of wavelets is limited directionality in decomposition, which leads to a lack
of intrinsic geometrical information when decomposing the image at different levels.
To overcome this issue, MGA-based tools have been introduced in the literature.

MGA solved the issue regarding loss of intrinsic geometric information during
decomposition.MGAwas achieved using several tools including contourlets[21], non-
subsampled contourlet transform (NSCT) [18], curvelets [24], and shearlets [48].
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Fig. 3 Three-level decomposition

Fusion based on these tools has increased over the past decade due to the advantages
of MGA.

3 Literature Survey: Overview ofWavelet-Based FusionMethods

MRA for wavelets was first carried out by Mallat in 1989. This detailed analysis
provided the basis for utilizing wavelets in the image-processing domain. The use of
MRA-based fusion techniques has increased because fusion can take place at different
levels (i.e. different resolutions)[10].Wavelets have the ability to decompose the image
at different levels at different resolutions. The figure depicted below shows three-level
decomposition. The low-pass filtered component is referred to as approximated, and
the high-pass filtered components are referred to as detailed components.

In Fig. 3,A1 represents the approximated components at level 1, andH1,V1, andD1
represent the specific components at level 1. Similarly, A2 represents the approximated
components at level 2, and H2, V2, and D2 represent the individual components at
level 2. If the image is 2n × 2n in size, then decomposition can be performed up to
n − 1 levels using wavelets. This is a basic property of wavelets.

Wavelets possess an oscillatory characteristic of finite intervals. They have out-
standing localization properties, which makes them useful as a sophisticated tool for
signal processing. These properties are in the trimmed form ofMRA, allowing experts
to utilize wavelets in image-processing applications. A wavelet is basically a windows
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Fig. 4 MRA-based fusion general framework

of finite duration, which operates over a continuous signal at different shifted instances
so as to extract the information from the signal. Figure 4 presents the basic concept
underlying MRA-based fusion techniques.

Based on the fundamental framework shown in Fig. 4, many MRA-based fusion
techniques have been introduced in the literature.

3.1 Literature Review:Wavelet-BasedMethods

In [46], the authors introduced a method utilizing wavelets for the fusion of multi-
sensor remotely sensed images. They applied an area-based maximum rule for fusing
the decomposed coefficients. This approach is a generalized method for utilizing
wavelets for fusion, and maximum preservation of information from images was
achieved. However, the presence of artifacts in the final output image was an issue
due to the wavelet reconstruction schema. In [14], the authors developed a prototype
for combining various data using wavelets, and applied coefficient comparisons for
fusing the decomposed coefficients. The structural information (edges) was retained
in good proportions in the fused output. However, blocky and wavy effects in the final
fused output were an issue with this method.

In [64], the authors developed a method using wavelets to generate a super-
resolution image from multispectral and panchromatic (PAN) images. Fusion was
carried out by injection of PAN components into the multispectral components. Arti-
facts and and localization failure due to substitution were issues observed. In [63],
the authors presented a chapter on wavelets in image processing, which discussed
wavelets and their implications for fusion. They provided information related to three
types of wavelets used for fusion.

In [29], the authors carried out an urban analysis by fusion of multi-sensor images
usingwavelets. They integrated the decomposed coefficients instead of substituting for
fusing. A directional rule based on edge detectionwas applied. Thismethod performed
well when heterogeneity in the scene was dominant, but visual degradation due to the
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skeletonization was a problem. In [66], the authors conducted a detailed study on
Daubechies and Haar wavelets for the fusion of remotely sensed images. They used
a decision-based rule in the context of the definition of the urban object. Their study
showed that the fusion of multi-sensor images was best achieved with the Daubechies
wavelet basis technique.

In [43], the authors developed a pan-sharpening algorithm utilizing wavelets, and
used the substitution method for fusing the decomposed coefficients. The method
showed good capacity for retention of spectral information. As with other methods,
however, the presence of artifacts and blocky effects were an issue with this algorithm.
In [68], the authors presented a formalized method for fusion using wavelets. Region-
based decision rules based on segmentation were used in the formalized framework.
The authors addressed existing issues such as the presence of artifacts and blurry
effects. They found that the time complexity increased with their proposed framework
compared with existing methods.

In [65], the authors presented a tutorial on wavelet-based methods for fusion, and
used weighted averaging for fusing the decomposed coefficients. Their comparative
study provided future perspectives on fusion. In [106], the authors developed amethod
for pan sharpening using an intensity-hue-saturation (IHS) color model and wavelets.
The injection of the intensity component was carried out at the fusion level. Color
distortions were decreased to a good extent with the proposed method, but artifacts
and blocky effects in the reconstructed output image were an issue.

In [38], the authors presented a method for the fusion of multi-sensor images using
dual-tree complex wavelet transforms. They compared their method with both the
decimated and undecimated discrete wavelet transform-based methods. The proposed
method was able to generate both visually and quantitatively better results than the
other methods. This method also addressed existing issues such as artifacts and blocky
effects in the reconstructed output. Increased time complexity was noted for this
method compared with the other methods due to the complex filter banks utilized in
the architecture of the dual-tree complex wavelet transform. In [30], the authors intro-
duced a variational wavelet-based method for fusion. Variational-based approaches
have performed well for data with a high level of heterogeneity, but increasing the
textural content of the structural components was unsuccessful.

In [32], the authors developed a fusion algorithm based on interband structure
modeling. The method performed well when the images contained more structural
information. Increasing the textural content of the structural components was not
successful with this method.

In [33], the authors undertook a detailed study of Mallat and á trous wavelet trans-
forms utilized for pan sharpening. Using different types of fusion rules, they provided
a comprehensive analysis of decimated and undecimated wavelet-based approaches
for image fusion. In [42], the authors proposed an improved additive wavelet trans-
form for fusion, in which they were able to retain the radiometric information along
with geometric information. They used the component injection method at the fusion
phase to address existing issues such as artifacts and blocky effects in the reconstructed
output.

In this section, we have provided a comprehensive outline of wavelet-based
approaches for the fusion of remote sensing images. Wavelet-based techniques rely
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on both decimated and undecimated approaches. Decimated approaches are prone to
aliasing, which leads to artifacts. Undecimated wavelet approaches favor fusion due
to the short decomposition and restoration schema. Based on this discussion, it can
be observed that fusion rules are application-dependent. For example, injection-based
rules are used for urban applications, and substitution-based fusion rules are used
for change detection. The overview presented above discusses the various methods
in terms of the methodology used, advantages, and drawbacks. Observations from
publications based on wavelet-based fusion can be summarized as follows.

1. From 1995 to 2001, regular improvements were made to wavelet-based fusion
methods.

2. From 2001 to 2005, formalized frameworks for the fusion of multi-sensor images
were developed and studied.

3. Since 2005, the use of wavelet-based approaches has decreased drastically in
the fusion domain; this is because of the emergence of multi-geometric-based
approaches, with their respective advantages.

3.2 Discussion ofWavelet-BasedMethods

Here we draw some conclusions regarding wavelet-based methods from the above
discussion. Wavelet-based methods perform well compared with conventional fusion
methods such as principal component analysis (PCA), IHS, and Brovey transform.
The authors mentioned above found that their methods performed well relative to the
methods in their comparisons. However, it is difficult to reach a general conclusion
regarding the best method among these, because of the differences and subjectivity
in the comparisons. Some published remarks, such as method performance in terms
of time complexity and computational complexity of the processes, were discussed,
and some plans have clear advantages over other methods based on the processing
time and complexity. In this review, we focused on the utilization of wavelet tools and
implications of the fusion schema. In the above discussion, we provided the details
on the methods and fusion schema along with their results with regard to structural,
spatial, and radiometric information.

Various fusion schemes have been introduced in the literature, including simple
(min, max, and averaging), substitution, injection, PCA, IHS, clustering, segmenta-
tion, region, object (decision level), decision map, and pulse-coded neural network
(PCNN)-based schemes. Different types of wavelets have been introduced and uti-
lized for fusion, including decimated, undecimated, and non-separable wavelets. The
use of a particular fusion schema along with corresponding wavelets and their perfor-
mance can be judged based on loss of radiometric information, spatial distortions, time
complexity, memory utilization, and subjective analysis (visual). Different combina-
tions provide different levels of performance, and consequently we cannot determine
the absolute efficiency of any one method due to limited or subjective comparisons
and the application-dependent nature of the particular method.

The simplest or earliest wavelet-based fusion methods were capable of producing
better results than conventional methods such as IHS, PCA, and Brovey transform, and
additional improvements in wavelet-based methods have been seen over the past three
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decades. Hybrid combinations such as wavelets along with PCA and IHS produce bet-
ter results than the simplest methods, but they also have limitations. For example, IHS
can be applied only on three bands. In substitution-based methods, the substitution is
usually carried out on the basis of statistical parameters which require a priori knowl-
edge regarding the data distribution on the particular image. In advanced approaches
such as object detection, decision maps and neural network-based methods in combi-
nation with wavelets generate visually good results, with good quantitative measures,
but these methods are limited by the need for a strong training data set. Obtaining
training data in the remote sensing domain is an expensive and tedious task. These
advanced approaches are typically application- and data-dependent.

The selection of wavelets also affects the performance of the fusion algorithm. Dec-
imated wavelet-based methods commonly introduce artifacts due to the disturbance
of the continuity of linear structures. Undecimated wavelet-based methods exact a
greater premium in the computation process, but address the issue of artifacts in the
final product. The fusion schema or rules applied to the method significantly affect the
performance of the algorithms. When an averaging rule is applied to the decomposed
coefficients, it degrades the structural information by over-smoothing; the application
of min-max rules on the decomposed coefficients leads to no loss of either radiometric
or structural information. It is important to apply the appropriate rule for the specific
coefficients. Whereas the application of averaging on detailed coefficients leads to
severe degradation of the structural components, averaging applied on approximated
coefficients leads to over-smoothing. In region-basedmethods, the selection of regions
is crucial, because the types of regions present in the test image affect the results. Some
schemes will perform better on vegetation but fail in the urban region. In clustering-
based methods, the result is dependent on the number of clusters considered for the
particular data; the same number of clusters may produce better or poorer results for
different data.

It is clear from this discussion that every wavelet-based fusion scheme has its own
set of advantages and limitations. More comprehensive testing is needed in order to
fully assess the specific conditions under which each one is most appropriate.

4 Literature Survey: Overview of MGA-Based Fusion

A major drawback in wavelet-based fusion systems is the loss of intrinsic geomet-
rical information due to the limited directionality of the decomposition schema. To
overcome this issue, multi-scale geometric analysis (MGA) was introduced, which is
based on directional representation. This has been achieved through tools such as con-
tourlets [21], curvelets [24], wedgelets, ridgelets, non-subsampled contourlets [18],
and shearlets [48]. Figure 5 shows the basic concept underlying MGA-based fusion
techniques.

Several MGA-based fusion techniques considering the basic idea shown in Fig. 3
have been introduced in the literature. The following section describes the research
work carried out onMGA-based approaches for the fusion of multi-sensor images and
their corresponding objectives, along with their advantages and drawbacks.
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Fig. 5 MGA-based fusion general framework

Fig. 6 Contourlets

5 Contourlets

Contourlets were introduced by Do and Vetterli [21] as a means of obtaining sparse
expansion for images with smooth contours. In the contourlet transform, multi-scale
transform is initially applied on the image to obtain the edge and point detection, and
local directional transform is then applied on the high-pass coefficients to obtain the
smooth contours. The contourlet transform is depicted in Fig. 6.

Contourlets offer a flexible multi-scale representation and directional decomposi-
tion of images. The intrinsic geometrical representation of the image is retained with
the obtained smooth contours and linear structures. This property of contourlet trans-
form hasmotivated the use ofMGA in image processing. The utilization of contourlets
in the image fusion domain has increased over the past decade due to its advantages
over wavelet techniques and other conventional fusion methods. In the following, we
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provide details regarding the fusion methods employed using contourlets and their
objectives, along with the pros and cons.

5.1 Literature Survey: Contourlet-Based Fusion

In [108], the authors developed a method for fusing multiband synthetic aperture radar
(SAR) images using contourlets. They used averaging for the approximated coeffi-
cients and edge informationmeasurements for the decomposed directional coefficients
in the fusion phase. Thismethod enabled the retention of the structural information, but
in the homogeneous region, over-smoothing of small details was observed. In [71], the
authors developed a method for fusing multi-sensor images using contourlets, without
loss of energy constraints or structural information. They utilized averaging for the
low-pass coefficients and regional energy measurement for the directional coefficients
in the fusion phase. Their method was tested for consistency with different sets of data
and obtained encouraging results. However, time complexity was an issue due to the
evaluation of regional energy components.

In [57], the authors presented a method to fuse multi-sensor images in remote
sensing using contourlets. They performed averaging for the low-pass components and
applied the maximum selection (MS) rule for the directional coefficients in the fusion
phase. Good retention of the structural component was achieved in the reconstructed
output image, but a loss of spectral information occurred during the fusion process.
In [81], the authors developed a pan-sharpening method using contourlets. In their
proposed work, they considered the low-pass components of MS images as fused low-
pass components based on threshold T, and then selected the directional components.
Thismethodmaintained a good trade-off between spectral and spatial resolution during
the fusion process. However, a ringing effect was found in the fused image due to
downsampling at the reconstruction end.

In [94], the authors presented a method for fusion of multiband SAR images using
contourlets with an expectation–maximization (EM) algorithm. They used edge infor-
mation measurements for low-pass components and EM algorithm-based parameter
estimation for directional components. The method was shown to be capable of retain-
ing the textural information due to the adaptability of the fusion parameter selection.
A high premiumwas paid, however, because of the utilization of an iterative EM algo-
rithm for the directional coefficient selection. In [85], the authors developed a method
for fusion of multi-sensor images in remote sensing using a wavelet-based contourlet
schema. They performed averaging for low-pass components and applied region-based
rules for high-pass directional components. Improvements were observed in the sharp-
ness of the fused output and retention of structural information, but poor performance
was an issue when radiometric information was dominant in the input images.

In [77], the authors introduced a method for pan sharpening using PCA and con-
tourlets. They injected the principal components of the multispectral image into
the detailed components of the panchromatic (PAN) image. The spectral (radiomet-
ric) information was successfully injected using PCA, and spatial enhancement was
achieved using contourlets. Filter selection then became a crucial factor andwas depen-
dent on the input pair of images in the proposedmethod. In [82], the authors developed
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a method for pan sharpening using contourlets and IHS transformations. They used
a weighted model at the low-pass coefficients and maximum rule at high-pass coef-
ficients during the fusion phase. The radiometric information was retained well with
this method, but degradation of spatial information was observed in their quantitative
analysis.

In [37], the authors developed a method for fusion of visible and infrared (IR) data
using the contourlet transform and K-means clustering. They utilized K-means clus-
tering to obtain regions, and applied a max-min rule to the regions to obtain fusion
results. This method was found to be efficient in detecting hidden objects, and also
in dealing with misregistration issues. Determining the number of clusters according
to the nature (heterogeneity) of the image, however, was difficult. In [15], the authors
proposed a pan-sharpening algorithm based on contourlet and spectral response. A
weighted fusion rule was applied on the low-pass coefficients, and directional coeffi-
cients of the PAN image were injected to obtain the fused result. Spectral and spatial
improvements were observed in the fused product. However, because a static weight
parameter was set through experiments based on the selected images, application to
different pairs of inputs was tedious.

In [11], the authors presented a method for the fusion of IR and visible remote sens-
ing images (optical), and the method was employed using multi-contourlet transform.
A weighted fusion rule was applied for the low-pass coefficients and local energy-
based rules for the directional coefficients. The authors determined the weight for
the fusion rule by using the golden-section algorithm. The performance of the algo-
rithm was encouraging in the fusion of IR and visible images both quantitatively and
qualitatively, but a high premium was paid due to the multi-contourlet decomposition
schema and iterative golden-section search algorithm. In [100], the authors developed
a method for the fusion of multi-sensor images in remote sensing using contourlet
packets along with a PCNN. They applied the PCNN rules on the low-pass coeffi-
cients, and a region-based rule was applied to the directional coefficients. Restoration
in the fused coefficients was more efficient than with contourlet-based methods due
to utilization of a non-subsampled directional filter bank, but severe color degradation
occurred when the radiometric information was dominant in the inputs.

In [51], the authors developed a method for fusion of multi-sensor images using
local energy and sharp frequency-localized contourlet transform. They employed a
local energy-based rule for low-pass coefficients and a sum-modified Laplacian-based
rule for directional coefficients in the fusion phase. This method addressed the issue of
the pseudo-Gibbs phenomenon that was seen in existing methods, but suffered from
degradation of radiometric information during fusion. In [86], the authors developed a
fusion algorithm in the contourlet domain by retaining the structural information using
discontinuity preservation basedon edge learning. Theyused themaximumaposteriori
(MAP) approach to determine the low-pass coefficients and Markov random field
(MRF) priormethod to determine the fusion coefficients in the directional components.
Improvements in sharpness and structural information were observed due to theMAP-
MRFcombined approach.However, time complexitywas an issue due to the utilization
of iterative minimization algorithms.

In [99], the authors presented a method for fusing multi-sensor images using hid-
den Markov tree and PCNN. Their method relies on the consideration of statistical
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Fig. 7 NSCT overall structure

dependence to obtain a mature output. The authors utilized a maximum selection
rule for low-pass coefficients and saliency-based rules for directional coefficients
using PCNN. This method addressed issues of minor distortions of the structural
components. However, it was found that with multispectral images, if the radiomet-
ric information was dominant, the method would fail when transferring radiometric
information by generating a saliency map using the EM algorithm. In [92], the authors
investigated the contourlet representation and introduced a tunable contourlet trans-
form to attain an efficient transformation for fusion. They employed averaging for the
low-pass coefficients and absolute maximum selection for the directional coefficients.
Minor distortions of the structural components and blurring of the radiometric compo-
nents were rectified using the proposed method, but the method was limited due to the
selection of parameter Q. The parameter Q selected to tune the decomposition schema
of the contourlet is dependent on the entropy change. In the case of the homogeneous
region, this factor would have severe effects, leading to failure.

6 Non-Subsampled Contourlet Transform (NSCT)

The NSCT divides the two-dimensional signal into multiple components which are
shift-invariant. The 2D signal is decomposed into different levels of decomposition,
referred to as a non-subsampled pyramid structure (NSPS). The non-subsampled direc-
tional filter bank (NSDFB) is applied to the high-frequency component to obtain
directional components, as shown in Fig. 7a.The filter bank, which splits the fre-
quency plane in 2D, is pictured in Fig. 7b. The NSPS provides multi-scale properties,
and the NSDFB provides the directionality.

6.1 NSCT Representation [56]

The representation of NSCT comprises the following properties.
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1. Multi-resolution
2. Multidirectional
3. Shift invariance
4. Regularity
5. Redundancy (J + 1) J is the number of levels

6.2 Multi-Resolution Analysis

[Vj ] j∈Z (1)

where Z indicates a real number. This provides a sequence of multi-resolution nested
subspaces, as given below

...V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2... (2)

where Vj is associated with the uniform grid of 2 j ∗ 2 j

Difference images in the subspace areW j , and the orthogonal difference is the subspace
that orthogonally complements Vj in Vj−1

Vj−1 = Vj ⊕ W j (3)

6.3 Multidirectional Analysis

Equation 4 shows the result when the filter bank is applied to approximation subspace
Vj .

Vj =
2l−1⊕

k=0

V l
j,k (4)

where k = 0, 1, 2, . . . , 2l −1 indicates the total number of wedges. Wedges represent
the directional elements.

The multi-scaling of the NSCT is achieved as follows

L2(R2) =
⊕

j=Z

W j (5)

where W j is not shift-variant.

6.4 Shift Invariance

To make the representation shift-invariant, a lifting theorem is applied to the filters as
follows (

H2D
0 f (z)

H2D
1 f (z)

)
= Π N

i=0

(
1 0

P2D
i 1

)
∗

(
1 Q2D

i

0 1

) (
1

0

)
(6)

where f (z) is a 2D function, and P and Q have the same complexity.
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6.5 Regularity

Φ(ω) = Π∞
j=0H0(2− j )ω is obtained by scaling the detail of the low-pass approxima-

tion, and the regularity is controlled by a low-pass filter.

H0(ω) =
(
1 + e jω1

2

)
N1

(
1 + e jω2

2

)
N2 (7)

6.6 Literature Survey: NSCT-Based Fusion

In [84], the authors investigated the utilization of NSCT in image fusion and developed
a method for fusing multi-sensor images using NSCT. They employed averaging for
low-pass coefficients and a regional energy-based rule for the directional coefficients.
The method showed successful utilization of NSCT in image fusion, with good results
in terms of structural preservation. However, a high premium was paid due to the
dynamic change in the windowing-based fusion rule. In [97], the authors developed
an algorithm for the fusion of remote sensing images based on NSCT and a luminance
hue saturation (LHS) color model. They employed the substitution of decomposed
coefficients to achieve fusion. Their method preserved the structural information to a
good extent, but failed to retain the spectral information.

In [101], the authors developed amethod for fusion ofmultiparametric SAR images
by utilizing stationary wavelet-based NSCT (SW-NSCT) and PCNN. They employed
PCNN to apply fusion rules on the decomposed coefficients for final fusion. The per-
formance of the method was good when a large number of iterations were used, which
led to increased time complexity. In [44], the authors presented a novel method for
fusion of IR and visible images using NSCT and region segmentation. They employed
substitution of coefficients at the low-pass level and local region-based fusion rules for
the directional coefficients. The limitation in this method was the increased brightness
in the final reconstructed image, leading to misclassification of small linear structures.

In [45], the authors developed a method for the fusion of multi-sensor images in
remote sensing using NSCT and PCA. They employed substitution for the low-pass
coefficients performed by PCA, andmaximum value selection for the directional coef-
ficients. This method performed well in terms of spectral preservation, but a blurring
of structural components was observed in the output. In [53], the authors introduced a
pan-sharpening method by considering spectral and spatial qualities of PAN and MS
images in the NSCT domain. They used a fourth-order correlation coefficient (FOCC)
as a decision-level parameter to determine which component was injected. Improved
spectral enhancement was observed in the fused product and noise, and the blurry
effect decreased considerably. However, the FOCC-based results were not convincing
in terms of structural component preservation compared with correlation coefficient
(CC)-based methods.

In [96], the authors introduced a novel region-based fusion approach by utilizing
NSCT and particle swarm optimization. A maximum value-based rule was applied to
the approximated level, the bandpass coefficients were segregated as smooth regions,
and the edge region using particle swarm optimization and the maximum value-based
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rule was applied on the segregated components. This method performed well in terms
of spatial enhancement, and minor blurry effects were also addressed. A decrease
in the color values was observed, which may have been due to the use of the IHS
color model. In [27], the authors introduced a method for pan sharpening in the NSCT
domain by considering the issue of interpolation during upsampling. Upsampling was
performed after the decomposition of the PAN image to avoid an interpolation issue.
A decision map was used for the application of fusion rules. Structural components
were retained well in the fusion process, but patches were observed due to spectral
distortion.

7 Shearlets

Shearlets have received much attention in the image processing domain over the past
few years, as they are well suited for continuous and discrete signal representations.
Intrinsic features such as curves will be represented by straight lines in 2D data, which
leads to roughness of the curves in the results. Directional representations have solved
this issue by providing directional components for representing features in images.
Shearlets exhibit time and frequency localization with long and narrow elements that
hold intrinsic geometrical information. The discrete shearlet transform provides a
good approximation with tight frames, producing optimal directional representation.
The directional representations provided through shearlets are scale-, shearing-, and
translation-invariant.

Discrete signal representations are considered; hence, the work is based on discrete
2D signals (images). Shearlets are constructed on the basis of affine systems with
composite dilations [theory of wavelets with composite dilations].

Affine systems with composite dilations are of the form ΦAB(ψ) where ψ ∈
L2(R2); A and B are invertible matrices with |det B| = 1, so

B =
∣∣∣∣
1 1
0 1

∣∣∣∣ A =
∣∣∣∣
4 0
0 2

∣∣∣∣

where the matrix A is referred to as the anisotropic dilation matrix, and matrix B is
referred to as the shear matrix. The affine system with composite dilations is defined
by considering the prior conditions provided above, as follows.

ΦAB(ψ) = ψ j,k,l(X) = |det A| j/2ψ(Bl A j (x − k)), (8)

where j ∈ Z , l ∈ Z , and k ∈ Z2. The shearlets are a good example of affine systems.
The shearlet elements are supported by Parseval frames. The elements of shearlets are
defined [21] as follows

ψ0
j,k,l = 23 j/2ψ(Bl

0A j
0(x − k)) (9)

for j ≥ 0,−2 j ≤ l ≤ 2 j , k ∈ Z2 similarly,
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Fig. 8 Decomposition schema of
shearlets

ψ1
j,k,l = 23 j/2ψ(Bl

1A j
1(x − k)) (10)

In general,
ψd

j,k,l = 23 j/2ψ(Bl
d A j

d(x − k)), (11)

where “d” represents the total number of decomposed elements present after decom-
position.The decomposition schema is shown in Fig. 8.

Each element “d” is of trapezoid form.
The size of the trapezoid = 22 j ∗ 2 j , where j is the level of decomposition.

To reduce the computational complexity in Eq. 4, the parameters l, j and k are
replaced with index value i . The count of the index value starts when the slope is
1 (i.e θ = + 45◦or − 45◦) and proceeds in the clockwise direction up to 180◦.
The incremental count will start from the next scale. The indexing schema is shown in
Fig. 9. Hence, the total number of indices at J0−1 scale is given as η = 1+∑ j0

j=0 2
j+2


⇒
η = 2 j0+2 − 3 (12)

If the level of decomposition is 2, then 13 decomposed elements will be obtained.
If the level of decomposition is 3, then 29 decomposed elements will be obtained.

7.1 Advantages of Shearlet Transform

– Shearlets are characterized by the isometry of the pseudo-polar transform.
– The closeness to isometry helps to avoid information dissipation that occurs in
decomposition and restoration.

– The invertibility characteristic of shearlets makes the system translation-invariant.
– Space-frequency localization is provided to a good extent to avoid decays in spatial
and frequency domains.
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Fig. 9 Indexing in shearlets

– The smoothness provided by the shearlet transform in the spatial and frequency
domains helps to retain the intrinsic geometrical information present in the data.

7.2 Literature Survey: Shearlet-Based Fusion

In [20], the authors investigated the utilization of shearlet infusion of multi-sensor
remote sensing images. They introduced a pan-sharpening method using shearlets and
an LHS color model. They employed substitution of pan coefficients for multispec-
tral coefficients at the approximated level and maximum selection on the directional
coefficients. This method provided good results in terms of spatial enhancement and
spectral distortion, but it produced better results when there was less scene hetero-
geneity. In [58], the authors developed a method for image fusion based on shearlet
transform along with region-based fusion rules. In their proposed method, averaging
was performed at the approximated level, and a regional consistency-based rule was
applied on the directional coefficients. This method showed greater improvement in
spatial enhancement but failed to preserve the spectral information.

In [13], the authors proposed a method for image fusion based on a pulse-coded
neural network (PCNN) in the shearlet domain. They employed the PCNN to apply
rules based on the decision map generated from the decomposed coefficients. This
method produced a better result than the previously discussed shearlet-based meth-
ods in terms of retaining structural and radiometric information, but a high premium
was paid due to the utilization of PCNN for all of the decomposed coefficients. In
[25], the authors investigated a dual-tree compactly supported shearlet transform
(DTCST) for pan sharpening. They utilized PCA and DTCST, and employed sub-
stitution of PAN coefficients for multispectral coefficients at the approximated level
and applied the maximum selection rule for the directional coefficients. Spatial and
spectral enhancement were observed in the fused product, but the method suffered
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from time complexity, which was greater due to the use of a GaussianMarkov random
field (GMRF).

In [78], the authors presented a method for pan sharpening in the shearlet domain
using a regional division strategy. They employed fusion rules based on regional
correlation for all of the decomposed coefficients. Remarkable spatial enhancements
were observed due to the application of region-based rules. However, because IHS-
based color transformation was used, a brightness issue was seen in the final pan-
sharpened image. In [70], the authors developed a method for pan sharpening in the
shearlet domain by considering the regional relevance metrics. They employed a local
region-based fusion rule for the approximated coefficients, and a gradient-based rule
for the directional coefficients. The results showed good retention of structural and
radiometric information, with a lower premium paid by this method than by the other
methods in the shearlet domain discussed in this section.

8 Discussion of MGA Tool-BasedMethods

Wavelets are best suited for the fusion of remote sensing images, but their limitations
play an important role in the fusion results. Wavelets are good at isolating the discon-
tinuities at edge points, but fail to retain smoothness along the contours. The limited
directional decomposition of wavelets degrades the continuity of contours and linear
structures, which leads to the loss of intrinsic geometrical information and introduces
artifacts in the fused image when restoring the decomposed coefficients. MGA-based
tools aim to solve the two-dimensional discontinuities by offering a flexible multi-
resolution and multidirectional decomposition of images.

MGA-based tools provide sparse expansions for images with smooth contours and
linear structures. In practice, the multi-scale transform is applied to the image to
obtain the different frequency components, and a directional filter is applied to the
decomposed components to obtain smooth contours and linear structures of the same
scale. Since MGA-based tools have the capacity to retain the intrinsic geometrical
information in the image by their representation, their use has been encouraged in
image fusion algorithms. In previous sections, we have discussed fusion methods that
rely on MGA tools such as contourlets, NSCT, and shearlets.

Many fusion schemes have been introduced in the literature for MGA-based fusion
methods, including averaging, maximum selection, minimum selection, weighted
averaging, PCA, IHS, edge information, regional energy measurement, threshold,
expectation–maximization algorithm, region-based rules, K-means clustering, local
energy, sum-modified Laplacian, maximum a posteriori, Markov random field, Gaus-
sian Markov random field, particle swarm optimization, regional divisional strategy,
and regional relevance metric-based schemes. It is difficult to provide an absolute
conclusion regarding the value of these fusion schemes given the differences in the
comparisons and experiments. We have provided some general remarks based on the
tools utilized rather than the schemes used in the methodologies, as the schemes devel-
oped are application- and data-dependent. However, although evaluating the fusion
scheme in absolute terms is very difficult, in previous sections we have provided the
advantages and drawbacks of the schemes corresponding to the various methods.
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Contourlets provide optimality for the analysis of linear or curved structures in
2D data (images), whereas wavelets provide optimality in the analysis of zero-
dimensional or point singularities. The basic idea behind contourlets is to generate
multi-resolution and multidirectional expansion using non-separable filter banks.
By performing parabolic scaling, the contourlets achieve continuously differentiable
curves with directional vanishing moments.With the infusion of multi-sensor imagery
in remote sensing, the above-mentioned property helps to retain the structural infor-
mation during the decomposition of the image into approximated and directional
components. The contourlet-based method provides better results in terms of struc-
tural preservation, and the radiometric information retained is dependent on the fusion
schema introduced in the literature. On the other hand, the drawback to utilizing con-
tourlet transform is that it is shift-variant, and this property introduces a pseudo-Gibbs
phenomenon in the fused image. Downsampling and upsampling operations at the
decomposition and reconstruction levels lead to the introduction of artifacts in the
fused results. However, the better retention of structural information than that achieved
with wavelets has encouraged the use of contourlets in the fusion of remotely sensed
multi-sensor images.

The non-subsampled contourlet transform (NSCT) has a similar process of decom-
position and reconstruction as the contourlet transform. The difference in NSCT
is that it uses a non-subsampled pyramid in place of a Laplacian pyramid and a
non-subsampled directional filter bank in place of a directional filter bank to avoid dec-
imation when performing decomposition and reconstruction. By avoiding decimation,
the shift invariance property is achieved by NSCT. The NSCT provides better selectiv-
ity of frequency components, and regularity is well maintained for two-dimensional
signals. Studies have proven that NSCT coefficients are strongly dependent on their
neighborhood and cousin coefficients. The above-mentioned properties have provided
a platform for the use of NSCT in the field of fusion. The correlation maintained by
the coefficients with the neighborhood helps to retain the radiometric information
when fusion is performed, and the strong selectivity helps the fusion algorithms retain
the structural components. The shift-invariance property helps to address the issue of
artifacts caused by contourlets and wavelets, as discussed in the literature. However,
even though NSCT provides maximum optimality of signal decomposition, the NSP
and NSDBF construction is highly complex, which leads to an increase in the time
and space complexity in the fusion algorithms.

Shearlets have the same advantages as NSCT, and also provide a simplified math-
ematical structure and added flexibility due to their discretization. They provide
multi-resolution analysis similar to that associated with classical wavelets, which is
encouraging for developing faster algorithmic implementations. The advantages of
lower complexity in time and space, along with the other advantages as discussed for
NSCT, encourage the use of shearlets in image fusion algorithms. From the discussion,
it is clear that every tool possesses its own advantages and drawbacks; the selection
of the tool plays an important role in the fusion result.
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9 Conclusion

Fusion of multi-sensor images in remote sensing offers the potential for application
in a variety of areas including defense, agriculture, disaster management, and urban
development. The fusion arena has been developed extensively over the past three
decades, and yet it continues to evolve in new directions and wider scope. Challenges
also continue to emerge with the increasing availability of data. Research communities
are developing advanced techniques, methods, and architectures as a result of the
increased interest and challenges in fusion.

In this paper, we have provided a detailed study of the widely used MRA- and
MGA-based tools and their implications for the fusion of remote sensing images. We
have discussed the efficiency of the tools and of the corresponding fusion schema in
retaining the desired information. From these discussions,wehave drawn the following
conclusions.

– Tool selection for fusion is a critical task because of its own potential advantages
and drawbacks.

– The fusion schema plays a vital role in the fusion process depending on the appli-
cation and the type of data utilized.

– It is difficult to determine the best methodology among existing methods due to
differences and the subjective nature of comparisons and experiments.

Because of improvements in sensors, image fusion in remote sensing has increased
the possibilities for research. The development of tools used for image representation
enhances the fusion domain and provides greater scope. We hope that the advances
in image representation tools and their implications for remote sensing image fusion
will expand the work in this field.

Since fusion is an interesting problem in the remote sensing domain, each year a
fusion contest is conducted by IEEEGeoscience andRemote Sensing (IGARSS). They
distribute data along with the ground truth values for their algorithm evaluation. The
contest held by the committee encourages researchers to pursue work on multi-sensor
remote sensing image fusion.
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