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Abstract
Although the diffusion sign-error (DSE-LMS) algorithm is robust against impulsive 
noise, it has a slow convergence rate due to the application of the sign operation. 
Therefore, this study proposes a robust variable step-size DSE-LMS algorithm to 
solve the conflict between fast convergence rate and low misadjustment in impul-
sive noise environments. The step size is obtained by minimizing the l1-norm of the 
noiseless intermediate posterior error at each node, resulting in improved tracking 
capability of the proposed algorithm. Furthermore, the mean-square performance 
is analyzed based on the principle of energy conservation. The simulation results 
demonstrate that the proposed algorithm distinctly outperforms the existing algo-
rithms in terms of both steady-state error and convergence rate in impulsive noise 
environments.
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1  Introduction

Recently, distributed adaptive networks have received considerable attention owing to 
their wide range of applications in the fields of environmental monitoring and spec-
trum sensing [3, 6, 9–11, 18, 21]. The distributed estimation algorithms are important 
for distributed adaptive networks. To this end, the diffusion least-mean-square (DLMS) 
algorithm has been widely studied because of its simplicity and easy implementation 
[4, 13–15, 29]. Adaptive filtering algorithms based on the mean-square error (MSE) 
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criterion may suffer from severely degraded convergence performance, or even diver-
gence problems when the measurement noise contains impulsive interference [5, 7, 8, 
22, 25]. Similarly, distributed estimation algorithms based on the MSE criterion may 
also suffer from degraded performance when the network suffers from thunder or large 
pulse electromagnetic interference.

By combining the sign function and the DLMS algorithm, a diffusion sign-error 
(DSE-LMS) algorithm was developed to ameliorate the robustness against impulsive 
interference [16]. Similar to other conventional algorithms, although the DSE-LMS 
algorithm has low computational complexity and is robust against impulsive noise, the 
application of the sign operation degrades its performance (fast convergence rate and 
low steady-state error). The contradiction between the fast convergence rate and low 
steady-state mean-square deviation (MSD) can be solved by using a variable step-size 
scheme.

Inspired by earlier work [12], a robust variable step-size diffusion sign-error (RVS-
SDSE-LMS) algorithm is developed herein. As the step size is derived by minimiz-
ing the intermediate noiseless posterior error, the proposed algorithm has a fast con-
vergence rate and good tracking capability. Then, the mean-square performance and 
computational complexity are analyzed. The simulation results demonstrate that the 
proposed algorithm achieves a fast convergence rate, low steady-state error, and good 
tracking capability in impulsive noise environments. Owing to the advantages of dis-
tributed networks and the variable step-size scheme, the proposed algorithm can be 
applied to adaptive echo cancellation, active noise control, etc.

2 � Diffusion Sign‑Error Algorithm

As shown in Fig. 1, each node k obtains an observed output signal dk(i) and a regression 
vector uk(i) at time i in the distributed network. The distributed algorithms are used to 
estimate the unknown M × 1 weight vector wo; the linear model can be expressed as:

Fig. 1   Distributed network topology
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where uk(i) = [uk(i),uk(i − 1),…,uk(i − M+1)]T, vk(i) is the background noise with var-
iance �2

v,k
 at agent k.

Each node k has a set Γk, which includes itself and the nodes that connect with node 
k. In the set, each node can exchange information with its neighboring nodes. The 
weight update formula of the DSE-LMS algorithm can be rewritten as [16]:

and

where �k(i) is the intermediate weight estimate for wo at agent k and μk is the fixed 
step-size at agent k. al,k is the combination weight, which satisfies 

∑
l∈�k

al,k = 1

;al,k = 0 if l ∉ �k . The error signal at agent k is defined as follows:

3 � Proposed Algorithm

The variable step-size is generally influenced by the error signal that should be mini-
mized as soon as possible [17]. To solve the conflict between the fast convergence rate 
and the low steady-state error, a variable step-size of the adaptation step is proposed by 
minimizing the noiseless intermediate posterior error as follows.

Defining the noiseless intermediate priori error and posterior error, respectively,

Applying Eqs. (5) and (6) in (2) yields

Then, the proposed variable step-size is derived by solving the following minimiza-
tion problem:

Since the optimization problem is irrelevant to the measurement noise, the step-size 
constraint [12] can be neglected. As can be seen from Eq.  (8), the optimal step-size 
cannot be obtained by taking its deviation because the equation is the l1-norm with 
respect to μk. The optimal solution can be obtained by making Eq. (8) equal to 0, and 
the optimal step-size is derived as:

(1)dk(i) = uT
k
(i)wo + vk(i)

(2)�k(i) = wk(i − 1) + �kuk(i)sign
(
ek(i)

)

(3)wk(i) =
∑

l∈�k

al,k�l(i)

(4)ek(i) = dk(i) − uT
k
(i)wk(i − 1)

(5)ea,k(i) = uT
k
(i)
(
wo − wk(i − 1)

)

(6)ep,k(i) = uT
k
(i)
(
wo − �k(i)

)
.

(7)ep,k(i) = ea,k(i) − �ku
T
k
(i)uk(i)sign

(
ek(i)

)
.

(8)min
�k(n)

‖‖‖ep,k(i)
‖‖‖1 =

‖‖‖ea,k(i) − �k(i)u
T
k
(i)uk(i)sign

(
ek(i)

)‖‖‖1.



3010	 Circuits, Systems, and Signal Processing (2020) 39:3007–3018

ea,k(i) can be obtained by using the shrinkage denoising method [1, 2, 17, 19, 30]:

However, when the measurement noise vk(i) contains impulsive noise, the estima-
tion results of the shrinkage method cause bias. In order to maintain the accuracy of 
the estimation method, the selection of threshold parameter t is [20, 27]:

where �k(i) is selected as �k(i) = �e,k(i) ; ξ is a positive value. �e,k(i) is calculated by:

and

where L is the extent of the estimation window.
As can be seen from (9), since ea,k(i)=ek(i) − �k(i) , the optimal step-size is influ-

enced by the error signal and the noise signal at each node. As the noiseless interme-
diate posterior error is large in the transient state, ek(i) >> 𝜈k(i) , μk tends to be large. 
When the proposed algorithm begins to converge to the steady state, ek(i) ≈ �k(i) 
and ea,k(i) ≈ 0 , thus making μk(i) close to 0. In addition, when the system suddenly 
changes, ea,k(i) immediately becomes large, and the proposed algorithm achieves 
good tracking capability. As a result, the step size can be controlled optimally.

The proposed algorithm is summarized in Table 1.

4 � Performance Analysis

4.1 � Convergence Analysis

Taking the mean-square expectation on both sides of Eq.  (7), the following is 
obtained:

(9)�k(i) =
ea,k(i)

uT
k
(i)uk(i)sign

(
ek(i)

) .

(10)ea,k(i) = sign
(
ek(i)

)
max

(||ek(i)|| − t, 0
)
.

(11)t =

⎧
⎪⎨⎪⎩

e2
k
(i)

𝛾𝜃k(i)+�ek(i)� ��ek(i)�� > 𝜉𝜃k(i)�
𝜎2
v,k

else

�2
e,k
(i) = ��2

e,k
(i − 1) + (1 − �)median

(
Qk(i)

)

Qk(i) =
[
e2
k
(i), e2

k
(i − 1),… , e2

k
(i − L + 1)

]T

(12)

E

(‖‖‖ep,k(i)
‖‖‖
2
)

= E
(‖‖ea,k(i)‖‖2

)
− 2�kE

(‖‖uk(i)‖‖2ea,k(i)sign
(
ek(i)

))
+ �2

k
E
(‖‖uk(i)‖‖4

)
.
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Assuming that the noise-free prior error signal ea,k(i) is a zero-mean Gaussian 
process for a long filter [23, 24, 26], and using the Price theorem [28] in the second 
part of Eq. (12) will yield

(13)E
(‖‖uk(i)‖‖2ea,k(i)sign

(
ek(i)

))
=

√
2

�

E
(‖‖uk(i)‖‖2

)√
�2
a,k
(i)

√
�2
e,k
(i)

.

Table 1   RVSSDSE-LMS algorithm
RVSSDSE-LMS algorithm

Initialization: ( )0 0k =ϕ , ( )0 0k =w , 0 001.δ = for all nodes

Adaptation 

(Parameter estimation)

For kk∈Γ

( ) ( ) ( ) ( )1T
k k k ke i d i i i= − −u w

( ) ( ) ( ) ( )( )2 2 1 1, ,e k e k ki i median iσ ασ α= − + − Q

( ) ( )( ) ( )( )0, max ,a k k ke i sign e i e i t= −

( )
( ) ( ) ( ) ( )

2

2                        el se ,

k
k k

k k

v k

e i
e i i

i e it
ξθ

γθ

σ

>
+=

( ) ( ) ( ) ( ) 22 2 1 1, , ,ˆ â k a k a kn n e nσ ασ α= − + −

end

(Step-size update)

( ) ( )
( ) ( ) ( )( )+

,a k
k T

k k k

e i
i

i i sign e i
µ

δ
=
u u

(update)

( ) ( ) ( ) ( )( )1k k k k ki i i sign e iµ= − +w uϕ

Combination 

( ) ( ),
k

k l k ll
i a i

∈Γ
=∑w ϕ
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Substituting Eq. (13) into Eq. (12) yields

To obtain maximum gradient attenuation, the following equation should satisfy:

That is

Therefore, the bound of step size is given as follows:

4.2 � Computational Complexity

Table 2 compares the computational complexity of the DLMS, DSE-LMS, and the 
proposed algorithms in terms of additions, multiplications, and comparisons. The 
length of the filter is M and τk is the number of neighbors at node k. Owing to the 
computation of the optimal step-size, the proposed algorithm only requires 2 M + 1 
more multiplications, 1 more addition, and τk more comparisons than the DSE-
LMS algorithm. In other words, the proposed algorithm has a significant perfor-
mance improvement than the DSE-LMS algorithm at the cost of litter computational 
complexity.

(14)

E

(‖‖‖ep,k(i)
‖‖‖
2
)

= E
(‖‖ea,k(i)‖‖2

)
− 2�k

√
2

�

E
(‖‖uk(i)‖‖2

)√
�2
a,k
(i)

√
�2
e,k
(i)

+ �2
k
E
(‖‖uk(i)‖‖4

)
.

(15)E

(‖‖‖ep,k(i)
‖‖‖
2
)
− E

(‖‖ea,k(i)‖‖2
)
≤ 0

(16)�
k
E
(‖‖uk(i)‖‖2

)
− 2

√
2

�

√
�2
a,k
(i)

√
�2
e,k
(i)

≤ 0

(17)0 < 𝜇
k
≤ 2

√
2

𝜋

√
𝜎2
a,k
(i)

E
(‖‖uk(i)‖‖2

)√
𝜎2
e,k
(i)

.

Table 2   Summary of the 
computational complexity

Algorithm Multiplication Addition Comparisons

DLMS N∑
k=1

�
M
�
2 + �

k

�
+ 1

� N∑
k=1

�
M
�
1 + �

k

�� 0

DSE-LMS N∑
k=1

�
M
�
2 + �

k

�� N∑
k=1

�
M
�
1 + �

k

�� 0

Proposed N∑
k=1

�
M
�
4 + �

k

�
+ 3

� N∑
k=1

�
M
�
1 + �

k

�
+ 1

� τk
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5 � Simulation Results

The performance of the proposed variable step-size algorithm is tested in system 
identification. The unknown parameter vector is randomly generated with length 
M. A network with N = 20 nodes is shown in Fig. 2. The network MSD is defined 

as NMSD(i) = (1∕N)
N∑
k=1

wo − wk(i)
2 . The NMSD curves are obtained by the over-

all average of 50 independent trials. The uniform weighting rule is used for 

Fig. 2   Topology of the simu-
lated diffusion adaptive network 
consisting of 20 agents
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combination weights. The variance of the background Gaussian noise �k(n) is 
assumed to be known. The impulsive noise �k(i) = b(i) ∈ (i) with the incidence of 
p is added to the output, and the variance is �2

�,k
= ��2

�,k
 . The measurement noise 

vk(i) = �k(i) + �k(i) . The variances of the input signal and Gaussian noise �k(i) are 
depicted in Fig. 3.

In the first experiment, the performance of the proposed algorithm and other 
cited algorithms is compared, as shown in Figs. 4 and 5. Figure 3 shows the vari-
ances of the input signal and background Gaussian noise at node k. Figures 4 and 
5 show the comparison of the network MSD of the proposed algorithm and the 
DLMS algorithm with the step size μ = 0.003; the two step-sizes of the DSE-LMS 
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Fig. 4   NMSD curves of the proposed algorithm compared with DLMS and DSE-LMS algorithms for 
�=100 . a p = 0.01, b p = 0.1



3015Circuits, Systems, and Signal Processing (2020) 39:3007–3018	

algorithm are 0.001 and 0.002. The forgetting factor of the proposed algorithm is 
chosen as � = 1 − 1∕KM with K = 3. The length of the unknown parameter vec-
tor M = 64 and L is chosen as 5. ξ is chosen as 1.53. The amplitudes of impulsive 
noise are 100 and 1000. To verify the robustness against impulsive noise, impul-
sive noise with p = 0.1 and p = 0.01 is added at all agents.

As the proposed robust variable step-size algorithm is derived by minimiz-
ing the intermediate noiseless posterior error, it possesses a large step-size 
and a small step-size at the transient stage and the steady-state stage, respec-
tively, as shown in Figs. 4 and 5. Thus, the proposed algorithm has a fast initial 
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Fig. 5   NMSD curves of the proposed algorithm compared with DLMS and DSE-LMS algorithms for 
�=1000 . a p = 0.01, b p = 0.1
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convergence rate and reduced steady-state NMSD compared to the DSE-LMS 
algorithm in impulsive noise environments.

Figure  6 shows the comparison of the tracking performance of the proposed 
algorithm and the conventional DLMS and DSE-LMS algorithms in the scenario 
of a sudden environment, where the coefficients of the impulse response trans-
form during the iterations. The simulation conditions are the same as shown in 
Fig. 4. The entries of the impulse response are abruptly multiplied by –1 at itera-
tion 1500. As shown in Fig. 6, when the system undergoes change, the intermedi-
ate posterior error becomes large and the step size at each agent becomes large to 
maintain the tracking capability of the proposed algorithm. Thus, the proposed 
RVSSDSE-LMS algorithm has good tracking capability.

(a)

(b)

0 500 1000 1500 2000 2500 3000
-50

-40

-30

-20

-10

0

10

iterations

N
M

S
D

(d
B

)

DLMS(µ=0.003)
DSE-LMS(µ=0.001)
DSE-LMS(µ=0.002)
Proposed

0 500 1000 1500 2000 2500 3000
-50

-40

-30

-20

-10

0

10

iterations

N
M

S
D

(d
B

)

DLMS(µ=0.003)
DSE-LMS(µ=0.001)
DSE-LMS(µ=0.002)
Proposed

Fig. 6   NMSD curves of the proposed algorithm compared with DLMS and DSE-LMS algorithms for 
�=1000 . a p = 0.01, b p = 0.1
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6 � Conclusion

This study has proposed an RVSSDSE-LMS algorithm to improve the performance 
of the DSE-LMS algorithm for distributed estimation over adaptive networks. The 
robust variable step-size is achieved by minimizing the l1-norm of the noiseless 
intermediate posterior error. The proposed RVSSDSE-LMS algorithm uses the opti-
mal step-size mechanism to solve the conflict between the fast convergence rate and 
low steady-state MSD. Simultaneously, the proposed algorithm can maintain track-
ing capability when the system mutates. The simulation results show that the RVSS-
DSE-LMS algorithm outperforms the DSE-LMS and DLMS algorithms in terms of 
both steady-state error and convergence rate in system identification.
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