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Abstract
A newmodel reduction method for the simplification and design of a controller for the
linear time-invariant systems is proposed. An improved generalized pole clustering
algorithm is employed in the proposed technique for obtaining the denominator of
the reduced model. The numerator is computed with a simple mathematical technique
available in the literature. The proposed method guarantees the stability in the reduced
plant given that the full-order plant is stable and also retains the fundamental character-
istics of the original model in the approximated one. This reducedmodel has been used
for the design of compensator for the large-scale original plant by using a new algo-
rithm. The compensator obtained by using the reduced model gives the approximately
same time domain specification as compensator obtained by using large-scale original
system, and the design of compensator by using the reduced model is comparatively
easier. The results of the proposed algorithm are compared with existing methods of
reduced-order modeling which show improvement in the performance error indices,
time response characteristics and time domain specifications. The validity, effective-
ness and superiority of the proposed technique have been demonstrated through some
standard numerical examples.
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1 Introduction

Analysis and design of controllers for achieving desired performance specification of
a dynamical system can be carried out by obtaining a suitable mathematical model.
Modeling of large-scale systems yields complex models which are difficult or even
impossible to study due to computational, cost constraints or storage [18]. This prob-
lem is overwhelmed by replacing large-scale system into an equivalent reducedmodel.
Therefore, system reduction methods producing reduced-order analyzable models are
devised, while model diminution preserves certain features like transient response,
static response and stability of the large-scale original model. However, the perfor-
mance error indices need to be preferably small, and lower-order system computation
should be efficient and numerically simple.

Nowadays, the applications of model order diminution are extended in the various
fields of engineering and sciences. The application of system reduction in the field
of chemical engineering for the identification of time-dependent parameters of the
chemical vapor decomposition processes by using reduced-order models is discussed
in [27]. The authors in [34] are focused on the model order diminution of power
system with wind farm for the reduction in computational burden. As in [67], the
work of this paper is focused on the tracking control of multi-spacecraft network with
time-delay by using reduced-order modeling. In the field of electromagnetic, model
order diminution is applied for the synthesis and study of large-scale electromagnetic
systems [38, 41, 51]. In order to obtain the fast dynamic response behavior of the
dynamical system, as industrial users and researcher attempt to design the controller,
this design process is difficult for the large-scale dynamic system. The design of the
controller becomes easy and simple by using reduced-order modeling as discussed
in [8, 14, 15, 24]. Model order diminution is not only restricted for continuous and
discrete time models but also extended in the Markov jump systems [10, 68]. The
details about Markov jump systems can be found in the literature [6, 7, 65].

From last few decades, several techniques for system diminution of large-scale
systems have been proposed in the frequency domain such as time moment matching
[66], Padé approximation [53], Routh approximation [21], Routh Hurwitz [28], stabil-
ity equation [5] and pole clustering [59]. These methods provide good approximation
but also have some limitations. In order to overcome the limitations of these methods,
various combined methods have been proposed [4, 23, 30, 33, 35, 43, 44, 48, 56, 58,
62]. In the last decade, several methods for the model order reduction in higher-order
systems have been proposed in the time domain, such as aggregation method [1, 19],
singular perturbation [25, 50], balanced realization [31, 39], Krylov subspace [2, 12],
Arnoldi [9], Lanczos [13] and Hankel norm approximation method [29]. Typically,
these methods offer good approximation but these methods have some limitations
such as steady-state gain difference between the original plant and its approximant,
failing to keep the stability of the original model and error bounds. However, balanced
realization method retains stability of the lower-order system and provides a priori
error bound [11, 22]. In order to overcome the limitations of these methods, several
mixed techniques of model diminution have been given in [11, 20, 42, 64].

The pole clustering method discussed in [59] is widely used for the simplifica-
tion of large-scale linear time-invariant (LTI) single as well as multivariable systems.
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This method ensures the preservation of stability, static and dynamic responses of
original plant in the reduced model. However, this method has a drawback such as it
requires extra mathematical computation for the determination of tuning factor and
gain adjustment factor for the proper matching of time responses between reduced and
original models. The determination of these factors increases the simulation time and
extra storage memory. To overcome these limitations, several mixed methods have
been proposed [33, 58, 62]. These mixed methods preserve only first dominant pole of
the original plant. In order to overcome the drawback of pole clustering method and
preservation of more than one dominant pole, a new model order diminution method
is proposed in the paper. This new method is used for the simplification of large-scale
single as well as multivariable systems and designing of controllers. The proposed
method is based on the generalized pole clustering method and a simple mathematical
technique discussed in the literature [26, 43]. The pole clustering method is a special
case of the generalized pole clustering method. The reduced model obtained by the
proposed scheme preserves the stability and steady-state gain of the original plant. The
obtained reducedmodel is used for the design of compensator for the large-scale plant.
The compensator is obtained by using a new method with the help of the obtained
reduced model.

The remainder of this paper is structured as follows. Section 2 is focused on the
main objective of the paper for the determination of reduced models of single and
multivariable large-scale linear dynamic systems. In Sect. 3, a new model reduction
method is discussed for the simplification of higher-order plants. The designing of the
compensator for the large-scale systems by the new algorithm is discussed in Sect. 4.
Section 5 shows the simulation examples to illustrate the benefits of the proposed
method. Conclusions and future scopes of this paper are summarized in Sect. 6.

2 Statement of the Problem

Consider an nth order transfer function of large-scale stable systems

G(s) � N (s)

D(s)
� d0 + d1s + · · · + dn−1sn−1

e0 + e1s + e2s2 + · · · + ensn
(1)

The main goal of the paper is to reduce the computational cost in analysis and
synthesis of large-scale dynamical plants (G(s)) by construction which do not lead to
momentous harm in accuracy and yet reserve the fundamental features of the original
model. The lower-dimensional system (Rr (s)) is defined as follows

Rr (s) � Qr (s)

Pr (s)
� q0 + q1s + q2s2 + · · · + qr−1sr−1

p0 + p1s + p2s2 + · · · + pr−1sr−1 + pr sr
(2)



Circuits, Systems, and Signal Processing (2020) 39:2328–2348 2331

Let the transfer function of large-scale multivariable system of the order “n” be

[G(s)] � 1

D(s)

⎡
⎢⎢⎢⎣

a11(s) a12(s) . . . a1u(s)
a21(s) a22(s) . . . a2u(s)

...
...

...
...

av1(s) av2(s) . . . avu(s)

⎤
⎥⎥⎥⎦ (3)

� [
gi j (s)

]
v×u (4)

where i � 1, 2, 3, . . . , v; j � 1, 2, 3, . . . , u, and u and v are the number of input and
output variables, respectively. The gi j (s) can be defined as

gi j (s) � Ai j (s)

D(s)
(5)

To realize the rth-order approximated model in the form of (6) from the original
system, (3) is the objective of the paper such that it preserves the essential features of
the original plant. The transfer matrix of the approximated multivariable model of the
order “r” be

[Rr (s)] � 1

Pr (s)

⎡
⎢⎢⎢⎣

b11(s) b12(s) . . . b1u(s)
b21(s) b22(s) . . . b2u(s)

...
...

...
...

bv1(s) bv2(s) . . . bvu(s)

⎤
⎥⎥⎥⎦ (6)

� [
ri j (s)

]
v×u (7)

where i � 1, 2, 3, . . . , v; j � 1, 2, 3, . . . , u. Hence, ri j (s) can be represented as

ri j (s) � Bi j (s)

Pr (s)
(8)

The gi j (s) and ri j (s) are the various elements of the full-order and the lower-order
transfer function matrices, respectively.

3 ProposedMethod

The system reduction procedure for obtaining the rth-order approximated model is
described in the following two steps:

3.1 Determination of Denominator Polynomial

The time and frequency behavior of any dynamic models depend upon the poles of
the models. The poles which are far away from the imaginary axis of s-plane die out
quickly in the time response and in several model reductionmethods neglected directly
for obtaining the reduced-order models [31, 45, 46]. The poles near to imaginary axis
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significantly affect the time response and are retained in the several reduction methods
for computing the approximated reduced system [5, 21, 28, 35, 59]. For obtaining rth-
order approximated model by pole clustering method, “r” numbers of clusters are
required to compute. The poles of the original plant are placed in the clusters on
the basis of the effectiveness of the poles. In order to place the poles in the clusters,
following rules are followed

1. Separate clusters are made for real and complex poles.
2. Poles lying in the left and right half of s-plane are clustered separately.
3. Purely imaginary poles and poles at the origin of s-plane are retained in the approx-

imated system.

3.1.1 Clustering of Real Poles

Consider the large-scale original system (1) in the pole-zero form as

Gp(s) � N (s)

D(s)

where

(9)N (s) � (s + z1) (s + z2) . . . (s + zr−1) (s + zr ) (s + zr+1) . . . (s + z2r−1) (s + z2r ) (s + z2r+1) . . . (s + zn−1)

and

(10)D (s) � (s + p1) (s + p2) . . . (s + pr−1) (s + pr ) (s + pr+1) . . . (s + p2r−1) (s + p2r ) (s + p2r+1) . . . (s + pn )

Assume the order of the approximated model is r (r < n) and for rth-order reduced
model, r numbers of clusters are formulated. Arranging the poles lying in left half of
s-plane in the ascending order of the magnitude

Pole : −p1,−p2, . . . ,−pi , . . . ,−pn ∀|pi |< |pi+1| (11)

The first pole is placed in the first cluster, second pole is placed in the second cluster
similarly rth pole is placed in the rth cluster, (r + 1)th pole is placed in the first cluster,
(r + 2)th pole is placed in the second cluster, similarly (2r)th pole is placed in the
rth cluster, and this procedure is continued up to the last pole. The main advantage of
this algorithm is that it preserves “r” number of dominant poles of the original plant
in the reduced model as compared to the existing pole clustering methods [26, 33, 58,
62] which preserve only one dominant pole. After placing the poles in the clusters,
the cluster centers of the clusters are determined by using following algorithm

c1 � −
{([

1

|p1|X
]
+

[
1

|pr+1|X
]
+

[
1

|p2r+1|X
]
+ · · ·

[
1

|pk |X
])

/k

}−(1/X)

(12)

c2 � −
{([

1

|p2|X
]
+

[
1

|pr+2|X
]
+

[
1

|p2r+2|X
]
+ · · ·

[
1

|pl |X
])

/l

}−(1/X)

(13)

. . . . . . . . . . . . . . .
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cr � −
{([

1

|pr |X
]
+

[
1

|p2r |X
]
+

[
1

|p3r |X
]
+ . . .

[
1

|pm |X
])

/m

}−(1/X)

(14)

where c1, c2, . . . , cr are the cluster centers, X is the order of roots of the clusters,
and its value will be any natural number depending upon the required accuracy in the
approximated reduced model. And k, l and m are the total number of poles lying in
the cluster-1, cluster-2 and cluster −r , respectively, and the values of these variables
may have same or different values, depending upon the poles of the original systems.
After computing the cluster centers, the denominator polynomial of the reduced plant
is obtained as follows

Pr (s) � (s − c1)(s − c2) . . . (s − cr ) (15)

For the specific value of X, the cluster centers in (12–14) depend upon the poles
which are near to the origin of s-plane. If the value of X is increasing from more than
one, the cluster center is moving closer to the dominant pole of that cluster. Hence,
it can be established that the cluster center depends upon the dominant pole of the
cluster and its magnitude is closer to the dominant pole. From (12–14), it can be seen
that when the value of X equals to one, the proposed technique of clustering becomes
pole clustering technique of model reduction as described in [59]. Therefore, the pole
clustering method is a special case of the proposed method.

3.1.2 Clustering of Complex Poles

In the determination of cluster centers of complex poles, the real and imaginary parts
of the complex poles are determined separately by using algorithm as discussed for the
real poles. If Ai/2± j Bi/2 are the cluster centers of complexpoles for i � 1, 2, 3, . . . , r ,
the denominator polynomial of the lower-order system is given as follows

Pr (s) � (s − A1 ± j B1)(s − A2 ± j B2) . . .
(
s − Ar/2 ± j Br/2

)
(16)

3.1.3 Clustering of Real and Complex Poles

The cluster centers for the real and complex poles are computed separately in the
same way as discussed in the above procedure. The numbers of clusters for real and
complex poles are decided on the basis of the order of the lower-order system. For the
rth-order lower-order model suppose α cluster centers are for real poles and β cluster
centers are for complex poles, the denominator polynomial of the reduced system is

Pr (s) �
α,β/2∏

i�1, j�1

(s − ci )
(
s − A j ± j B j

)|α + β � r (17)
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3.2 Determination of the Numerator Polynomial of the ReducedModel

The numerator polynomial of the approximated system is determined by using a simple
mathematical algorithm given in [26, 43, 45]. In this method, comparing the transfer
function of the approximated model (2) with the transfer function of the large-scale
plant (1) as follows

d0 + d1s + · · · + dn−1sn−1

e0 + e1s + e2s2 + · · · + ensn
� q0 + q1s + q2s2 + · · · + qr−1sr−1

p0 + p1s + p2s2 + · · · + pr−1sr−1 + pr sr
(18)

After cross-multiplication of (18), equating the same powers of “s” from s0 to sr−1

on both sides it gives “r” number of equations.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

d0 p0 � e0q0
d0 p1 + d1 p0 � e0q1 + e1q0
d0 p2 + d1 p1 + d2 p0 � e0q2 + e1q1 + e2q0
...

(19)

The coefficients (q0, q1, . . . , qr−1) of the numerator polynomial are determined by
solving “r” number of (19) in which the coefficients of the denominator characteristic
(p0 + p1s + p2s2 + · · · + pr−1sr−1 + pr sr ) of the reduced plant are known. The
proposed algorithm retains all the fundamental features of the pole clustering method
with additional advantages as it does not require computation of gain adjustment and
tuning factors and preserves “r” number of dominant poles.

4 Procedure for Design of Compensator

The design of controllers and simulation are a complicated task for the large-scale
plants. As the order of the system increases, the complexity and cost of the controller
design increase simultaneously. This difficulty can be solved if a “good” approximated
reduced system is obtainable for the original large-scale model, and the design of the
controller is carried out by using the reducedmodel. In case of a large-scale system, the
enormous numbers of sensors are required for sensing the state variables of the systems
for the design of feedback controllers. Due to this, series controllers are superior over
the feedback controllers.

A reference plant (M(s)) is designed on the basis of the given specification of the
large-scale systems for obtaining the desired performance such that the closed-loop
operation of the controlled model with unity feedback is closely matched with the
response of the reference plant. The procedure for obtaining the reference model from
the given specification is given in [40, 60]. Let the transfer function of the compensator
be given as follows

Gc(s) � K (1 + K1s)

s(1 + K2s)
(20)
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In order to design the compensator, first obtain the open-loop reference model(
M̃(s)

)
from the given closed-loop reference system (M(s))

M̃(s) � M(s)

1 − M(s)
(21)

For finding the unknown parameters of the compensator, it is assumed that the
response of the open-loop controlled model is matched with that of the open-loop
reference model as

Gc(s)G(s) � M̃(s) (22)

Gc(s) � M̃(s)

G(s)
�

∑2
i�0 ei s

i

s
(23)

where ei (i � 0, 1, 2) are the coefficients of the Taylor series expansion about s � 0,
and these are obtained by using moment generating technique given in [46, 66]. And
G(s) is the transfer function of the large-scale plant, it can also be replaced by a
good approximated reduced-order system so that the mathematical computation and
simulation timewill be reduced in the design of compensator. The unknownparameters
of the compensator can be obtained by comparing (20) and (23) as follows

K (1 + K1s)

s(1 + K2s)
� e0 + e1s + e2s2

s
(24)

The compensator having the desired structure is determined by solving (24). After
finding the parameters of the compensator, the closed-loop transfer function can be
defined as follows

Gcl(s) � Gc(s)G(s)

1 + Gc(s)G(s)
(25)

5 Illustrative Examples

In order to validate the performance of the proposedmethod, performance error indices
like an integral of square error (ISE), integral of relative square error (RISE), integral of
absolute error (IAE) and integral of time multiplied by absolute error (ITAE) are used
in the paper. The following performance indices of lower-order plants are calculated,
which are given as [43, 46, 56, 59]

⎧⎪⎨
⎪⎩
ISE � ∞∫

0
[y(t) − yr (t)]2dt

RISE � ∞∫
0
[y(t) − yr (t)]2dt/

∞∫
0

[
ŷ(t)

]2dt
(26)
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⎧⎪⎨
⎪⎩
IAE � ∞∫

0
|y(t) − yr (t)|dt

ITAE � ∞∫
0
t |y(t) − yr (t)|dt

(27)

where y(t) and yr(t) are the step responses of higher-order system and lower-order
model, respectively, and ŷ(t) is the impulse response of the large-scale plant. The time
domain analysis as rise time, peak time, maximum overshoot and settling time is used
as performance to analyze the transient response of the closed-loop controlled plant
when it is subjected to unit-step input and the validation of the obtained compensator.

Example 1 Consider an eighth-order standard system discussed in [28, 45, 46] which
is given as

G(s) � 35s7 + 1086s6 + 13285s5 + 82402s4 + 278376s3 + 511812s2 + 482964s + 194480

s8 + 33s7 + 437s6 + 3017s5 + 11870s4 + 27470s3 + 37492s2 + 28880s + 9600
(28)

Poles: −1,−1 − 1 j,−1 + 1 j,−3,−4,−5,−8,−10.
The original system has one pair of complex pole, and it will be retained in the

approximated reduced system. In order to obtain the fourth-order reduced system, the
real poles are clustered into two clusters. For placing the poles into two clusters, first
assemble the real poles in ascending order of their magnitude

Real poles: −1,−3,−4,−5,−8,−10

The poles are clustered into two clusters as follows

Cluster-1 has poles: −1,−4,−8
Cluster-2 has poles: −3,−5,−10.

The cluster centers of these clusters are obtained as follows

c2p � −
{([

1

3X

]
+

[
1

5X

]
+

[
1

10X

])
/3

}−(1/X)

By using above cluster centers, the denominator of the reduced model is obtained
as

Dr (s) � (s + 1 ± 1 j)
(
s − c1p

)(
s − c2p

)
(29)

Taking different values of X , the different denominator polynomials of the reduced
plant will be obtained and after that the numerator polynomials are obtained by using
a recently proposed simple mathematical algorithm described in Sect. 3.2. The lower-
order system obtained by the proposed algorithm with X � 10 is

R2(s) � 31.1973s3 + 168.9203s2 + 252.5901s + 151.3297

s4 + 6.462s3 + 14.66s2 + 16.39s + 7.47
(30)
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Fig. 1 Qualitative comparison of proposed method with other standard methods in terms of step response

From (29), it is clear that the obtained reduced plant is stable; hence, the proposed
algorithm preserves the stability of the original plant. Figure 1 represents the step
responses of the large-scale model, proposed reduced model and lower-order systems
obtained by using various model reduction techniques. It is seen that the response of
the proposed reduced model is thoroughly matched with the response of the original
plant as compared to the other existing system reduction algorithms. Table 1 shows
the effectiveness and superiority of the suggested algorithm by comparing with lower-
order models obtained by existing techniques available in the literature. In this table,
it is also seen that the proposed method is not giving the least performance indices
when X � 5 but when X � 10 the proposed algorithm is giving least error indices
as compared to other methods available in the literature. Hence, it can be concluded
that for better performance indices and accuracy the value of X should be kept large
value.

At X � 1, the proposed method becomes the pole clustering method [59] and
the proposed algorithm is better than the pole clustering method because it is giving
lower-performance error indices. The proposed approach is also superior to the pole
clustering method since it does not require steady-state gain adjustment factor and
tuning factor as required in the pole clustering method.
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Example 2 Consider a sixth-order multivariable system which has been considered by
several researchers [32, 36, 37, 43, 56, 63] and is described by the following transfer
function

G(s) �
[

2(s+5)
(s+1)(s+10)

(s+4)
(s+2)(s+5)

(s+10)
(s+1)(s+20)

(s+6)
(s+2)(s+3)

]

� 1

D(s)

[
A11(s) A12(s)
A21(s) A22(s)

]
(31)

where

D(s) � (s + 1)(s + 2)(s + 3)(s + 5)(s + 10)(s + 20)

� s6 + 41s5 + 571s4 + 3491s3 + 10060s2 + 13100s + 6000

and

A11(s) � 2s5 + 70s4 + 762s3 + 3610s2 + 7700s + 6000

A12(s) � s5 + 38s4 + 459s3 + 2182s2 + 4160s + 2400

A21(s) � s5 + 30s4 + 331s3 + 1650s2 + 3700s + 3000

A22(s) � s5 + 42s4 + 601s3 + 3660s2 + 9100s + 6000

The poles of the original system are p1 � −1, p2 � −2, p3 � −3, p4 � −5, p5 �
−10, p6 � −20. The poles are grouped into two clusters as follows

Cluster-1 has poles: −1,−3,−10
Cluster-2 has poles: −2,−5,−20.

The cluster centers are obtained by using (12)–(14) and the denominator polynomial
of the reduced plant is obtained as

D2(s) � (
s − c1p

)(
s − c2p

)
(32)

The various denominator polynomials of the reduced system will be obtained after
taking different values of X . For the specific value of X , the numerator coefficients
are obtained by using the proposed algorithm as illustrated in Sect. 3.2. For X � 50,
the transfer matrix of the reduced plant is obtained as:

[R2(s)] �

[
1.1858s + 2.0898 0.8505s + 0.8359
0.5406s + 1.0449 1.6734s + 2.0898

]

s2 + 3.0666s + 2.0898
(33)

The unit-step responses of the original and lower-order models are shown in Fig. 2,
which indicate that the lower-order systems give good approximation. From which, it
is clearly seen that the response of the lower-order model computed by the proposed
technique is much closer to the original plant as compared to other techniques. A
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Fig. 2 Qualitative analysis of proposed technique with other existing system diminution techniques

comparison of the presented technique with other existing techniques for a second-
order lower-order system is given in Table 2. It can be observed in Table 2 that the
proposed algorithm offers the lowest value of performance indices in comparison with
some other existing system reduction methods. This table also shows that if X is taken
10, then the value of ISE of the proposed method is not least but when the value of X
increased as X � 50 the proposed method is giving the least values of ISE. Therefore,
for obtaining the better accuracy of the proposed technique the value of X can prefer
more than one.

Example 3 Consider the sixth-order stable practical open-loop helicopter engine
including a fuel controller system taken from Prasad [47]

G(s) � 248.05s4 + 1483.3s3 + 91931s2 + 468730s + 634950

s6 + 26.24s5 + 1363.1s4 + 26803s3 + 326900s2 + 859170s + 528050
(34)

The input and output of the model are speed demand and propeller speed, respec-
tively. Because of the elasticity of the propeller shaft, the time characteristic of the
system exhibits unwanted oscillations. A simple critically damped reference system
is given in [47] as

M(s) � 4

s2 + 4s + 4
(35)
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The open-loop reference model is

M̃(s) � M(s)

1 − M(s)
� 4

s(s + 4)
(36)

By using the original plant, the parameters of the controller are obtained as follows

Gc(s) � M̃(s)

G(s)
� e0 + e1s + e2s2

s
� K (1 + K1s)

s(1 + K2s)
� 0.8316 + 0.5313s − 0.2841s2

s
(37)

Hence,

K � 0.8316, K1 � 1.1735, K2 � 0.5347 (38)

The closed-loop system with compensator is given in (39) in which compensator
is obtained by using original plant.

Rcl(s) � G(s)Gc(s)

1 + G(s)Gc(s)
(39)

The reduced-order model obtained by the proposed method with X � 50 is given
as follows

R2(s) � 0.6357s + 1.48

s2 + 3.042s + 2.056
(40)

By using the above reduced system, the compensator is obtained as follows

Gcr (s) � M̃(s)

Rr (s)
� e0 + e1s + e2s2

s
� K (1 + K1s)

s(1 + K2s)
� 0.8316 + 0.5313s − 0.2841s2

s
(41)

Hence,

K � 0.8316, K1 � 1.1735, K2 � 0.5347 (42)

The closed-loop transfer of the original model with the compensator is given in
(43) in which compensator is obtained by using proposed reduced model.

Rcl(s) � G(s)Gcr (s)

1 + G(s)Gcr (s)
(43)

From (38), (42) and Table 3, it is clear that the compensator obtained by using large-
scale original system is same as the compensator obtained by using proposed reduced
model as compared to the reduced plants computed by some other standard model
diminution methods. The design of compensator for large-scale system is a difficult
task as compared to the design of compensator by using an equivalent reduced model.
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Fig. 3 Comparison of time responses of reference system and closed-loop system with compensator

Hence, proposed model reduction method can be used for the design of compensator
instead of design of compensator by using large-scale original system.

The comparison of time responses of the transfer functions of the closed-loop origi-
nal plant with compensators is shown in Fig. 3. These compensators are obtained with
the help of the large-scale original system and lower-order systems. The simulation
result shows that the computed compensators perform well under both steady-state
and transient responses. Clearly, the response of the closed-loop system with com-
pensator computed by the reduced system obtained by proposed algorithm is much
closer to that of the reference system compared with some other closed-loop systems.
The time domain specifications of the closed-loop systems with compensators are
tabulated in Table 3. From this table, it can be seen that the time domain specifica-
tions of the closed-loop system with the compensator obtained by using proposed
lower-order systems are same with the specifications of the closed-loop plant with
compensators design by using large-scale original system, and these specifications
are also approximately matched with the specifications of desired reference model.
Hence, the proposed method can be used for the design of compensator for obtaining
the required performances of the dynamical systems.
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6 Conclusion

The reduced-order approximants for linear, continuous time, SISO as well as MIMO
plants are presented in this paper. It is determined from the idea of holding slowmodes
of the large-scale system in the lower-order denominator. The lower-order numerator
is determined by using a simple mathematical algorithm described in the literature. To
determine the accuracy, effectiveness and efficiency of the proposed reduced model,
it is compared to approximants computed from the several existing recent and popular
model reduction methods. From different time responses and various error indices,
the proposed method shows the motivating benefits of simplicity of implementation,
easy to program and the substantial advantage in execution time compared to the
other existing techniques. Also, the stability of the approximant is always guaranteed
when the original plant is stable and the best static and dynamic behavior fitting of the
original system. And the reduced plant is used for the design of compensator, and by
using this controller the proposed model gives the approximately same time domain
specification as given by the reference model. From Table 3, it is also found that the
compensator design by the original system is the same as the proposed reduced model
and design of compensator is easier by using the reduced model. This method can also
be extended for the large-scale interval and discrete time practical systems.
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