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Abstract
In this paper, the authors propose a novel model order reduction method integrat-
ing evolutionary and conventional approaches for higher-order linear time-invariant 
single-input–single-output (SISO) and multi-input–multi-output (MIMO) dynamic 
systems. The proposed method makes use of a differential evolution algorithm with 
enhanced mutation operation for the determination of reduced order model (ROM) 
denominator polynomial coefficients. In addition, an improved multi-point Padé 
approximation method is used to determine the optimal ROM numerator polyno-
mial coefficients. The optimum property of the ROM is measured by minimising the 
integral square of the step response error between the original high-order dynamic 
system and the ROM. In the case of the MIMO system reduction approach, an opti-
mal ROM transfer function matrix is determined by minimising a single objective 
function. This objective function is defined by a linear scalarising of the multi-step 
error function matrix components 

(

Eij

)

 . The proposed method guarantees the pres-
ervation of the stability, passivity and accuracy of the original higher-order system 
in the ROM. The proposed method is validated by applying it to a ninth-order SISO 
system, as well as to the tenth- and sixth-order linearised single-machine infinite-
bus power system model with and without an automatic excitation control system. 
The simulation results and the comparison of the integral square error and impulse 
response energy values of the ROM demonstrate the dominance of the proposed 
method over the latest reduction methods available in the literature.
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1 Introduction

For the analysis, design and synthesis of complex systems, the first step is to develop 
a mathematical model. The model would be representative of the complex system. 
The mathematical modelling of a complex system leads to either higher-order dif-
ferential equations, input–output transfer functions or state-space formulations that 
are computationally complex when used for the analysis and design of the control-
ler. Therefore, model order reduction (MOR) methods are necessary to determine a 
suitable reduced order model (ROM) that adequately preserves specific fundamental 
properties of the original system, such as stability, passivity, and dominant time and 
frequency domain characteristics, with reasonable computational effort.

Numerous MOR methods are available in the literature in the time domain and 
in the frequency domain [6, 7, 9, 19] for LTI SISO systems. Among them, very 
few have been extended to linear MIMO systems [1, 5, 14, 24, 26, 29, 30, 38]. 
Due to their simplicity and the enormous amount of design information they can 
gather in the frequency domain, MOR techniques have become more prominent 
in the frequency domain. A broad review of the literature shows that frequency 
domain-based MOR methods are divided into three categories: (1) conventional 
MOR methods [3, 11, 14, 16, 17, 18, 20, 27, 30, 33, 34]; (2) heuristic search 
algorithm-based MOR methods [2, 28, 36, 37]; and (3) hybrids of conventional 
and heuristic search algorithm-based methods [4, 5, 21, 24, 26, 29, 38].

Conventional MOR methods involve mathematical procedural steps that were 
initially introduced in the literature of applied mathematics to determine the 
ROMs. In [16], Lucas proposed a significant conventional MOR method. This 
method uses a novel Padé approximation method to obtain a ROM transfer func-
tion with a predetermined denominator, which leads to a minimum ISE value. The 
limitation of this method is that it cannot ensure steady-state matching. This limi-
tation has been overcome in [17] by using the classical theory of Lagrange mul-
tipliers. Singh et  al. [33] used the improved pole clustering and improved Padé 
approximation methods for the reduction of higher-order SISO systems with high 
gains. In [20], Narwal and Prasad used the logarithmic pole clustering technique 
to retain the stability of the system in the ROM to preserve the degree of accu-
racy in low-frequency regions. The initial time moments of the original system 
are matched to determine the numerator polynomial coefficients of the ROM. This 
method has been applied to LTI continuous-time SISO and MIMO systems and 
has also been extended to discrete-time systems. Sikander and Prasad [30] used the 
stability equation method and factor division method for the reduction of SISO and 
MIMO systems. Taking advantage of the stability retention property of the Routh 
approximation technique, Amit and Shyam extended this technique to interval sys-
tems in [3]. Saxena and Hote [27] used the concept of Routh and Padé approxima-
tions. Singh et  al. [34] used the logarithmic pole clustering and improved Padé 
approximation methods to simplify the load frequency control of power systems. 
The main drawbacks of conventional MOR methods are as follows: (1) the stabil-
ity-preserving-based MOR methods are not guaranteed to preserve the accuracy of 
the original system; (2) the system parameter retention-based MOR methods are 
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not guaranteed to preserve the stability of the original system in the ROM at all 
times; (3) these methods are not guaranteed to generate globally optimal ROMs; 
(4) the accuracy of the ROM is limited to particular frequency regions.

During the past few decades, heuristic search algorithms have played a promi-
nent role in finding the real globally optimal solutions for most complex engi-
neering problems. Many authors have tried and succeeded in applying large-scale 
system MOR algorithms for determining the best and most accurate ROMs. Such 
MOR methods have been categorised as heuristic search algorithm-based MOR 
methods. These methods use an iterative search algorithm to determine the ROM 
transfer function coefficients via minimisation of time and/or frequency error func-
tions. Vasu et al. [37] used the PSO-DV algorithm to determine the optimal ROM 
for an IEEE Type-1 DC excitation model via step error minimisation and used the 
DE algorithm in [36] for the reduction of continuous SISO and MIMO higher-order 
systems. Sikander and Thakur [32] applied a modified cuckoo search algorithm to 
MOR. Ajay et  al. [28] introduced a power law-based local search spider monkey 
optimisation (SMO) algorithm for finding the ROM with both the minimum ISE 
value and full retention of the IRE value. Although heuristic search-based MOR 
methods are guaranteed to generate stable ROMs with fully preserved accuracy, 
these methods suffer from the following difficulties: (1) appropriate values of the 
user-defined parameters of the algorithm must be selected for the best performance 
of the heuristic search algorithm in finding the globally optimal solution. These 
parameters might vary from problem to problem. Hence, the user must have suf-
ficient prior knowledge of the heuristic search algorithm when applying it to an 
MOR problem; (2) as these methods involve error evaluation and stability checking 
for every solution of the swarm/population, the computational complexity of these 
methods is greater than that of conventional MOR methods; (3) these methods are 
entirely virtual and computer program oriented.

In recent years, hybrids of conventional and heuristic search algorithm-based MOR 
methods (i.e. a third category of MOR methods) have been developed to overcome the 
disadvantages of the categories of MOR methods discussed above and to produce sta-
ble and accurate models with a reasonable amount of computational effort. The latest 
methods in the literature can be briefly described as follows: Desai and Prasad took 
advantage of the stability equation method [4] and the Routh approximation method 
[5] to determine the denominator polynomial coefficients of the ROM and used the 
BBBCO algorithm to determine the reduced order numerator polynomial coefficients 
of both SISO and MIMO systems. The above two methods were able to preserve the 
stability of the original system in the ROM but failed to retain the full IRE value. 
Therefore, the accuracy of the ROM is limited to specific frequency ranges, and the 
ROMs produced by the above methods are unable to attain a global optimum. Salma 
and Vaisakh [26] applied multi-objective optimisation for the reduction of an MIMO 
system using the interlacing property and PSO and DE algorithms. This method used 
multiple integral error criteria, such as ISE, integral absolute error (IAE) and integral 
time absolute error (ITAE), as objective functions. The ROM acquired by this method 
achieved satisfying accuracy with respect to error values but failed to achieve highly 
accurate time and frequency responses. When optimising multiple objectives, the 
ROM was unable to attain the global optimum value with respect to any error function. 
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Although the dominant poles of the original system are retained in the ROM using the 
interlacing property, the dominant characteristics of the original system are not retained 
in the ROM. Shivanagouda et  al. [29] used the time moment matching method to 
determine the denominator polynomial coefficients and used the BBBC optimisation 
algorithm to determine the optimal numerator polynomial coefficients of the ROM for 
the reduction of SISO, MIMO and time delay LTI systems. This method offers some 
limitations: (1) it may produce unstable ROMs, (2) the dominant characteristics of the 
transfer functions may not be preserved in the ROMs, and (3) it is not guaranteed to 
preserve accuracy in the low-frequency regions. The methods belonging to any of the 
three categories of MOR methods offer the possible user certain advantages and most 
likely certain disadvantages. Despite the significant number of MOR methods available 
in the literature, a simple and effective method that gives the best results for all systems 
is still lacking. This lack is the motivation for the present study; the objective of the 
proposed research work is detailed below.

The main objective of this paper is to propose an optimal frequency domain MOR 
method that overcomes most of the limitations and drawbacks of the existing meth-
ods and has been identified as a potential method for acquiring optimal results. The 
proposed approach varies slightly from the existing third category of MOR meth-
ods. Instead of finding the unknown reduced order numerator polynomial coefficients 
using the evolutionary search algorithm, an IMPPA (i.e. conventional) method is 
used. In addition, an enhanced DE (i.e. heuristic search) algorithm is developed and 
used to determine the optimum and stable reduced order denominator polynomial 
coefficients, unlike the existing third category of MOR methods. Thus, the proposed 
method is guaranteed to obtain the best results while requiring less computational 
effort than other MOR methods. The enhancement proposed to the DE algorithm 
helps us to improve the search speed of the algorithm and find the globally optimal 
solution with less computational efforts than the classic DE or many of the existing 
heuristic search algorithms. Additionally, the improvement proposed to the MPPA 
method overcomes the drawbacks of the MPPA approach and assists the proposed 
method in obtaining accurate and passivity-preserving ROMs. This paper is organ-
ised as follows: Sect. 2 discusses the problem formulation of the SISO and MIMO 
model approximation methods, the description of the enhanced differential evolution-
ary (EDE) algorithm and the detailed steps of the IMPPA method. In Sect. 3, the sim-
ulation results of the SISO and MIMO system model approximation methods and the 
comparison of performance errors are given. Finally, the paper concludes in Sect. 4.

2  Description of the Method

2.1  Problem Formulation

The state-space formulation (of nth order) of an LTI dynamic system is of the fol-
lowing form:

(1)
dX(t)

dt
= A ⋅ X(t) + B ⋅ U(t)

Y(t) = C ⋅ X(t) + D ⋅ U(t)

}

,
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where X(t) is an n-dimensional state vector, U(t) is a v-dimensional input vector, Y(t) 
is a q-dimensional output vector, [ A] is an n × n system matrix, [B] is an n × v input 
matrix (for SISO v = 1 ), [C] is a q × n output matrix (for SISO, q = 1 ) and [D] is a 
q × v feedforward matrix.

For the SISO dynamic system, Eq. (1) is represented in the frequency domain by the 
transfer function of the following form:

For the MIMO dynamic system, Eq. (1) is represented in the frequency domain by 
the transfer function matrix of the following form:

where i = 1, 2,… , q and j = 1, 2,… , v.

The general form of entry gij(s) of 
[

Gn(s)
]

 is the transfer function defined for the ith 
output and jth input; it is given by:

Hence, the proposed MOR method is in the frequency domain. The desired ade-
quate rth-order model (where r < n) for the given SISO/MIMO system is given below.

For the SISO system,

where Y(s) and Yr(s) are the Laplace transforms of the output responses of the origi-
nal system (y(t)) and the ROM

(

yr(t)
)

 , respectively, and U(s) is the Laplace transform 
of the input function (u(t)).

However, for the MIMO system,

where r < n.
The general form of entry rij(s) of 

[

Rr(s)
]

 is the reduced transfer function defined 
for the ith output and jth input, which is given by:

(2)

Gn(s) =
Y(s)

U(s)
= C ⋅ (sI − A)−1 ⋅ B + D =

ams
m +⋯+a1s + a0

bns
n + bn−1s

n−1 +⋯+b1s + b0
, where m ≤ n.

(3)
�

Gn(s)
�

=
�

gij(s)
�

q×v
=

1

D(s)
×

⎡

⎢

⎢

⎢

⎣

a11(s) a12(s) ⋯ a1v(s)

a21(s) a22(s) ⋯ a2v(s)

⋮ ⋮ ⋮ ⋮

aq1(s) aq2(s) ⋯ aqv(s)

⎤

⎥

⎥

⎥

⎦

(4)gij(s) =
aij(s)

D(s)
=

Ams
m +⋯+A1s + A0

Bns
n + Bn−1s

n−1 +⋯+B1s + B0

.

(5)Rr(s) =
Yr(s)

U(s)
=

cr−1s
r−1 +⋯+c1s + c0

sr + dr−1s
r−1 +⋯+d1s + d0

=
N(s)

Dr(s)

(6)
�

Rr(s)
�

=
�

rij(s)
�

q×v
=

1

D̃r(s)
×

⎡

⎢

⎢

⎢

⎣

c11(s) c12(s) ⋯ c1v(s)

c21(s) c22(s) ⋯ c2v(s)

⋮ ⋮ ⋮ ⋮

cq1(s) cq2(s) ⋯ cqv(s)

⎤

⎥

⎥

⎥

⎦
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The value of the reduced order ‘ r ’ is user defined. It should be as small as possi-
ble so that the time and frequency response characteristics of the ROM will approxi-
mate the original dynamic system.

The determination of successful ROM coefficients using the proposed method is 
as follows: the denominator coefficients of the SISO ROM 

[

dr−1, dr−2,… d1, d0
]

 are 
considered to be R-dimensional search vectors of the EDE algorithm (as illustrated 
in Sect.  2.2). For these specific denominator polynomial coefficients, the numera-
tor polynomial coefficients 

[

cr−1, cr−2,⋯ c1, c0
]

 are determined by using the IMPPA 
method (as described in Sect.  2.3). The proposed method is an iterative process 
that moves forward by minimising the integral square error (ISE) between the step 
response of the original system and the ROM using the EDE algorithm. The above 
process repeats until the maximum generation 

(

Gmax

)

 is reached or the step ISE 
value reaches its globally optimal value. The ISE [8] is defined as:

where y(t) and yr(t) are the unit step responses of the original system and of the 
ROM, respectively.

Similarly, for the MIMO systems, the common denominator polynomial coeffi-
cients 

[

Dr−1,Dr−2,…D1,D0

]

 are identified using the EDE algorithm, while the 
numerator polynomial matrix 

[

rij(s)
]

 coefficients are determined using the improved 
multi-point Padé approximation method. The optimal polynomial coefficient values 
are determined by minimising the single objective function (I) , which is defined by 
the linear scalarising of q × v objective functions 

(

E′
ij
s

)

:

where �1 = �2 = ⋯ = �q+v+(−1)q ;�1 + �2 +⋯ + �q+v+(−1)q = 1 and ‘Eij’ is the 
objective function, defined by Eq. (8), between the output response of the original 
system transfer function gij(s) and the ROM transfer function rij(s).

2.2  Enhanced Differential Evolution Algorithm

The classic DE algorithm [13, 35] is a population-based algorithm similar to 
the genetic algorithm (GA) and uses similar operators: crossover, mutation and 
selection. The main difference between the two is that the GA relies on crosso-
ver, while the DE algorithm relies on the mutation operation to construct a better 
solution. The DE algorithm uses the mutation operation as a search mechanism 
and uses a selection operation to guide the search towards the prospective regions 
in the search space. The classic DE algorithm has three main advantages: (1) the 

(7)rij(s) =
cij(s)

D̃r(s)
=

Cr−1s
r−1 +⋯+C1s + C0

sr + Dr−1s
r−1 +⋯+D1s + D0

.

(8)ISE (E) =

∞

∫
0

[

y(t) − yr(t)
]2

⋅ dt

(9)The objective function(I) =

q
∑

i=1

v
∑

j=1

(

�i+j+(−1)i ⋅ Eij

)
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ability to find the real global minimum regardless of the initial parameter values, 
(2) fast convergence and (3) the use of few control parameters.

Hence, in the present study, the mutation scheme is enhanced to have better 
performance than the classic DE algorithm and many of the heuristic search algo-
rithms. The enhancement proposed to the classic DE algorithm emphasises the 
following two additional advantages: (1) it avoids the local minima by preventing 
the population from becoming too homogeneous and (2) it prevents the popula-
tion from moving into the worst positions of the search space as a result of slow-
ing or stopping evolution.

The EDE algorithm also uses a non-uniform crossover to increase the diver-
sity of the perturbed parameter vectors. The recombination (crossover) operator 
shuffles the current and mutant population information into successful combina-
tions, enabling the search for a better solution space. Since the EDE algorithm is 
simple, fast and very easily adaptable, employing it to simplify large-scale system 
MOR problems tends to give an optimal ROM.

Like any other evolutionary algorithm (EA), the EDE algorithm starts with a 
population ‘ Np ’ that remains consistent until the end of the final generation. Each 
population has an R-dimensional search variable vector. The notation for the ith 
vector of the population at generation ‘ G ’ is given by X⃗G

i
=

[

XG
i,1
,XG

i,2
,…XG

i,R

]

⋅ At 
the beginning of the EDE run at G = 0 , the initial vector population is chosen 
randomly and should cover the entire parameter space, i.e.

where i = 1, 2,… ,Np;
‘Np’ is the population size; ‘R’ is the solution vector (with unknown denomina-

tor polynomial coefficients); Xmax and Xmin are the upper and lower boundaries 
of the parameters, respectively; and rand(0, 1) is a uniformly distributed random 
number lying between 0 and 1.

Mutation For each target vector XG
i,j
, a donor (mutant) vector VG+1

i,j
 is formed as 

follows:
In the Case of Classic DE Algorithm Mutation 

where ‘F’ is a real mutant factor that varies randomly for each population with ‘i’ in 
the range [0, 2] , which controls the amplification of the differential variation 
(

XG
r2,j

− XG
r3,j

)

, and r1, r2, r3 ∈
{

1, 2… ,Np

}

 are randomly chosen integers that must 
be different from the running index ‘i’(i.e. r1 ≠ r2 ≠ r3 ≠ i).

In the Case of the EDE Algorithm 

(10)XG
i,j
= Xmin + rand(0, 1) ∗

(

Xmax − Xmin

)

(11)VG+1
i,j

= XG
r1,j

+ F.
(

XG
r2,j

− XG
r3,j

)

(12)VG+1
i,j

= XG
best,j

+ F1 ⋅

(

XG
r1,j

− XG
r2,j

)

− F2 ⋅

(

XG
i,j
− XG

worst,j

)
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where r1, r2 ∈
{

1, 2… ,Np

}

 are randomly chosen integers that must be different 
from the running index ‘i’(i.e. r1 ≠ r2 ≠ i) (note that the ‘N′

p
 must be chosen to be 

greater than or equal to two to allow for this condition); X⃗G
best

and X⃗G
worst

 are the best 
and worst vectors, respectively, among the population with respect to fitness at the 
current generation ‘G’; and ‘F1’ and ‘F2’ are scale factors that vary randomly for 
each population in the ranges [−1, 1]and[0, 0.5] , respectively. The choice of scale 
factor ‘F1’ controls the magnification of the difference vector 

(

XG
r1,j

− XG
r2,j

)

 in either 
the positive or the negative direction, and the choice of scale factor ‘F2’ controls the 
magnification of the difference vector 

(

XG
i,j
− XG

worst,j

)

.

The mutant vector formed by using Eq. (12) helps to maintain the positions of 
all the vectors in the best positions of the search space and prevents the vectors 
from moving towards the worst positions of the search space; this helps the algo-
rithm find the global best position rapidly. Therefore, the fitness of the best vector 
in a population is much less likely to become stagnant until a real global optimum 
value has been reached.

Crossover The crossover was introduced to increase diversity among the perturbed 
parameters. The trailing vector UG+1

i,j
 is formed such that

In Eq.  (13), randj(0, 1) is the jth evolution of a uniform random number 
between ‘0’ and ‘1’ , and ‘CR’ is the crossover constant, which ranges in the inter-
val [0, 1] and must be determined by the user. A wise choice of ‘CR’ often speeds 
up the convergence of the suspected globally optimal solution.

Selection The target vector XG
i,j

 is compared to the trial vector UG+1
i,j

 using the 
greedy criterion to determine which will be a member of generation G + 1 . The vec-
tor that yields the smaller fitness value is admitted to the next generation. The selec-
tion operation of the DE algorithm is represented by Eq. (14):

In Eq. (14), E() is the fitness function that must be minimised. Thus, if the trial 
vector yields a better value of the fitness function, it replaces the target vector in 
the next generation. Otherwise, the target vector is retained in the population.

Random Mutation In addition to the regular mutation scheme described by 
Eq. (12), a random mutation scheme has been introduced in the EDE algorithm. The 
advantages of using random mutations are detailed below:

(13)UG+1
i,j

=

{

VG+1
i,j

if
(

randj(0, 1) ≤ CR
)

XG
i,j

if
(

randj(0, 1) > CR
) where j = 1, 2,… ,R.

(14)XG+1
i,j

=

⎧

⎪

⎨

⎪

⎩

UG+1
i,j

if E

�

UG+1
i,j

�

< E

�

XG
i,j

�

XG
i,j

if E

�

XG
i,j

� ≤ E

�

UG+1
i,j

� .
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1. Prevents stagnation of particles at a particular point.
2. Reduces the inability of particles to move to a better position in the search space 

for a predetermined number of generations (i.e. the fitness value does not improve 
for a predetermined number of generations).

3. Prevents particles from staying at a local minimum value. In such cases, the 
position of the particles is shifted by a random mutation to a new location. For 
example, if the ith particle in population ‘Np’ becomes stagnant and is unable to 
move to a better position for ‘m’ generations, then the position of the ith particle 
is shifted by a random mutation to a new location, as explained below:

If 
(

E

(

X⃗G
i

) ≤ E

(

X⃗G+1
i

) ≤ … ≤ E

(

X⃗G+m

i

))

, then

where ‘m’ is the maximum number of generations during which stagnation can be 
tolerated.

The mutation, crossover and selection operations are repeated until the maximum 
generation 

(

Gmax

)

 has been reached or the specified termination criteria are satisfied. 
In the following section, pseudocode for implementing the EDE algorithm is presented.

2.2.1  Pseudocode of the EDE Algorithm

(15)XG+m+1
i,j

= Xmin + rand(0, 1) ∗
(

Xmax − Xmin

)

for j = 1, 2,… ,R
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2.3  Improved Multi‑point Padé Approximation (IMPPA) Method

The multi-point Padé approximation (MPPA) method [16, 17] uses the fact that 
Rr(s) is the rth-order Padé approximation of Gn(s) about the r expansion points at 
s = pi , i.e. about the negative values of the poles of Rr(s) . This implies that

It should be noted that for a pole of multiplicity ‘k’ in Rr(s) , the condition below is 
satisfied for the negative value of the repeated pole:

If the denominator of Rr(s) is specified, then the problem evolves into one of 
choosing the numerator coefficients ci(i = 0, 2,… , r − 1) such that the value of 
“E” in Eq. (8) is minimised. This is equivalent to selecting Rr(s) so that it matches 
Gn(s) about the ‘r’ roots (i.e. the negative values of the poles of Rr(s) ) of the 
polynomial

It follows from Eq. (16) that Eqs. (2) and (5) are analogous. Hence, matching the 
values of the two polynomials at the roots of m(s) gives

where

The (r − 1)th-degree polynomial equations must be determined by the Tay-
lor polynomial approximation or by interpolating P(s) and Q(s) about the rth-
order polynomial equation m(s) (i.e. the polynomials must be derived by a Routh 
array procedure, as described in [15]). Then, by definition, these interpolated 
or approximated polynomials must be identical because P(s) and Q(s) have the 
same values at the expansion points. Hence, the (r − 1) coefficients of both pol-
ynomials may be equated to give a set of ‘r’ linear equations to solve for the 
reduced model numerator coefficients ci(i = 0, 2,… , r − 1) . However, to perform 
these calculations, it is best to proceed with a matrix procedure, which is given 
below.

The (n + r) coefficients of P(s) and Q(s) in Eq.  (19) may be represented as the 
components of the vectors B·c and A·d, respectively. Now, we define the transfor-
mation matrices Mi(i = 0, 1, 2,… , n)⋅ whose pre-multiplication by matrices B·c and 
A·d gives a set of ‘r’ linear equations to solve for the ci(i = 0, 2… , r − 1):

(16)Gn

(

pi
)

= Rr

(

pi
)

; where i = 1, 2,… , r.

(17)
dq

dsq
Gn(s) =

dq

dsq
Rr(s), for q = 0, 1, 2,… , k − 1.

(18)m(s) = (−s)r + dr−1(−s)
r−1 +⋯ − d1s + d0.

(19)P(s) = Q(s) at s = pi; where i = 1, 2,… , r

P(s) = (b0 + b1s +⋯ + bns
n)
(

c0 + c1s +⋯ + cr−1s
r−1

)

and Q(s) =
(

a0 + a1s⋯ + ams
m
)(

d0 + d1s +⋯ + sr
)

.
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Note that Mi+1 is derived from Mi by merely removing its last row and last col-
umn. The coefficients of the (r − 1)th degree approximations of P(s) and Q(s) may 
now be directly equated according to

The MPPA method is limited to systems whose transfer functions have a relative 
degree ( i.e., n − m ) equal to 1. The IMPPA method would overcome the above limi-
tation with modified Eq. (20). Thus, the IMPPA method can be applied to systems 
whose transfer functions have a relative degree ( n − m) greater than or equal to 0. 
Equation (20) can be represented in vector form as given below:

where F = MnMn−1 ⋯M2M1B =
[

f ij
]

r×r
; i = 1, 2,… , r; j = 1, 2,… , r and h = M

n

M
n−1 ⋯M

2
⋯M

n−mAd =
[

h
1
h
2
⋯h

r

]T
.

By simplifying Eq. (21), the unknown numerator coefficients of the ROM can be 
determined as in the MPPA approach, but the IMPPA approach tends to have the 
following possible drawbacks:

1. The obtained ROM numerator coefficients are not optimal.
2. The ROM is unable to match the steady-state value of the original system.
3. The method fails to retain the adequate impulse response energy of the original 

system in the ROM. The MPPA method is unsuitable for certain applications, 
such as the design of causal system controllers.

� =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

bn 0 0 ⋯ 0

bn−1 bn 0 ⋯ 0

⋮ ⋮ bn ⋯ 0

bn−r+1 bn−r+2 ⋯ ⋯ bn
⋮ ⋮ ⋮ ⋯ ⋮

b0 b1 ⋯ ⋯ br−1
0 b0 b1 ⋯ ⋮

⋮ ⋮ ⋮ ⋮ ⋮

0 0 0 ⋯ b0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(n×r)×r

; c =

⎡

⎢

⎢

⎢

⎢

⎣

cr−1
cr−2
⋮

c1
c0

⎤

⎥

⎥

⎥

⎥

⎦

r×1

;d =

⎡

⎢

⎢

⎢

⎢

⎣

1

dr−1
⋮

d1
d0

⎤

⎥

⎥

⎥

⎥

⎦

(r+1×1)

;

� =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

am 0 0 ⋯ 0

am−1 am 0 ⋯ 0

am−2 am−1 am ⋯ 0

⋮ ⋮ am−1 ⋯ am
am−r−1 am−r ⋯ ⋯ am−1

⋮ ⋮ ⋮ ⋯ ⋮

a0 a1 ⋯ ⋯ ⋮

0 a0 a1 ⋯ ar−1
⋮ ⋮ ⋮ ⋮ ⋮

0 0 0 ⋯ a0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(m×r+1)

; Mi =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

dr−1 1 0 … 0 0

−dr−2 0 1 … 0 0

dr−3 0 0 … 0 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

(−1)r+1d0 0 0 … 0 0

0 0 0 … … 0

⋮ ⋮ ⋮ ⋮ 1 ⋮

0 0 0 … 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(n+r−i)×(n+r+1−i)

.

(20)MnMn−1 ⋯M2M1Bc = MnMn−1 ⋯M2 ⋯Mn−mAd.

(21)Fc = h
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In order to overcome the above limitations and to maintain the zero steady-state 
error between the original system and the ROM responses, the condition given 
below has to be satisfied:

Incorporating Eqs. (22) into (21) leads to the following set of linear equations:

The above non-square matrix is represented in vector form as given below:

Calculation of unknown matrix ‘ĉ’ is performed by the least square approach as 
given below:

Hence, the numerator coefficients of the ROM obtained by evaluating Eqs. (22) 
and (25) are guaranteed to be the globally optimal numerator coefficients (i.e. the 
coefficients for which the value of “E” in Eq.  (8) has been minimised). By this 
method, the full impulse response energy of the original system is retained in the 
ROM and matches the initial time response values for impulse or step inputs.

2.4  Stability and Passivity Preservation Properties of the Proposed Method

Originally, an algebraic method, i.e. the Routh–Hurwitz stability criterion, was 
used to verify the stability of LTI systems. Furthermore, a new simple criterion 
for polynomial stability was proposed by Nie and Xie in [23]. Stability retention 
conditions for the proposed ROM that are based on this criterion are given in 
Corollary 1.

2.4.1  Stability Retention Property of the Proposed Method

Corollary 1 The ROM Rr(s) obtained by the proposed EDE and IMPPA-based 
MOR methods always preserves the stability of the original system.

Proof For the proposed ROM Rr(s) to be stable, the denominator polynomials Dr(s) 
or D̃r(s) must satisfy the necessary and sufficient conditions (defined in [23]) given 
below:

(22)c0 =
a0

b0
d0.

(23)

⎡

⎢

⎢

⎢

⎣

f11 f12 ⋯ f1,r−2 f1,r−1
f21 f22 ⋯ f2,r−2 f2,r−1
⋮ ⋮ ⋮ ⋮ ⋮

fr,1 fr,2 ⋯ fr,r−2 fr,r−1

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

cr−1
cr−2
⋮

c1

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

h1 − c0.f1,r
h2 − c0.f2,r

⋮

hr − c0.fr,r

⎤

⎥

⎥

⎥

⎦

.

(24)F̂ ⋅ ĉ = ĥ.

(25)ĉ =
[

F̂
T
⋅ F̂

]−1

⋅ F̂
T
⋅ ĥ.
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For SISO systems:
Necessary condition di > 0(for i = 0, 1,… , r).

Sufficient condition Let ∝i=
di−1.di+2

di.di+1
(i = 1, 2,… , r − 2) denote the coefficients 

of the positive coefficient polynomial Dr(s) . The stability of Dr(s) is entirely 
determined by a sufficient condition, as given below:

 Similarly, for MIMO systems:
Necessary condition Di > 0(for i = 0, 1,… , r).

Sufficient condition Let ∝̃i =
Di−1.Di+2

Di.Di+1

(i = 1, 2,… , r − 2) denote the coefficients 
of the positive coefficient polynomial D̃r(s) . The stability of D̃r(s) is completely 
determined by a sufficient condition, as given below:

Therefore, during the initialisation and selection process of the EDE algo-
rithm, the search vector (i.e. the ROM denominator polynomial coefficient vec-
tor) is constrained to obey the necessary and sufficient conditions discussed 
above. Furthermore, during the operation of the EDE algorithm, if any ith vector 
(i.e. the coefficient vector of the ROM denominator polynomial Dr(s) or D̃r(s) ) 
of the population ‘Np’ at any generation ‘G’ does not satisfy the conditions given 
in Corollary 1, then that particular ith vector is replaced with a randomly chosen 
vector given by Eq. (10) until the conditions are satisfied. Hence, the proposed 
method always generates stable ROMs for stable original dynamical systems.

2.4.2  Passivity Preservation Property

Definition 2 A strict output passive system [22] has a finite integral impulse 
response (impulse response energy (IRE)), i.e. ∫ ∞

0
(g(t))

2
⋅ dt < ∞ , where g(t) is the 

real impulse response of the system.

Thus, the passivity preservation property of the original system in the ROM is 
verified by evaluating its IRE values. Therefore, retaining the full IRE of the original 
system in the ROM causes the original system and the ROM to match precisely in 
their (1) impulse response time moments, (2) frequency responses and (3) preserva-
tion of the passivity property.

2.5  Integration of the EDE Algorithm and IMPPA Method for Solving MOR 
Problems

The objective of the proposed method is to find the desired ROM for the original 
higher-order linear continuous-time systems being considered by preserving the sta-
bility, passivity and accuracy of the original system. In the present study, the EDE 

∝i< 1 for r = 3

∝i< 0.46557 for r > 3

}

where i = 1,… , r − 2.

∝̃i < 1 for r = 3

∝̃i < 0.46557 for r > 3

}

where i = 1,… , r − 2.
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algorithm is employed to determine the denominator polynomial coefficients of the 
ROM with the preservation of the dominant characteristics and stability of the orig-
inal system. The numerator polynomial coefficients for each vector population of 
the EDE algorithm (i.e. for each denominator polynomial coefficient vector) were 
determined by using the IMPPA method. The following procedural steps are used to 
solve the MOR problem.

2.5.1  Procedural Steps

Step 1 Initially, specify the user-defined parameters of the EDE algorithm, such as 
the population size ‘Np’ , the size of the solution vector ‘R’ , the maximum genera-
tion ‘Gmax’ , the permissible bounds 

(

Xmax,Xmin

)

 of the solution and the crossover 
constant ‘CR’ . Each population i ∈

[

1,Np

]

 of the EDE algorithm represents a 
desired reduced denominator polynomial with R-dimensional vector (i.e. coef-
ficients R = r)

Step 2 At generation G = 0 , each of the ‘Np’ reduced denominator polynomials has 
‘r’ coefficients that are initialised randomly by using Eq. (10) in such a way that 
all ‘Np’ reduced denominator polynomials satisfy the stability conditions given 
in Corollary 1.

Step 3 For each of the reduced denominator polynomials in the population 
(

Np

)

 , the 
numerator polynomial coefficients are determined by using the IMPPA method 
described in Sect. 2.3.

Step 4 The step integral square error (fitness) value of the ‘Np’ ROMs is evaluated 
by using Eq. (8).

Step 5 The ‘Np’ reduced denominator polynomial vectors are updated using muta-
tion, crossover and selection operations. For the next generation (i.e. G = G + 1), 
the ‘Np’ reduced denominator polynomials are selected by using Eq. (14).

Step 6 The updated denominator polynomial vectors are checked to determine 
whether they satisfy the stability conditions given in Corollary 1. If any of the 
ith vectors among the population ‘Np’ at generation ‘G’ do not satisfy the stability 
conditions or do not have a sufficiently high fitness value, then that particular ith 
vector is replaced with a randomly chosen vector, as given by Eq. (10), until the 
stability conditions are satisfied.

Step 7 Steps 3 through 5 are repeated until the generation number reaches the maxi-
mum generation (Gmax) or the population reaches the truly global optimum ISE 
value (i.e. the ISE value offered by the ROM coefficients remains unchanged for 
any further number of generations).

Finally, the ROM coefficients that offer the lowest ISE value among the popu-
lation ‘Np’ of the maximum generation ‘Gmax’ are considered to be the final opti-
mum ROM. The integration of the EDE algorithm and the IMPPA-based MOR 
method can be better understood using the flow chart shown in Fig. 1. The advan-
tages of the enhanced mutation and random mutation schemes implemented in 
the EDE algorithm are discussed in Sect. 2.2. However, they can be better com-
prehended from the flow chart.
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The proposed method offers the following advantages: (1) an optimum ROM 
that exhibits low step ISE can be determined for the large-scale LTI systems 
being considered. A ROM with low ISE retains all the dominant characteristics 
of the original higher-order system; (2) the stability and passivity properties of 
the original HOS are preserved in the ROM; (3) the time and frequency responses 
of the ROM maintain good accuracy compared with the original HOS; (4) the 
computational efforts required are much less than those of other heuristic search-
based MOR methods; (5) the method can extend to systems whose time delays 
and uncertainties are represented in the frequency domain. The limitation of LTI 
system reduction methods is that they cannot directly be implemented for linear 
time-varying (LTV) systems in the same format since LTV system transfer func-
tion coefficients are time-varying. This limitation can be overcome by represent-
ing the time-varying or uncertain parameters of the LTV systems within a fixed 
interval of minimum and maximum value, thus giving the system transfer func-
tion coefficients interval bounds. Hence, the LTI reduction method can be easily 
implemented for such linear uncertain systems either by using interval arithmetic 
operations or by developing Kharitonov polynomial-based transfer functions.

3  Numerical Examples

The flexibility and effectiveness of the proposed method are validated by con-
sidering three typical numerical examples from the literature, and the results are 
compared.

Example 1 Consider the ninth-order SISO system transfer function investigated in 
[4].

The impulse response energy (IRE) of G9(s) is given by 
IRE9 =

∞∫
0

[

g(t)
]2

⋅ dt = 0.470518.

By applying the proposed algorithm described in Sect.  2.4 with the specified 
parameters given in Table  1, the second-order reduced model is obtained, as in 
Eq. (27):

Here, ISE(E) = 0.019836. The IRE of R2(s) is given by 

IRE2 =

∞∫
0

[

r2(t)
]2

⋅ dt = 0.440035 . The number of generations (g) taken to attain an 

optimal second-order reduced model is equal to 14.

(26)

G9(s) =
s4 + 35s3 + 291s2 + 1093s + 1700

s9 + 9s8 + 66s7 + 294s6 + 1029s5 + 2541s4 + 4684s3 + 5856s2 + 4620s + 1700
.

(27)R2(s) =
−0.516988s + 0.962241

s2 + 1.397068s + 0.962241
.
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Fig. 1  Flow chart of the proposed MOR method
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In addition, the third-order reduced model is obtained as follows:

with ISE(E) = 0.001524. The IRE of R3(s) is given by IRE
3
=

∞∫
0

[

r
3
(t)
]2

⋅dt = 0.469932 . The number of generations (g) taken to attain an optimal third-order 
reduced model is equal to 12.

The convergence of the objective function [i.e. ISE(E)] during the determina-
tion of R2(s) and R3(s) using the proposed method with the classic DE and MPPA 
method and with the classic DE and IMPPA method is plotted in Figs.  2 and 3, 
respectively.

From Figs.  2 and 3, it can be observed that the classic DE and MPPA-based 
reduction method is unable to attain the globally optimal solution because it stag-
nates at a local minimum value. Furthermore, in the classic DE and IMPPA-based 
reduction method, the improved MPPA approach supports the method of acquiring 
the globally optimal solution with no improvement in convergence speed. Finally, 
with the use of the EDE algorithm and the IMPPA method, the convergence speed 
of the proposed method increases by approximately two times. The parameters in 
Table 1 are used to acquire ROMs from the classic DE and MPPA method and the 
classic DE and IMPPA method, and the results are compared in Table 2 to show the 
effectiveness of the proposed method. From the above observations, we can say that 
the proposed method performs better in acquiring the globally optimal ROM with 
less computational effort. The superiority of the proposed method to the other popu-
lar reduction methods available in the literature is shown in Table 2 by comparing 
ISE and IRE values.

The step responses of the original ninth-order system and the second- and third-
order reduced models obtained from the proposed method are plotted in Fig. 4. The 
step error 

(

e(t) = y(t) − yr(t)
)

 response between the original system and the second- 
and third-order reduced models of the proposed method and other familiar methods 
is plotted in Fig. 5. In addition, the Nyquist responses of the original system along 
with those of the proposed second- and third-order reduced models are plotted in 
Fig. 6.

Figure 4 shows that the proposed method precisely retains the dominant character-
istics of the original system in the ROMs. The comparison of the Nyquist responses in 
Fig. 6 shows that the closed-loop stability of the third-order reduced model strongly 
resembles that of the original system in all frequency regions. Figure 5 shows that the 

(28)R3(s) =
0.284391s2 − 1.475093s + 2.860096

s3 + 2.64621s2 + 4.490752s + 2.860096

Table 1  Parameters used for the 
enhanced DE algorithm

Parameters Values

Population size ( Np) 20
Maximum generation 

(

Gmax

)

20
[

Xmin,Xmax

]

[0.01, 10]

CR 0.9
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characteristics of the original system are not maintained as closely by the ROMs pro-
duced by the other methods as by the proposed third-order model. The proposed third-
order reduced model produces the smallest error among all other ROMs while retain-
ing the full impulse response energy value. Hence, it will be beneficial to investigate 
the proposed ROM in situations in which the original higher-order system may replace 
the ROM, thus simplifying the analysis, design and control development of complex 

Fig. 2  Convergence of ISE for the determination of R2(s)

Fig. 3  Convergence of ISE for the determination of R3(s)
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systems. Unlike the proposed method, the classic DE and IMPPA method and the clas-
sic DE and MPPA method fail to generate optimum ROMs when using the parameters 
given in Table 1. Hence, the above comparison demonstrates that the enhancements 
made to the proposed method allow it to obtain the optimum solution significantly 
faster than the other evolutionary-based reduction methods with less computational 
effort.

Example 2 To show the practical applicability of the proposed method, the single-
machine infinite-bus (SMIB) power system model from [10] is used. The detailed 
block diagram and its mathematical representation of the SMIB power system, 
along with numerical values of the parameters for a particular operating point, are 
given in “Appendix” [25].

The transfer function representation of the SMIB power system (based on the 
numerical values of the matrices A,B,C and D) of the tenth-order two-input–two-out-
put linear time-invariant model is given by:

(29)
[

G10(s)
]

=

[

g11(s) g12(s)

g21(s) g22(s)

]

=

[

�(s)

ΔVref(s)

�(s)

ΔTm(s)
Vt(s)

ΔVref(s)

Vt(s)

ΔTm(s)

]

=
1

D10(s)

[

a11(s) a12(s)

a21(s) a22(s)

]

Table 2  Comparison of the performance indices ISE and IRE of the ROMs obtained by the proposed 
method and other existing methods

Method of order reduction ROMs ISE(E) IRE(I)

Proposed method (second-order model) −0.516988s+0.962241

s2+1.397068s+0.962241
0.019836 0.440035

ROM from classic DE and IMPPA (second-order 
model)

−0.578141s+1.101591

s2+1.68378s+1.101591
0.024204 0.426373

ROM from classic DE and MPPA (second-order 
model)

−0.361466s+0.773564

s2+1.1483s+0.817113
0.031668 0.37577

ROM of Sharma et al. [28] using PLSMO −0.6364s+1.054

s2+1.553s+1.054
0.0204 0.4698

ROM of Sharma et al. [28] using SMO −0.603s+1.166

s2+2.031s+1.166
0.0269 0.4516

Proposed method (third-order model) 0.28439s2−1.47509s+2.860096

s3+2.64621s2+4.49075s+2.860096

0.001524 0.469932

ROM from classic DE and IMPPA (third-order model) 0.3739s2−1.8982s+3.5146

s3+3.1981s2+5.3322s+3.5146

0.002167 0.47867

ROM from classic DE and MPPA (third-order model) 0.2165s2−1.21607s+2.4923

s3+2.3773s2+4.0457s+2.5133

0.001993 0.454968

ROM of Singh et al. [33] (for � = 2 and � = 1) −0.915677s+2.713

s3+3s2+4.713s+2.713
0.009807 0.392852

ROM of Nasirisoloklo et al. [21] 0.4121s2−2.9431s+5.2356

s3+4.2602s2+7.7705s+5.2356

0.0098 0.501843

ROM of Narwal and Prasad [20] −0.569097s2−0.16713s+2.023

s3+3.008s2+4.03s+2.023

0.021134 0.481268

ROM of Sikander and Thakur [32] 0.001935s2+0.005725s+1.073

s3+1.681s2+2.183s+1.073

0.02252 0.34653

ROM of Desai and Prasad [4] 0.0789s2+0.3142s+0.493

s3+1.3s2+1.34s+0.493

0.0252 0.268282

ROM from SE method and PSO algorithm [31] −0.172828s2+0.373663s+0.493

s3+1.494s2+1.34s+0.493

0.030009 0.36005

ROM of Sikander and Prasad [30] −0.12026s2+0.3172s+0.493

s3+1.494s2+1.34s+0.493

0.034126 0.323108
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Fig. 4  Step response comparison of the proposed ROMs with the original system (Example 1)

Fig. 5  Comparison of the step error responses between some of the ROMs tabulated in Table 2 and the 
original system (Example 1)
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where the common denominator D10(s) is given by:

By applying the proposed method to the above MIMO system with the EDE 
parameters shown in Table 3, the ROM transfer function matrix 

[

Rr(s)
]

 is obtained 
by minimising the objective function (I) defined by Eq. (9).

The general forms of the second- and third-order ROMs of the MIMO transfer 
functions are given below:

D10(s) = s10 + 64.21s9 + 1596s8 + 19470s7 + 126800s6 + 5.036 × 105s5 + 1.569

× 106s4 + 3.24 × 106s3 + 4.061 × 106s2 + 2.905 × 106s + 2.531 × 105

and a11(s) = −2298s5 − 98450s4 − 1.376 × 106s3 − 6.838 × 106s2 − 6.1 × 106s − 5.43 × 105

a12(s) = 29.09s8 + 1868s7 + 46100s6 + 5.459 × 105s5 + 3.185 × 106s4 + 8.702 × 106s3

+ 1.206 × 107s2 + 7.606 × 106s + 6.483 × 105

a21(s) = 85.23s7 + 3651s6 + 5.208 × 104s5 + 2.98 × 105s4 + 8.471 × 105s3 + 3.105 × 106s2

+ 2.752 × 106s + 2.45 × 105

a22(s) = −1.26s8 − 85.18s7 − 2089s6 − 2.568 × 104s5 − 1.909 × 105s4 − 7.213 × 105s3

− 1.084 × 106s2 − 2.972 × 105s − 1.942 × 104.

(30)
[

R2(s)
]

=

[

r11(s) r12(s)

r21(s) r22(s)

]

=
1

D̃2(s)

[

c11(s) c12(s)

c21(s) c22(s)

]

Fig. 6  Comparison of Nyquist responses of the original system and the proposed ROMs (Example 1)
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The numerical values of the coefficients of the second-order reduced model com-
mon denominator polynomial D̃2(s) and the corresponding numerator polynomial 
matrix coefficients are obtained for the optimum value of the objective function 
(I) = 1.622628 as follows:

The number of generations (g) taken to attain an optimal second-order reduced 
model is equal to 32.

Similarly, the numerical values of the third-order reduced model 
[

R3(s)
]

 , the coef-
ficients of the common denominator polynomial D̃3(s) and the numerator polyno-
mial matrix coefficients obtained for the optimum value of the objective function 
(I = 0.428085) are given below:

The number of generations (g) taken to attain an optimal third-order reduced model 
is equal to 45. The third-order reduced models obtained from other recent and familiar 
methods available in the literature are tabulated in Table 4.

The acceptability of the second- and third-order ROMs obtained from the pro-
posed method is shown by comparing the output responses (i.e. �(t) and Vt(t) ) with the 

(31)
[

R3(s)
]

=

[

r11(s) r12(s)

r21(s) r22(s)

]

=
1

D̃3(s)

[

c̄11(s) c̄12(s)

c̄21(s) c̄22(s)

]

.

D̃2(s) = s2 + 1.342354s + 6.500102

c11(s) = 5.762409s − 13.945299

c12(s) = 8.935616s + 16.649609

c21(s) = −1.595958s + 6.292078

c22(s) = −0.835898s − 0.498743.

D̃3(s) = s3 + 3.044628s2 + 11.538711s + 24.443796

c11(s) = −3.081654s2 + 16.126545s − 52.44165

c12(s) = −1.211307s2 + 40.182293s + 62.61127

c21(s) = 1.055727s2 − 3.907679s + 23.661518

c22(s) = 0.042588s2 − 4.015156s − 1.875537.

Table 3  Parameters used for the 
EDE algorithm

Parameters Values

Population size ( Np) 30
Maximum generation 

(

Gmax

)

300
[

Xmin,Xmax

]

[0.01, 10]

CR 0.8
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original system responses, which are subjected to the following three distinct step input 
changes:

(1) ΔVref(t) = 0.05 p.u. and ΔTm(t) = 0.
(2) ΔVref(t) = 0 and ΔTm(t) = 0.05 p.u.

(3) ΔVref(t) = 0.05 p.u. and ΔTm(t) = 0.05 p.u. The responses are shown in Figs. 7, 
8, 9, 10, 11 and 12.

Table 5 shows that the efficacy of the proposed ROMs is shown by comparing their 
step ISE and IRE with those of the ROMs obtained from recent and familiar MOR 
methods in the literature.

The step responses in Figs. 7, 8, 9, 10, 11 and 12 indicate that the response of the 
proposed ROMs seems to be closely matched with the response of the original sys-
tem. The comparison of performance indices shown in Table 5 shows the dominance 
of the proposed third-order reduced model over the other ROMs. Moreover, the pro-
posed method produces ROMs with low ISE values along with the satisfactory reten-
tion of IRE values. Hence, the proposed method generates ROMs that are very helpful 
for better understanding the original system, simplifying the control design, reducing 
computational complexity, making the simulation faster and reducing the memory 
requirements.

Example 3 The effectiveness of the proposed method can be shown by considering a 
SMIB system without an automatic excitation control system (AECS). This system 
gives a sixth-order MIMO uncompensated system with a typical transient response. 
The transfer function representation of the system based on the numerical values of 
the state-space matrices A′,B′,C′ and D′ defined in “Appendix” is given below:

where the common denominator D6(s) is given by:

(35)
�

G6(s)
�

=

�

g11(s) g12(s)

g21(s) g22(s)

�

=

⎡

⎢

⎢

⎣

𝛿(s)

ΔVref (s)

𝛿(s)

ΔTm(s)

Ṽt(s)

ΔVref (s)

Ṽt(s)

ΔTm(s)

⎤

⎥

⎥

⎦

=
1

D6(s)

�

a11(s) a12(s)

a21(s) a22(s)

�

D6(s) = s
6 + 41.3728s5 + 466.3606s4 + 1018.1659s3 + 6729.8343s2 + 4509.30158s + 21414.3562

and a11(s) = −2298.089s − 45961.7802

a12(s) = 29.09115s4 + 1203.5823s3 + 13247.0921s2 + 16501.6656s + 54859.6258

a21(s) = 85.2292s3 + 1704.5836s2 + 1036.6511s + 20733.0227

a22(s) = −1.2596s4 − 56.4218s3 − 749.4062s2 − 2578.6819s − 1642.7642.
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By applying the proposed method to the above MIMO system with the EDE 
parameters given in Table  6, the desired ROM transfer function matrix [Rr(s)] is 
obtained.

The general form of the second- and third-order ROMs of MIMO transfer func-
tions is represented by Eqs. (30) and (31). The numerical values of the desired ROM 
common denominator polynomial coefficients and the corresponding numerator 
polynomial matrix coefficients obtained from the proposed method are given below.

The numerical values of [R2(s)] are as follows:
The common denominator polynomial D̃2(s) = s2 + 0.356812s + 5.482879 and 

the corresponding numerator polynomial matrix coefficients are

Table 4  ROMs from other recent and familiar reduction methods

Method of order reduction
[

R3(s)
]

Third-order reduced model using the BBBCO  
algorithm and time moment matching [29]

D̃3(s) = 2.3108s3 + 2.7911s2 + 10.2646s + 1

dc̄11(s) = 6.311606s2 − 22.2338s − 2.1454

c12(s) = 16.8003s2 + 25.6068s + 2.561

c21(s) = −1.59314s2 + 9.58357s + 0.96799

c22(s) = −4.1s2 − 0.9594s − 0.07676

Third-order reduced model using the BBBCO  
algorithm and Routh approximation [5]

D̃3(s) = s3 + 1.8276s2 + 1.4922s + 0.1224

c11(s) = −3.1898s2 − 3.2190s − 0.2626

c12(s) = 7.0114s2 + 3.7212s + 0.3135

c21(s) = 1.4095s2 + 1.4392s + 0.1185

c22(s) = −0.7499s2 − 0.12902s − 0.009393

Third-order reduced model using the GA-based MOR 
method [24]

D̃3(s) = s3 + 0.5785s2 + 10.569s + 1.0532

c11(s) = 7.4s2 − 24s − 2.3

c12(s) = 0.625056s2 + 28.901348s + 2.674504

c21(s) = −0.61611s2 + 7.954828s + 1.032787

c22(s) = −1.5073s2 − 2.9999s − 0.0808

Third-order reduced model using the SPS-based MOR 
method [1]

D̃3(s) = s3 + 0.5789s2 + 10.5705s + 1.0533

c11(s) = 2.1092s2 + 10.7841s + 1.0598

c12(s) = −1.3738s2 + 31.617s + 3.1769

c21(s) = 0.0414s2 − 1.0333s − 0.1045

c22(s) = 0.6593s2 − 1.6093s − 0.1669

Third-order reduced model using the Hankel reduction 
technique [12]

D̃3(s) = s3 + 2.5638s2 + 11.5612s + 21.0274

c11(s) = −6.9057s2 + 14.4978s − 80.6242

c12(s) = −3.1686s2 + 33.1993s + 51.3812

c21(s) = 3.756s2 − 0.0246s + 36.4296

c22(s) = 1.5959s2 − 1.2135s + 1.695
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The optimum value of the objective function (I) = 3.749298 . The number of 
generations (g) taken to attain the optimal second-order reduced model is equal 
to 80.

c11(s) = 6.540557s − 11.767941

c12(s) = 4.384505s + 14.046123

c21(s) = −2.21327s + 5.308432

c22(s) = −1.52447s − 0.420609.

Fig. 7  Comparison of �(t) responses for ΔVref(t) = 0.05 p.u. and ΔT
m
(t) = 0

Fig. 8  Comparison of �(t) responses for ΔVref(t) = 0 and ΔT
m
(t) = 0.05 p.u.
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Similarly, the numerical values of 
[

R3(s)
]

 are as follows:
The common denominator polynomial D̃

3
(s) = s

3 + 1.560641s
2 + 5.320475s

+6.572147 and the corresponding numerator polynomial matrix coefficients are

c̄11(s) = 5.99937s2 − 13.27889s − 14.105846

c12(s) = 8.193421s2 + 10.073204 + 16.836628

c21(s) = −1.07566s2 + 4.880326s + 6.363044

c22(s) = −1.118678s2 − 0.26892s − 0.504171.

Fig. 9  Comparison of �(t) responses for ΔVref(t) = 0.05 p.u. and ΔT
m
(t) = 0.05 p.u.

Fig. 10  Comparison of V
t
(t) responses for ΔVref(t) = 0.05 p.u. and ΔT

m
(t) = 0
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The optimum value of the objective function (I) = 1.716937 . The number of 
generations (g) taken to attain an optimal second-order reduced model is equal to 
121.

The effectiveness of the second- and third-order ROMs obtained from the 
proposed method is shown by comparing their output responses (i.e. 𝛿(t) and 
Ṽt(t) ) with the original system responses subjected to the step input changes 
ΔVref(t) = 0.05 p.u. and ΔTm(t) = 0.05 p.u. The comparison of the responses is 
shown in Figs. 13 and 14. The performance of the proposed method is shown by 
evaluating and comparing ISE and IRE values in Table 7. The efficacy of the pro-
posed method in terms of time domain parameters is shown in Table 8.

Fig. 11  Comparison of V
t
(t) responses for ΔVref(t) = 0 and ΔT

m
(t) = 0.05 p.u.

Fig. 12  Comparison of V
t
(t) responses for ΔVref(t) = 0.05 p.u. and ΔT

m
(t) = 0.05 p.u.



2403Circuits, Systems, and Signal Processing (2020) 39:2376–2411 

Ta
bl

e 
5 

 C
om

pa
ris

on
 o

f t
he

 p
er

fo
rm

an
ce

 in
di

ce
s I

SE
 a

nd
 IR

E 
of

 th
e 

RO
M

s o
bt

ai
ne

d 
by

 th
e 

pr
op

os
ed

 m
et

ho
d 

an
d 

ot
he

r e
xi

sti
ng

 m
et

ho
ds

O
rig

in
al

 sy
ste

m
IR
E
o
f
g
1
1
(s
)

IR
E
o
f
g
1
2
(s
)

IR
E
o
f
g
2
1
(s
)

IR
E
o
f
g
2
2
(s
)

20
.4

12
5

10
7.

40
23

1.
32

96
0.

86
98

M
et

ho
d 

of
 o

rd
er

 re
du

ct
io

n
RO

M
s

r 1
1
(s
)

r 1
2
(s
)

r 2
1
(s
)

r 2
2
(s
)

IS
E(

E)
IR

E
IS

E(
E)

IR
E

IS
E(

E)
IR

E
IS

E(
E)

IR
E

Pr
op

os
ed

 m
et

ho
d 

(s
ec

on
d-

or
de

r m
od

el
)

1.
14

05
23

.5
12

2
5.

03
85

45
.6

25
8

0.
20

10
3.

21
74

0.
11

05
0.

27
45

Pr
op

os
ed

 m
et

ho
d 

(th
ird

-o
rd

er
 m

od
el

)
0.

94
49

18
.1

98
0

0.
44

66
10

6.
27

16
0.

20
67

2.
24

12
0.

11
40

8
0.

78
32

RO
M

 u
si

ng
 th

e 
B

B
B

CO
 a

lg
or

ith
m

 a
nd

 ti
m

e 
m

om
en

t m
at

ch
in

g 
[2

9]
 (t

hi
rd

-o
rd

er
 m

od
el

)
0.

94
02

6
13

.5
01

5
7.

05
75

34
.9

62
2

0.
08

24
3

2.
06

57
0.

17
80

1.
42

33
RO

M
 u

si
ng

 th
e 

B
B

B
CO

 a
lg

or
ith

m
 a

nd
 R

ou
th

 a
pp

ro
xi

m
at

io
n 

[5
] (

th
ird

-o
rd

er
 m

od
el

)
2.

40
54

4.
77

96
9.

43
55

16
.1

77
0.

11
82

0.
94

27
0.

08
08

0.
16

18
RO

M
 u

si
ng

 th
e 

G
A

-b
as

ed
 M

O
R

 m
et

ho
d 

[2
4]

 (t
hi

rd
-o

rd
er

 m
od

el
)

13
.3

27
9

11
7.

73
48

0.
87

64
82

.9
88

3
1.

24
31

6.
83

16
0.

58
00

9
3.

23
76

9
RO

M
 u

si
ng

 th
e 

SP
S-

ba
se

d 
M

O
R

 m
et

ho
d 

[1
] (

th
ird

-o
rd

er
 m

od
el

)
4.

04
29

15
.7

39
2

0.
62

19
9

10
2.

03
98

0.
65

07
0.

10
86

0.
08

85
2

0.
73

23
RO

M
 u

si
ng

 th
e 

H
an

ke
l r

ed
uc

tio
n 

te
ch

ni
qu

e 
[1

2]
 (t

hi
rd

-o
rd

er
 m

od
el

)
2.

12
26

7
25

.5
73

9
0.

24
93

2
10

8.
30

87
0.

23
68

2.
97

52
0.

03
80

2
1.

50
10



2404 Circuits, Systems, and Signal Processing (2020) 39:2376–2411

From the comparisons made in Tables 7 and 8, we can say that the proposed 
method generates ROMs with satisfactory retention of the time domain specifi-
cations and stability and passivity properties of the original system. Hence, the 
proposed ROMs effectively help to develop a low-order controller/compensator 
for controlling the dynamics of the original higher-order system to the desired 
response value, with a low level of computational effort.

4  Conclusion

In this paper, an effective MOR method for a linear continuous-time system 
is proposed to obtain a stable and accurate ROM by using the EDE algorithm 
and IMPPA method. The EDE algorithm is used to determine the denominator 

Table 6  Parameters used for the 
EDE algorithm

Parameters Values

Population size ( Np) 30
Maximum generation 

(

Gmax

)

150
[

Xmin,Xmax

]

[0.01, 10]
CR 0.8

Fig. 13  Comparison of 𝛿(t) responses for ΔVref(t) = 0.05 p.u. and ΔT
m
(t) = 0.05 p.u.
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polynomial coefficients of the ROM, and the numerator polynomial coefficients 
are determined by using the IMPPA method. The approach is iterative and pro-
gresses with the minimisation of the step ISE between the system and ROM. 
The proposed method has the inbuilt feature of preserving stability and passiv-
ity properties. The ISE values of the proposed ROMs are comparatively lower 
than those of ROMs obtained by the notable reduction methods available in the 
literature. The effectiveness of the proposed method has been illustrated by apply-
ing it to SISO and MIMO system models. A comparison of the results shows the 
strength of the proposed method as a new potential approach to MOR. Hence, the 

Fig. 14  Comparison of Ṽ
t
(t) responses for ΔVref(t) = 0.05 p.u. and ΔT

m
(t) = 0.05 p.u.

Table 7  Comparison of the performance indices ISE and IRE of the ROMs obtained by the proposed

Original system IRE of g11(s) IRE of g12(s) IRE of g21(s) IRE of g22(s)

175.3693 120.5654 11.4163 2.9475

Method of order reduction ROMs

r11(s) r12(s) r21(s) r22(s)

ISE(E) IRE ISE(E) IRE ISE(E) IRE ISE(E) IRE

Proposed method (second-
order model)

7.6794 95.3395 6.5222 77.3622 0.5662 14.0664 0.2294 3.3018

Proposed method (third-
order model)

1.9246 168.7636 4.5636 72.2213 0.1577 15.3873 0.2217 1.6355
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ROM obtained by the proposed method validates the analysis, design and devel-
opment of a lower-order controller for linear higher-order complex systems with 
less computational effort.

Some new ideas for future work are given here: (1) the proposed research 
results shall extend to the design of simple and fast controllers for the original 
higher-order system; (2) this approach shall extend to the reduction of SISO or 
MIMO continuous-time delay systems, discrete-time systems and controller 
design; (3) this proposed approach shall extend to the reduction of linear interval 
systems and controller design.

Appendix

The single-machine infinite-bus (SMIB) power system, which is considered in 
Example 2, is shown in Fig. 15.

The system under study consists of a three-phase, two-pole 160-MVA turbo-
generator with an automatic excitation control system (i.e. a standardised IEEE 
Type-I exciter with rate feedback and power system stabilising signals) supply-
ing power via a step-up transformer and a high voltage transmission line to an 
infinite grid. In Fig. 15, XT and XL represent the reactance of the transformer and 
the transmission line, respectively, and VT and VB are the generator terminal and 
infinite-bus voltages, respectively.

A detailed block diagram of the SMIB power system [25] is shown in Fig. 16. 
The numerical values of the parameters that define the total system and its operat-
ing point come from [24, 25] and are given below.

The nomenclature of the above system parameters is as follows:

�,�,VT ,P,Q Synchronous machine torque angle, Speed, Terminal voltage, Active and

Reactive power

K1,K2,K3,K4,K5,K6 Synchronous machine linear model parameters

H,Ta,Te,Tm Synchronous machine inertia constant, Accelerating,

Electrical and Mechanical torques

Re,Xe Equivalent resistance and Reactance of external system

Eq,EFD, �d0 Voltage proportional to d − axis flux linkages, Field voltage and Open - circuit

time constant

KE , SE , �E Self-excited field constant, Saturation function and Time constant of an exciter

KA, �A,VR Regulator gain, Time constant and Output voltage

KF , �F Rate feedback gain and Time constant

KR, �R Transducer (or) Filter gain and Time constant

K0, �0,Vs Speed gain, Reset time-lag constant and Stabiliser output voltage

�1, �2, �3, �4 Lead and Lag time constants � of the power system stabiliser

s Laplace operator
Δ Incremental (step) change of input
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The numerical values of the system parameters and operating point are as follows:

Synchronous machine 3 - phase, 160 MVA, power factor = 0.894, xd = 1.7, xq = 1.6, x�
d
= 0.254 p.u.,

�d0 = 5.9,H = 5.4 s,�R = 314 rad∕s

Type - I exciter KA = 50,KE = −0.17, SE = 0.95,KF = 0.04,KR = 1,K0 = 1, �A = 0.05,

�E = 0.95, �F = 1.0, �R = 0.05, �0 = 10.0, �1 = �3 = 0.44, �2 = �4 = 0.092 s

External system Re = 0.02,Xe = 0.4 p.u.(on 160 MVA base)

Operating point Po = 1.0,Qo = 0.5,EFDo = 2.5128,Eqo = 0.9986,Vto = 1.0,Tmo = 1.0 p.u.,

�o = 1.1966 rad,K1 = 1.133,K2 = 1.3295,K3 = 0.3072,K4 = 1.8235,

K5 = −0.0433,K6 = 0.4777.

The system in Fig. 16 can be described in state-space form, as in Eq.  (1). The 
state vector X(t) is defined with state variables as XT(t) =

[

Eq��v1vREFDv2v3v4v5
]

 . 
The input and output vectors are given by UT(t) =

[

ΔVrefΔTm
]

and YT(t) =
[

�Vt

]

 . 
For the system parameters and operating points described, the numerical values of 
the system, input, output and feedforward matrices A,B,C and D , respectively, are 
given below.

Fig. 15  Single-machine infinite-
bus (SMIB) power system

Fig. 16  Block diagram representation of the SMIB power system
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The system, input and output matrices of the SMIB without AECS (i.e. a standard 
IEEE Type-I exciter without rate feedback (RF) and without power system stabiliser 
(PSS)) are represented by A′,B′ and C′ , respectively. The state-space representa-
tion of the SMIB system without AECS yields a sixth-order model of the following 
form:

The state vector X̃(t) is defined with state variables as X̃T(t) =
[

Ẽq�̃�𝛿ṽ1ṽRẼFD

]

.
The input and output vectors are given by UT(t) =

[

ΔVrefΔTm
]

and YT(t) =
[

𝛿Ṽt

]

 , 
respectively.

(33)
dX̃(t)

dt
= A�

⋅ X̃(t) + B�
⋅ U(t)

Y(t) = C�
⋅ X̃(t) + D�

⋅ U(t)

}

.
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