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Abstract
This paper presents a methodology to detect non-stationary frequency modulated sig-
nals under noise process uncertainty. The proposed method uses the combination
of adaptive directional time–frequency distribution and modified Viterbi algorithm
to robustly estimate the instantaneous frequency (IF) of the given signal. This IF
information is then used to remove the frequency modulation from the given signal
thus converting it into temporally correlated signal. This temporal correlation is then
exploited to detect signals under noise power uncertainty. The effectiveness of the
proposed detector is shown through numerical simulations.

Keywords Non-stationary signal detection · Modified Viterbi algorithm ·
Instantaneous frequency · Adaptive time–frequency distribution

1 Introduction

Frequency modulation is observed in many real-life signals that include bat signals,
seizure signals emitted by human brain, frequency modulated chirps emitted by radars
and sonars, jamming signals, gravitational waves [4]. Detection of such non-stationary
signals has become important in applications. For example, detection of seizures is
important in medical diagnosis and detection of jamming signal is important in com-
munications.

The matched filter (MF) is a common method for detecting signals in which the
observed signal is correlated with a known signal. TheMF-based detectors require the
signal to be known and provide maximum efficiency in case of i.i.d Gaussian noise.
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However, in most of the radar and communication systems, noise has non-Gaussian
with impulsive characteristics, which causes the MF detectors to be severely defective
[5,34,35]. Energy detector is an effective method for signal detection in scenarios
when shape of the signal is not known in advance [34,35]. However, it fails to achieve
the desired performance in many realistic scenarios where noise power is uncertain
[1,22,28,28,29].

The recorded signals can have high temporal correlation due to oversampling
at receiver, inherent properties of transmitted signals, and characteristic of channel
[32,33], whereas the additive noise is temporally uncorrelated. This high temporal
correlation of received signals is exploited in covariance-based methods in scenarios
where the noise power is unknown [1,2,35]. However, these methods are not applica-
ble to non-stationary frequency modulated (FM) chirps because of lack of temporal
correlation in such signals.

In our previous study [13], we extended covariance-based detectors for FM signals
by using de-chirping to remove frequency modulation from non-stationary signals to
obtain temporally correlated signals. The de-chirping operation requires the estimate
of the instantaneous frequency (IF), which was obtained in our earlier study by a
simple peak detection algorithm. Previous studies have shown that the accuracy of
IF estimates depend on (a) selection of time–frequency distribution (TFD) [15], (b)
IF estimation method [16]. In this study, we improve the performance of our earlier
method with the following modifications:

1. The adaptive directional time–frequency distribution (ADTFD) is employed
instead of fixed kernel methods to obtain a clear TF representation that suppresses
noise along the IF curves by directional smoothing [15]. This clear representation
of signal in time–frequency (TF) domain results in improved performance.

2. A recently developedmodifiedViterbi IF estimation algorithm is employed instead
of simple peak detection algorithm to obtain the robust estimate of IFs [16].

The main contributions of the paper are given below:

1. A new signal detection method has been developed based on the combination of
ADTFD and Viterbi algorithm.

2. Experimental results show that the improvement in IF estimates obtained using the
aforementioned modifications significantly improves the detection performance.

2 The Proposed Detector

2.1 Signal Model

Let us assume that a single sensor receives a signal contaminated by Additive white
Gaussian noise (AWGN) with uncertain noise power [28]. The detection model is
given as:

H1 : x[n] = s[n] + w[n]
H0 : x[n] = w[n] (1)
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In this study, we assume that s(n) is a non-stationary frequencymodulated signal given
as:

s(n) = a(n) exp ( jϕ (n)) , (2)

where ϕ (n) and a(n) are instantaneous phase and instantaneous amplitude of s(n),
respectively. It is assumed that a(n) has slow variations and its spectrum does not
overlap with e jϕ(n). In subsequent section, we propose a method for the detection of
such signals under noise power uncertainty.

2.2 The Proposed Detector

2.2.1 Computation of Adaptive Directional Time–Frequency Distribution

Quadratic time–frequency distributions (TFDs) are frequently employed for the anal-
ysis and parameter estimation of non-stationary chirp signals. TFDs concentrate the
energy of signal along the IF curves while spreading the noise energy in the entire TF
plane. The Wigner–Ville distribution (WVD) is a core TFD defined as [9]

W [n, k] =
M−1∑

m=0

x[n + m]xH [n − m]e− j2πkm
M . (3)

The quadratic nature of the WVD introduces undesired oscillatory cross-terms [9].
These cross-terms can overlap auto-terms and thus degrade the readability of signal.
Cross-terms are usually suppressed by applying smoothing kernels [9]. However, the
suppression of cross-terms by smoothing also deteriorates the energy concentration
of auto-terms in the TF plane. Previous studies have shown that directional smoothing
along themajor axis of auto-terms suppresses cross-termswhile preserving auto-terms
[27]. However, such smoothing is not optimal in scenarios when signal components
follow more than one directions in TF plane. In such scenarios, local adaptation of
the smoothing kernel on point by point basis leads to better suppression of cross-
terms without degrading auto-terms [21]. Such TFDs are called adaptive directional
time–frequency distributions (ADTFD) and are defined as [14]:

ρ[n, k] = W [n, k] ∗
n
∗
k
γϕ[n, k] (4)

where γϕ[n, k] is double derivative directional filter described as [14]

γϕ[n, k] = ab

2π
e−a2n2ϕ−b2k2ϕ

(
1 − a2k2ϕ

)
(5)

where nϕ = n cos(ϕ)+k sin(ϕ), and kϕ = −n sin(ϕ)+k cos(ϕ). Parameter a controls
the extent of smoothing along major axis while parameter b determines the extent of
smoothing along minor axis. Note that the direction of the smoothing kernel needs
local adaptation, which is done on point by point basis as [14]:
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ϕ[n, k] = 2πm

M
argmax

m
||p[n, k| ∗ ∗γm[n, k]| , (6)

where γm[n, k] is the directional filter rotated at angle 2πm
M , withm from −M/2, . . . 0

. . . , M/2. Note that Polynomial WVD [7] can also be used as these methods achieve
good energy concentration for mono-component nonlinear frequency modulated sig-
nals. However, these methods produces non-oscillatory cross-terms which cannot be
suppressed by smoothing unlike WVD. Therefore, these methods fail to give desired
performance in case of multi-component signals. One alternative for analysis of non-
linear FMsignals is the local polynomialWVDthat achieves high energy concentration
for nonlinear FMsignals in the TF domain and can be used for accurate estimation of IF
[30]. Moreover, for multi-component signals, its implementation using the S-method
can significantly reduce cross-terms for well-separated signals [26]. However, the S-
method is not effective for resolving closely spaced signals. The directional smoothing
kernel method, presented in this section, can resolve close components as shown in
earlier studies [21].

2.3 Instantaneous Frequency Estimation Using theModified Viterbi Algorithm

Akey step of the proposed approach is to accurately estimate the IF of the given signal.
A number of TF methods for estimation of IFs have been developed that includes
adaptive short time Fourier transform methods [17], methods based on intersection of
confidence intervals [12,18] and Viterbi-based IF estimation methods [16,24]. Among
these methods Viterbi-based IF estimation method achieves better performance in low
SNR [11]. In our earlier study, we improved the performance of the Viterbi algorithm
by incorporating additional constraints and using the ADTFD as an underlying TFD
[16].

In order to estimate the IF, we choose the path that leads to the maximization of the
following objective function [16]

f̂ (n) = argmin
f (n)

P( f (n); n1, n2) (7)

where f (n) is the path/IF joining n1 and n2, P( f (n) is the penalty function of f (n).
The penalty function is optimized based on the following criteria [16]:

– The IF should pass through high energy TF points. This constraint is implemented
by function h(.) that uses amplitude of frequency bins at a given time instant to
sort them in descending order.

– The IF should follow a smooth curve, i.e., there should not be abrupt transitions
between two consecutive IF points. This constraint is expressed as:

g( f (n), f (n + 1)) = 0, for | f (n) − f (n + 1)| < Δ

g( f (n), f (n + 1)) = c|l(n) − l(n + 1)|, otherwise. (8)
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– The consecutive IF points should have the same direction.

h( f (n), f (n + 1)) = 0 for |ϕ(n, f (n)) − ϕ(n, f (n + 1))| < ∇
h( f (n), f (n + 1)) = d |ϕ(n, f (n)) − ϕ(n, f (n + 1))| otherwise (9)

The final penalty function is obtained as

P( f (n); n1, n2) =
n2∑

n=n1

g( f (n), f (n + 1))+h( f (n), f (n + 1)) + q(ρ[n, k)),

(10)
We use the generalized Viterbi algorithm to solve the above optimization problem
efficiently.

2.4 Instantaneous Phase Estimation

The relation between the instantaneous phase, i.e., ϕ(t) and the IF, i.e., f (t) can be
expressed as [6].

ϕ (t) =
∫ t

0
f (τ )dτ (11)

For the discrete signals, we can derive:

ϕ̂ [n] = ϕ̂ [n − 1] + 2π

N
f̂ [n] , (12)

where N stands for the number of frequency bins in a TFD. However, due to the
unavailability of the initial phase, the phase can be estimated up to a constant.

2.5 De-chirping

The given FM non-stationary signal is de-chirped using the instantaneous phase esti-
mated in the previous section to convert it into a temporally correlated stationary signal
as [8,20,31]:

y [n] = x [n] exp
(− j ϕ̂ [n]

)

= s [n] exp
(− j ϕ̂ [n]

) + w [n] exp
(− j ϕ̂ [n]

)

≈ α exp
(− j

(
ϕ̂ [n] − ϕ [n]

)) + w̃ [n]

α exp (− jφ) + w̃ [n] (13)

where φ is a constant phase. The above equation indicates that the de-chirped signal
is temporally correlated while the noise remain uncorrelated after de-chirping.
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2.6 Generalized Likelihood Ratio test

The stationary signal, y[n], obtained as the results of de-chirping operation is tempo-
rally correlated. Let us solve the following generalized likelihood ratio test (GLRT)
equation [3]:

Λ
[
y
] = maxΣ1,y f

(
y;Σ1,y

)

maxΣ0,y f
(
y;Σ0,y

)
H1
≷
H0

λ (14)

where f
(
y;Σ1,y

)
is the likelihood function under hypothesis H1 and f

(
y;Σ0,y

)
is

the likelihood function under H2. Similarly, Σ0,y and Σ1,y are covariance matrices
under hypothesis H0 and H1, respectively. Solving (14), we get

�
[
y
] = detΣ̂1,y

detΣ̂0,y

H1
≷
H0

λ1 (15)

where det stands for determinate, Σ̂1,y = E
[
yyH

]
and Σ̂0,y ≈ diagΣ̂1,y [2].

3 Performance Comparison

We assess the efficiency of the proposed method considering a non-stationary signal
given as:

s = e2π j(0.48n+0.000012n3) (16)

We corrupt the signal using AWGN with uncertain noise power:

σ 2
un ∼ U

(
σ 2

αnu
, αnuσ

2
)

(17)

where αnu ≥ 1 and αnu = 1 indicates no noise uncertainty [28]. We have set αnu = 2
for this study. The σ 2 is mean noise power of σ 2

un, provided uncertainty in the noise
power knowledge which leads to severely degradation in the efficiency of the detection
technique. In such scenario, we compare the efficiency of the proposed detector with
our earlier work based on de-chirping [13], covariance method [35], ridge energy
detector [23], and energy detector using probability of detection curves estimated
by performing 10,000 simulations for each SNR. Figure 1 shows the probability of
detection curve with false alarm probability 0.01 for SNR varying from − 6 to 4 dB.
The proposedmethod achieves higher probability of detection as compared to all other
methods for all SNR levels.

Let us now repeat the above experiment for a multi-component signal defined as:

s = e2π j(0.48n−0.000012n3) + e2π j(0.02n−0.000012n3) (18)

Figure 2 shows the probability of detection curve with false alarm probability 0.01
for SNR varying from − 6 to 4 dB. The proposed method achieves higher probability
of detection as compared to all other methods for all SNR levels.
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Fig. 1 Performance comparison between proposed detector based onViterbi andADTFDversusTFdetector
using simple peak detection for IF estimation [13], generalized likelihood test [2,3], t–f ridge detector [23]
and energy detector. Noise power uncertainty parameter αnu = 2

Fig. 2 Performance comparison between proposed detector based onViterbi andADTFDversusTFdetector
using simple peak detection for IF estimation [13], generalized likelihood test [2,3], t–f Ridge Detector [23]
and Energy Detector. Noise power uncertainty parameter αnu = 2

Conventionally, methods that use the energy along the IF curve [10,23] have been
used in applications such as radar signal processing [10]. The proposed method and
ridge energy detector have a common step of estimating IF. The ridge energy detector
uses the energy along the IF curve as a measure to detect the presence of a signal. The
proposed method uses the IF information to de-chirp the non-stationary signal into a
stationary signal. Then the temporal correlation in the stationary signal is also used
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as a side information for signal detection that results in improved signal detection as
illustrated in Figs. 1 and 2.

4 Conclusion

A TF-based non-stationary signal detection method has been presented. The proposed
method first uses a combination of adaptive directional time–frequency distributions
(ADTFD) and Viterbi algorithm to obtain robust estimate of instantaneous frequency
of the given signal. Then estimated IF is then exploited to remove the frequency
modulation from the signal. Experimental results indicate that the use of ADTFD
and Viterbi algorithm has significantly improved the performance of the detection
algorithm as compared to our earlier method for low SNR[13]. In future, we will try to
further improve the performance by using higher order TFmethods such as polynomial
WVD and local polynomial Fourier transform [7,19,25].
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16. N.A. Khan, M. Mohammadi, I. Djurović, A modified Viterbi algorithm-based if estimation algorithm
for adaptive directional time–frequency distributions. Circuits Syst. Signal Process. 38(5), 2227–2244
(2018)

17. H.K. Kwok, D.L. Jones, Improved instantaneous frequency estimation using an adaptive short-time
fourier transform. IEEE Trans. Signal Process. 48(10), 2964–2972 (2000)

18. J. Lerga, V. Sucic, Nonlinear if estimation based on the pseudo WVD adapted using the improved
sliding pairwise ICI rule. IEEE Signal Process. Lett. 16(11), 953–956 (2009)

19. X. Li, G. Bi, S. Stankovic, A.M. Zoubir, Local polynomial fourier transform: a review on recent
developments and applications. Signal Process. 91(6), 1370–1393 (2011)

20. S. Meignen, D.-H. Pham, S. McLaughlin, On demodulation, ridge detection, and synchrosqueezing
for multicomponent signals. IEEE Trans. Signal Process. 65(8), 2093–2103 (2017)

21. M. Mohammadi, A.A. Pouyan, N.A. Khan, A highly adaptive directional time–frequency distribution.
Signal Image Video Process. 10(7), 1369–1376 (2016)

22. S.J. Shellhammer, S. Shankar, R. Tandra, J. Tomcik, Performance of power detector sensors of DTV
signals in IEEE 802.22 WRANs, in Proceedings of 1st International Workshop on Technology and
Policy for Accessing Spectrum (TAPAS), (2006), pp. 4–13

23. P.-L. Shui, Z. Bao, S. Hong-Tao, Nonparametric detection of fm signals using time–frequency ridge
energy. IEEE Trans. Signal Process. 56(5), 1749–1760 (2008)

24. L.J. Stankovic, I. Djurovic, A. Ohsumi, H. Ijima, Instantaneous frequency estimation by using Wigner
distribution and Viterbi algorithm, in 2003 IEEE International Conference on Acoustics, Speech, and
Signal Processing, Proceedings of ICASSP’03, vol. 6, (IEEE, 2003), p. VI–121

25. L. Stankovic, A multitime definition of the wigner higher order distribution: L-wigner distribution.
IEEE Signal Process. Lett. 1(7), 106–109 (1994)
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