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Abstract
This work proposes a novel method for the detection of glottal activity regions from
the speech signal. Glottal activity detection refers to the problem of discriminating
voiced and unvoiced segments of the speech signal. This is a fundamental step in the
work flow of many speech processing applications. Much of the existing approaches
for voiced/unvoiced detection are based on linear measures though the speech is pro-
duced from an underlying nonlinear process. The present work solves the problem
from a nonlinear perspective, using the framework of multifractal analysis. The frac-
tal property of the speech signal during the production of voiced and unvoiced sounds
is sought to obtain the characterization of glottal activity. The characterization is done
by computing the Hurst exponent from the evaluation of the scaling property of fluctu-
ations present in the speech signal. Experimental analysis shows that Hurst exponent
varies consistently with respect to the dynamics of glottal activity. The performance
of the proposed method has been evaluated on the CMU-arctic, Keele and KED-Timit
databases with simultaneous electroglottogram signals. Experimental results show
that the average detection accuracy or error rate of the proposed method is compara-
ble to the best performing algorithm on clean speech signals. Besides, evaluation of
the robustness of the proposed method to noise degradation shows comparable results
with other methods for signal-to-noise ratio greater than 10dB and 20dB, respectively,
for white noise and babble noise.
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1 Introduction

According to the human speech production mechanism, a voiced speech signal is
produced by the excitation of the vocal tract system by the vibration of vocal folds at
the glottis region [31]. The vibration occurs due to the pressure exerted by the air (from
the lungs) on the thin vocal fold membranes. This in turn causes the vocal folds to
split open and close in succession, giving the air column a specific shape. The process
is known as glottal activity (GA), and it is the primary mode of excitation to the vocal
tract system. The other mode of excitation to the vocal tract system is the irregular
fluctuations of air, known as turbulence [19]. The process corresponds to nonglottal
activity (non-GA) regions in an utterance since vocal fold vibration is absent. During
the process, there occurs a total or partial constriction in the vocal tract, obstructing
the flow of air to produce an unvoiced speech. Thus, the interaction of vocal folds,
glottis and vocal tract system brings in dynamic variations in the airflow. This in turn
characterizes the regions of GA/non-GA in the speech signal.

Glottal activity detection (GAD) from the speech signal is one of the funda-
mental steps involved in many speech processing applications such as speaker
recognition [35], prosodic modification [17] and speech synthesis [3]. For instance,
Adiga et al. [3] reported that an accurate detection of GA can improve the naturalness
(quality of being natural) of speech in statistical parametric speech synthesis. Besides,
Govind et al. [17] demonstrated the importance of GAD in modifying the speech rate,
known as duration modification. Furthermore, Murty et al. [31] reported that the tim-
ing of GA with respect to oral activity plays a key role in distinguishing the manner
of articulation of stop consonants in Indian languages.

GA in the speech signal can be detected by analyzing the features present in the
glottal excitation signal. However, this is a challenging task due to the interaction of
the vocal tract system on the glottal excitation signal. Drugman et al. [14] reported
the problem as a blind separable one since neither the excitation source nor the vocal
tract spectral response is observable. Even so, a noninvasive technique called elec-
troglottography can track the process of glottal vibration by placing two electrodes
across the neck region. The electroglottograph measures the time-varying impedance
across the vocal fold contact region during continuous speech, and the resultant wave-
form is known as electroglottographic (EGG) signal [18,27]. Nonetheless, the EGG
signal fails to analyze the functioning of airflow through glottis [14]. This is because
EGG device measures the changes in the impedance only, not the airflow in both GA
regions and non-GA regions. It is also important to note that the feasibility of record-
ing an EGG signal is limited for real-time speech processing applications. Hence, the
detection of the GA directly from the speech signal is of great importance. GA/non-
GA detection is otherwise known as detection of voiced/unvoiced regions from the
speech signal. Throughout this paper, we interchangeably use the terms GA/non-GA
and voiced/unvoiced.
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1.1 Review of Glottal Activity DetectionMethods

Methods for the detection of GA can be broadly categorized into time domain, fre-
quency domain and statistical model-based techniques. Earlier works in time domain
consider different acoustic features estimated from the speech signal that can differ-
entiate GA/non-GA regions. The time domain features used were energy, periodicity,
zero crossing rate (ZCR), autocorrelation coefficient at unit sample delay, statistics
from linear prediction (LP) residual [6,43]. For example, Atal and Rabiner [6] have
used five different features such as the energy of the speech signal, the ZCR, the cor-
relation between samples, the first LP coefficient and the energy in the normalized
prediction error.

During the past decade, researchers have focussed majorly on robust time domain
features estimated from the excitation source signal for GAD. This in turn requires
suppression of the vocal tract spectral response. A general approach is to use LP anal-
ysis to inverse filter the speech signal and estimate the residual, an error signal [40].
The LP residual is found to show a large value of error in the GA regions. The instants
of larger error correspond to the closing phase of vibrating vocal folds. Conversely,
the residual exhibit random noise-like characteristic in the non-GA regions. However,
the LP analysis method is not robust to noise and its performance is greatly dependent
on the accuracy of the model. Later, Murty et al. [31] and Dhananjaya and Yegna-
narayana [12] proposed GAD methods that do not rely on the estimation of the vocal
tract response. The authors used the zero frequency filtering (ZFF) approach to detect
the regions of GA. The ZFF is based on the fact that discontinuities due to impulse-like
excitations are reflected across all frequencies including zero frequency. Hence, the
speech signal is passed twice through zero frequency filters and the trend is removed
to obtain the ZFF signal. The ZFF signal exhibits lower energy in non-GA regions
since the energy of random noise excitation is distributed in both time and frequency
domains. Conversely, the ZFF signal shows higher energy in GA regions since the
energy of impulse-like excitation is highly concentrated in the time domain. More-
over, the strength of excitation (SoE) estimated as the slope around instants of positive
zero crossings (epochs) of the ZFF signal exhibits discriminating characteristics with
respect to GA. The SoE will be higher in the regions of impulse-like excitation due
to glottal vibration. Precisely, the GA regions are estimated as the region having SoE
greater than one percent of the maximum SoE. Again, the ZFF method is not robust to
superimposed impulse-like characteristics. Recently, Koutrouvelis et al. [26] proposed
a method termed ‘glottal closure and opening instant estimation forward–backward
algorithm’ (GEFBA) based on the instants of significant excitation (epochs) for high-
resolution GAD. GEFBA estimates the instants of glottal closures for determining
the boundaries of GA by assuming that two consecutive voiced regions differ by a
distance greater than twice the maximum pitch period.

Further, the normalized autocorrelation peak strength (NAPS) of the excitation
signal is used as a feature for characterizing the GA/non-GA regions [47]. The NAPS
will be relatively higher in GA regions when compared to non-GA regions. There are
also studies which use a combination of the aforesaid features for GAD. For instance,
Adiga and Prasanna [2] used a combination of features such as SoE, NAPS and higher
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order statistics (HoS) [such as skewness and kurtosis] of the LP residual extracted
from different source representations [ZFF signal and integrated LP residual (ILPR)]
for improving the performance of GAD. The ILPR can be obtained by inverse filtering
the non-pre-emphasized speech signal [38], and it shows prominent peaks during the
instants of glottal closure and smaller peaks during the instants of glottal opening.
That is, the ILPR exhibits asymmetrical characteristic as that of the derivative of EGG
signal and shows higher strength in the GA regions.

Furthermore, there are alsomethodswhich use frequency domain features forGAD.
In Janer et al. [23], spectral maxima detected from the wavelet transform of the speech
signal are used for discriminating GA and non-GA regions. The author hypothesizes
that GA regions have at least three number of spectral maxima. The normalized low
frequency energy (NLFE) ratio (computed from the spectrogram of the speech signal)
is also found useful in characterizing GA/non-GA regions [43]. The authors found that
NLFE ratio is higher for GA regions when compared to non-GA regions. Then, dis-
crimination of GA/non-GA regions is made based on the median of the ratio measure.
Arifanto [5] used the harmonicitymeasure estimated from the instantaneous frequency
amplitude spectrum of the speech signal for GAD. Further, GAD from noise-degraded
speech signals is addressed in Drugman and Alwan [13] based on the summation of
residual harmonics (SRH). For GA regions, the amplitude spectrum E( f ) of the resid-
ual signal shows peaks at the harmonics of the fundamental frequency (F0). Therefore,
SRH is computed from E( f ) for each frequency in the range of minimum F0 to max-
imum F0 and voicing decision is made based on a threshold fixed on the estimated
SRH.

In summary, the aforesaid time domain or frequency domain methods extract
features that show variation in values with respect to GA/non-GA during speech
production. A decision on GA is then made based on the fixation of threshold on
the individual feature. Also, many of these features may not provide acceptable
performance in the presence of noise. In order to avoid threshold fixation and to
improve performance, researchers have trained acoustic features using statistical mod-
els [3,39,42]. These models include the Gaussian mixture model (GMM), support
vector machines (SVM), hidden Markov model and deep neural network (DNN).
Recently, Adiga et al. [3]modeledGA features such as SoE,HoS andNAPS alongwith
mel-cepstral features in HMM and DNN for a better GA/non-GA decision. However,
the statistical model-based approaches are more popular in voice activity detection
(VAD), which is otherwise known as speech/non-speech discrimination [15,34,44,53].
Unlike GAD, VAD considers both voiced and unvoiced sounds as speech, and silence
and noise as non-speech [4]. VAD is also used in a number of speech technology
applications such as speech recognition [50], speech coding [7] and speech enhance-
ment [22]. A detailed description of VAD methods is outside the scope of the present
study.

Though the aforesaid methods provide acceptable performance in GAD, they do
not provide a clear understanding of the variation in the dynamics of the system
during GA/non-GA. In particular, the statistical model-based methods do not provide
any significant insights about the mechanism of voice production [12]. Moreover,
recent studies show that the dynamic transitions occurring during speech production
are attributed to the variations in the synchronization pattern of vocal folds and the
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sub/supra-glottal system [52]. The process is referred to as eigenmode (a pattern
of motion) synchronization/desynchronization. Often, the interaction of sub-glottal
(below the glottis) or supra-glottal (above the glottis) system with vocal folds causes
changes in the synchronization pattern of the eigenmodes. Also, the transition between
different patterns of synchronization controls the vocal fold vibration and voice quality.
Briefly, the dynamics of speech production can be thus thought of as a complex system
involving the nonlinear interaction of many subsystems [52]. Any difference in the
dynamics of the systemcan bemapped to variations in its complexity. Such a voicemap
requires understanding speech production in the framework of nonlinear dynamics.
Therefore, the scope of this study is to develop a unique way of characterizing the
complexity of the speech production system that will aid in distinguishing GA and
non-GA regions in the speech signal. In contrast to the existing methods, we try to
solve the problem from a nonlinear perspective following the multifractal approach.
However, before performing any kind of nonlinear analysis like multifractal analysis,
it is essential to first verify that the speech signal is generated from an underlying
nonlinear process. Therefore, we use one of the generally accepted statistical tests
called surrogate data analysis technique [48] for verifying the nonlinear nature of the
speech signal. For details of the surrogate technique and results of the test, kindly refer
“Appendix A”. Moreover, the relevance of fractal analysis in characterizing GA/non-
GA regions is also illustrated in “Appendix A”.

1.2 Literature onMultifractal Analysis of Speech Signals

The fractal analysis can be used to explain complex dynamics that result in pat-
terns/fluctuations which are scale-invariant. For such a fractal signal, the scale
invariance relates the fluctuations in the signal across multiple timescales as follows:

Y (ct) = cHY (t) (1)

where c is a constant and H is the power law exponent [21]. If the value of H is a
constant, the signal is said to be monofractal. In contrast, if H is a distribution, the
signal is called a multifractal signal.

The speech signal is also found to possess a scale-invariant structure as studied
in [16]. That is, the structure repeats itself on subintervals (self-similarity) of the speech
signal. Moreover, there exist spatial and temporal variations in the scale-invariant
structure of the signal due to the turbulent excitation of the vocal tract system. These
spatial and temporal variations contribute to the multifractal nature of the speech
signal. In other words, fluctuations in the speech signal follow different scaling rules.
Therefore, multifractal analysis is a promising tool for unveiling the scaling rules of
fluctuations corresponding to the voiced and unvoiced speech signal. This in turn will
aid in characterizing theGA/non-GA regions in the speech signal. Thoughmany linear
measures such as autocorrelation, energy, ZCR and SoE have been used over the years
as measures for characterizing the GA regions, fractal theory has not been explored
for the characterization of GA to the best of our knowledge.
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Researchers have performed a multifractal analysis of the speech signal for deter-
mining the speech signal characteristics. Adeyemi [1] investigated the multifractal
nature of unvoiced sounds alone by analyzing a few sounds in the alphabet of English
language spoken in isolation. The study concludes that the unvoiced speech signals
may be multifractal in nature due to turbulent excitation. Besides, the study reveals
that the multifractal nature of the speech sound is not peculiar to gender and the type
of unvoiced speech sounds. The author also reports that the structural complexity in
the unvoiced sound will be more in continuous speech than in isolated alphabets.
That is, continuous speech has more intervocalic structure than isolated alphabets.
Hence, multifractal analysis of unvoiced sounds in continuous speech should also be
explored. Zhao and He [54] performed multifractal analysis of the speech signal for
investigating the influence of frame duration and noise on the multifractal character-
istics. They considered a different frame duration from 12.5 to 125ms for multifractal
processing of speech signals (female voices) from a Chinese speech corpus. The study
concludes that the multifractal characteristics of each speech frame show close resem-
blance for a fixed frame duration. Conversely, if the frame duration is different, the
characteristics of the same speech have a significant distinction. They also report that
the multifractality of the speech signal is greatly affected in the presence of noise.
Gonzalez et al. [16] report that there is no rigid boundary on the frame duration for
characterizing the fractal nature of the speech signal. They observe that the speech sig-
nal may posses monofractal or multifractal characteristics depending upon the frame
duration at which the analysis is performed. The authors conclude through empirical
studies (on Portuguese speech databases) that most of the speech data possess multi-
fractal behavior when analyzed in the timescale of 50–100ms. They also report that
multifractal features can enhance the speaker recognition performance when com-
bined with mel-cepstral features. Researchers have also utilized the effectiveness of
multifractal features for discriminatingmusic and speech signal as reported in Bhaduri
and Ghosh [8]. Here, the authors found that the width of the multifractal spectrum cor-
responding to the speech signal is more than that of the music signal. Further, the same
research group has used the Hurst exponent (HE) [20] measure estimated from mul-
tifractal analysis for discriminating anger and sad emotion in the speech signal [9].
They found that the HE for an anger emotional speech is lesser than that of the sad
version. Similarly in Liu and Zhang [29], authors have used features based on the
multifractal spectrum for characterization of four different emotional speech signals
(happiness, anger, neutral and sadness) in the Mandarin language.

1.3 Novelty of the PresentWork

Although the aforesaid works provide insights into the fractal behavior of the speech
signal, a complete characterization of the fractal nature of the speech signal during the
production of voiced and unvoiced sounds of continuous speech is not done. The fractal
nature of voiced/unvoiced sounds in continuous speech is worth identifying. Precisely,
the involvement ofmultiplicity of scales in the dynamics of voiced or unvoiced speech
production can be verified. Such verification will allow us to characterize the variation
in dynamics duringGA/non-GA.Therefore, the proposed study focuses on quantifying
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this variation of dynamics using measures from the multifractal analysis. Here, we use
the capability of HE measure obtained from the evaluation of the scaling property of
fluctuations present in the speech signal. We show that the variation of the HE can
distinguish GA and non-GA during the production of the speech signal. To the best
of our knowledge, the present work is the first application of multifractal analysis in
the characterization and detection of GA/non-GA in continuous speech.

The rest of the paper is organized as follows: In Sect. 2, we initially provide a
brief overview of the multifractal detrended fluctuation analysis (MFDFA). Then,
we explain the proposed method for GAD using multifractal analysis. In Sect. 3, we
discuss the experiments conducted in the present study for unraveling the effectiveness
of multifractal analysis in GAD. Firstly, we illustrate the usefulness of HE measure
in characterizing GA/non-GA. Secondly, we discuss the empirical studies conducted
for the fixation of an optimal threshold for the detection task. Then, we compared the
performance of the proposed approach with state-of-the-art methods on both clean
speech signals and signals degraded in the presence of noise. Finally, in Sect. 4 we
conclude the present work.

2 ProposedMethod for Glottal Activity Detection UsingMFDFA

In the present study, we employ MFDFA technique to understand the difference in
scaling rules of fluctuations in GA regions and non-GA regions of the speech signal. A
brief description of the steps involved in MFDFA is given in the following subsection.

2.1 Multifractal Detrended Fluctuation Analysis

The multifractal detrended fluctuation analysis (MFDFA) is a fractal analysis method
proposed by Kantelhardt et al. [24] by extending the concept of detrended fluctuation
analysis (DFA) [36]. MFDFA helps in identifying the fractal nature of time series
whose fluctuations scale differently. The analysis includes the following steps: For a
given time-series data x(i) of length N , where i = 1, 2, 3, . . . , N

Step 1 an integrated time series is constructed as follows:

y(i) =
i∑

k=1

x(k) − x̄ (2)

where x̄ = 1
N

∑N
i=1 x(i) is the mean of the time series.

Step 2 The integrated time series is further divided into Ns nonoverlapping segments
of equal span s. Here, Ns = N/s where N and s are the length of the time series and
the length of the scale in samples, respectively.
Step 3 For each value of the scale s, the qth-order overall root-mean-square (RMS)
variation is computed as follows:
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Fq
s =

⎛

⎝ 1

Ns

Ns∑

i=1

(√
1

s
(yi (i) − yv(i))

)q⎞

⎠
1/q

(3)

where yv(i) = ∑p
k=0 Ek(i)p−1 is the polynomial fit for trend removal where Ek is

the kth coefficient of the fit polynomial with degree p. Fq
s is known as the structure

function or fluctuation function.
The advantage of computing various qth-order fluctuation function is that the neg-

ative q-order will amplify segments with extremely small RMS and positive q-order
will amplify segments with extremely large RMS. Thus, the overall q-order RMS is
able to distinguish between the structure of small and large fluctuations.
Step 4 Find out the scaling behavior of the structure function Fq

s by analyzing the
logarithmic plot of Fq

s versus s for each q order. Now if there exists an inverse power
law behavior such that Fq

s ∝ sH(q), then the logarithmic plotwill show a linear relation
between Fq

s and s with H(q) as the slope. H(q) is known as the generalized HE. It
is a measure of the long-range temporal correlation in the signal. For a multifractal
signal, H(q) will have different values for different orders of q. In contrast, H(q) is
independent of q for a monofractal signal.
Step 5 The generalized HE (H(q)) is converted to scaling exponent T (q) using the
relation

T (q) = q H(q) − 1 (4)

Since multifractal data have multiple HE, the scaling exponent T (q)will have non-
linear relationship with q. Further, T (q) is converted to q-order singularity exponent
h(q) and singularity dimension D(q) via the Legendre transform [30]:

h(q) = dT (q)

dq
D(q) = qh(q) − T (q) (5)

The plot of h(q) versus D(q) is known as the singularity spectrum ormultifractal spec-
trum. For a multifractal signal, the multifractal spectrum will be a large arc (inverted)
as shown in Fig. 1. The value of h(q) for which D(q) reaches maximum or peak value
is known as the dominant singularity exponent. This peak or the central tendency of the
spectrum represents the average fractal nature of the signal [21]. Further, the width of
the spectrum is obtained by taking the difference between themaximum andminimum
values of h(q). The spectral width is a measure of fractality of the signal under inves-
tigation. Precisely, a larger spectral width corresponds to strong multifractal nature
of the signal. In contrast, a narrow width implies that the signal has approximately
monofractal nature. For an absolutely monofractal signal, the width of the spectrum
will be zero. Theoretically, a complete multifractal spectrum requires the selection of
q order in the range from−∞ to+∞. Here, q tends to−∞ and+∞ corresponds to
h(q)max and h(q)min respectively. Furthermore, the multifractal spectrum may not be
always symmetric in shape. The spectrum exhibits right or left truncation depending
on the sensitivity of the multifractal structure to local fluctuations with small or large
magnitudes, respectively. Furthermore, the multifractal spectrum is different from the
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Fig. 1 Schematic diagram of the
multifractal spectrum. The width
of the spectrum (W ) ranges from
h(q)max to h(q)min

spectrogram plot which represents the variation in frequency content in a signal by
means of variation in colors. Instead, it describes the dynamics of a system by means
of a continuum of singularity exponents. A detailed description of the multifractal
spectrum is available in [21].

2.2 Proposed Framework

The proposed framework is shown in Fig. 2. The method relies on the estimation of
HE for discrimination of GA and non-GA regions of the speech signal. Our approach
is motivated from the observation that the HE reveals the difference in fractal nature of
voiced and unvoiced speech sounds. The experimental evidence is shown in Sect. 3.1.
Here, a frame-based analysis is followed in order to estimate the HE. Precisely, the
frame length is kept as 400 samples (50ms) for a sampling frequency of 8kHz. The
frame overlap is kept one sample less than that of the frame duration. This ensures
that the length of the estimated HE feature vector is the same as that of the signal.
The choice of 50ms for the analysis frame is fixed based on the observation made by
Gonzalez et al. [16]. The authors found that a frame duration of 50ms (minimum) is
suitable for multifractal processing of speech signal. Now, for each of the extracted
frames of the speech signal, we perform MFDFA. The timescale is fixed based on
the fundamental frequency F0 (inverse of the characteristic timescale) present in the
speech signal. Precisely, we varied the scale from two to four cycles of the average F0
as in Nair [32] and Nair and Sujith [33]. Further, the qth-order fluctuation function is
computed for 100 values of q ranging from−2 to 2 [54]. A higher positive and negative
q-order is not preferable as it inflicts numerical errors in the singularity spectrum [21].
Then, we compute the generalized HE of order two for all the frames. We refer to the
generalized HE of order two as the HE. Further, the decision on the GA/non-GA is
made based on a threshold fixed on the HE by empirical studies. We fix the threshold
that gives aminimum error in the detection of GA by evaluating the performance of the
proposed method. The results of the empirical experiments are discussed in Sect. 3.2.
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Fig. 2 Block schematic of the proposed method for GAD. F0 is the fundamental frequency and HE is the
Hurst exponent

3 Experimental Results and Discussion

In this work, we have conducted the following experiments with regard to GAD from
speech signal.

• Experiments for illustrating the utility ofHE in the characterization ofGA/non-GA
regions.

• Experiments for fixing the optimal HE for a decision on GA/non-GA.
• Experiments for evaluating the performance of the proposed approach on clean
and noise-degraded speech signal.

A brief description of the database used for performing the aforesaid experiments is
given below.
Speech Data and Ground Truth The present study uses standard databases such as
CMU-arctic database [25], KED-Timit database [10] and Keele database [37]. The
CMU database consists of around thousand speech and simultaneous EGG signals of
US English male (BDL) and female (SLT) speakers and US English (JMK) by Cana-
dian English male speaker, sampled at 32kHz. The KED-Timit database contains 453
speech utterances along with simultaneous EGG signals, sampled at 16kHz. All the
utterances were spoken by a male speaker in US English. The recordings were down-
sampled to 8kHz during performance evaluation. Further, the Keele database includes
speech and simultaneous EGG recordings from five male and five female speakers in
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the English language, each for an average duration of 35s. The recordings are sam-
pled at 20kHz and provide reference pitch for every 10ms duration. For GA regions,
the reference pitch is a positive value. For non-GA regions and uncertain regions,
the reference pitch values are found to be zero and negative values, respectively. It
is to be noted that except the Keele database, the other databases considered do not
provide any ground-truth GA regions. Nevertheless, manual phoneme level labeling
has been provided for the Timit utterances. These manual markings can be used for
extracting the ground-truth GA regions. However, the manual markings have many
errors at the boundaries of stop consonants, fricatives, etc. as observed by Dhanan-
jaya and Yegnanarayana [12]. In such a scenario, a more reliable approach might be
the use of simultaneous EGG signal for the estimation of ground-truth GA regions. In
the literature, we find that researchers have used different methods for estimating the
ground-truth GA regions from the EGG signal. Dhananjaya and Yegnanarayana [12]
and Adiga and Prasanna [2] extracted the ground-truth GA regions by applying the
standard ZFF method on the EGG signal. In GEFBA, Koutrouvelis et al. [26] used an
algorithm named ‘SIGMA’ [49] for estimating the ground-truth GA regions. Recently,
Lal et al. [27] proposed a method based on variational mode decomposition (VMD)
for accurate estimation of GA in the EGG signal. In the present study, we therefore
made a comparative analysis of the performance of these approaches in the estima-
tion of GA regions from the EGG signal. The results of the comparative study are
given in “Appendix B”. We find that the performance of the ZFF method and the
VMD-based method is nearly equal. In this work, we use the ZFF method for estimat-
ing the ground-truth GA regions of speech signals from CMU-arctic and KED-Timit
databases.

3.1 Illustration of the Utility of the HE in the Characterization of GA/Non-GA
Regions

In order to illustrate the utility of HE in the characterization of GA/non-GA regions, a
voiced segment and an unvoiced segment of speech signal spoken by the same speaker
are selected. Then, we perform MFDFA on these segments. The multifractality in
these segments is investigated by computing the generalized HE from the variation of
the structure functions (Fq

s ) at different timescales of measurement (s) and different
orders (q). If there exists a temporal correlation in the segment for the corresponding
timescale (fixed based on F0), the system is expected to exhibit periodic oscillations
with HE value near to zero.

The analysis of voiced segments (Fig. 3a corresponding to vowel sound /ax/ and
Fig. 4a corresponding to vowel sound /uw/) shows that the generalized HE (H(q)) lies
fairly close to zero at different q orders (Figs. 3b, 4b). This is because of the absence
of scale invariance for the voiced segment. Fluctuations in the voiced segment happen
dominantly at one timescale. In other words, there is a single timescale associated with
fluctuations in the voiced segment due to the pitch period oscillations of the vibrating
vocal folds. This makes the fluctuations bounded in time for the GA regions. The
multifractal spectrum for the voiced segment (Figs. 3c, 4c) is thus clustered around
zero, indicating a loss of multifractality.
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Fig. 3 Illustration 1: Fractal analysis showing periodic nature of voiced sound and random noise-like
nature of unvoiced sound. aA voiced speech segment (/ax/), corresponding b distribution of HE for various
q-orders and c multifractal spectrum, d–f equivalent plots for unvoiced segment (/s/)

Fig. 4 Illustration 2: Fractal analysis showing periodic nature of voiced sound and multifractal nature of
unvoiced sound. aA voiced speech segment (/uw/), corresponding b distribution of HE for various q-orders
and c multifractal spectrum, d–f equivalent plots for unvoiced segment (/s/)
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Furthermore, the analysis of the unvoiced segments (Figs. 3d, 4d) reveals that the
segment either exhibits randomnoise-like behavior ormultifractal behavior depending
on the fluctuations present in it. Here, both unvoiced segments correspond to unvoiced
fricative sound /s/ from the words see and sleep, respectively, in Figs. 3d and 4d.
Nevertheless, the fluctuations in the signal or signal structure corresponding to the
same fricative sound /s/ differ drastically in the aforesaid words during continuous
speech production. Consequently, the fractal nature of the unvoiced sound also shows
variations depending on the fluctuations present in it. This can be observed from the
plot of multifractal spectrum for unvoiced segments shown in Figs. 3f and 4f. From
Fig. 3e (corresponding to /s/ from see), it is observed that the generalized HE lies close
to 0.5 for different orders of q. This means that the fluctuations are uncorrelated at
all amplitudes. This is evident from Fig. 3f also, where the spectrum is concentrated
around 0.5. In contrast, for the unvoiced segment shown in Fig. 4d (corresponding to /s/
from sleep), there exists a slight variation in the slope of the measured fluctuations or
theHE for different orders ofq (Fig. 4e). This is a direct consequence of themultifractal
nature of the unvoiced segment of speech due to the turbulent airflow. That is, the high-
and low-amplitude fluctuations scale differently. Hence, the spectrum will be broader
for the unvoiced segment due to turbulent airflow (Fig. 4f). Therefore, we conclude
that fluctuations in unvoiced segments are not just due to random excitations. It could
be due to the nonlinear interaction between turbulence airflow at the glottis and the
vocal tract system. Again, we confirm the difference in the fractal nature of the voiced
and unvoiced speech by reconstructing the attractor in phase space. Here, an attractor
means the set of points in the phase space [45] to which the dynamics of the speech
production system eventually converges. For instance, the attractor for voiced speech
is the inner dark circular region in the set of closed trajectories in the phase space
(shown in Fig. 18b of “Appendix C”). We observed that the reconstructed phase space
for voiced and unvoiced sound possesses different multifractal structures. For details
of phase space reconstruction and corresponding experimental results, kindly refer
“Appendix C”.

In summary, we found that the HE is a potential measure for identifying the dif-
ference in scaling rules of fluctuations in GA and non-GA regions. Consequently, the
measure can detect the transition from GA to non-GA (and vice versa) in the speech
signal. An illustration of the variation inHE (estimated using the proposed framework)
with respect to GA is shown in Fig. 5. It is observed that the HE values (Fig. 5b) are
fairly close to zero for GA regions (around the time instants 1001–3500 and 4801–
6300 samples). In contrast, we observe significantly higher values of HE for non-GA
regions (around the time instants 1–1000 and 3501–4800 samples).

3.2 Fixation of Optimal Threshold for HE

The decision on the presence or absence of glottal vibration is made based on a
threshold fixed on the estimated HE. The optimal threshold value of the HE for GAD
is fixed based on empirical studies conducted on speech signals. The experiments are
performed on the first hundred speech files of CMU-arctic SLT database, KED-Timit
database and Keele female database. The threshold is fixed such that best performance
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Fig. 5 Estimation of HE for speech signal containing GA/non-GA regions. a Speech signal, b HE values
obtained for the segment of speech signal

is attained in the detectionofGAregions from the speech signal.Here,weuse the recent
performance measure proposed by Koutrouvelis et al. [26], called voiced–unvoiced
detection error (VUVE), as the measure for fixing the optimal value of the threshold.
The determination of VUVE is done by applying the operation XOR on two sets X
and Y, where X is the set of estimated samples and Y is the set of reference samples.
A sample value of one corresponds to a voiced region and zero corresponds to an
unvoiced region:

VUVE = Count(X ⊕ Y = 1)

Total number of samples
× 100 (6)

The error represents the proportion of samples that are misclassified during the detec-
tion.

In our experiments, initially, we computed the HE value for the speech signal using
the proposed method described in Sect. 2.2. We fix the threshold for HE as 0.05, a
value close to zero. Then, we estimated theVUVE (with respect to the ground-truthGA
regions) in the detection of GA regions from the speech signal. Further, we computed
the VUVE for different values of threshold, ranging from 0.06 to 0.25 in steps of
0.01. Figure 6 shows the variation in VUVE as the threshold value is increased from
a minimum value (0.05) to a higher value (0.25).

The results clearly indicate that the VUVE reaches a minimum when the threshold
is fixed around 0.1. It should be noted that the error is high when the threshold is
fixed below the value of 0.1. This might be due to the minor aperiodic fluctuations
present even in the GA regions. Precisely, the GA regions are also influenced by
turbulent airflow at the glottis. This in turn causes imperfections in the periodicity of
GA regions. Hence, the HE measure will not be exactly zero in GA regions.

Moreover, we found that the deviation in error from the minimum value is less than
one percent for a threshold fixed between 0.1 and 0.14. Hence, one can choose any
value in the range of 0.1–0.14. Again, the error is found to be gradually increasing
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Fig. 6 Variation in voiced/unvoiced detection error for different values of HE

Fig. 7 GAD using the proposed method. a Speech signal, b EGG signal with ground-truth glottal regions
marked using thick line (blue) as observed from the c reference pitch values, d HE values obtained for the
speech signal with estimated glottal regions marked using thick line (red) (Color figure online)

after a threshold value of 0.14. A higher threshold will consider non-GA regions as
GA regions and increase the VUVE. In the present work, we fix the threshold as 0.1
for the HE measure.
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3.2.1 Detection of GA Regions Using the Proposed Framework

After fixing the optimal threshold value for HE through empirical studies, GA regions
in the speech signal are detected as illustrated in Fig. 7. Here, Fig. 7a shows the
same segment of the speech signal illustrated in Fig. 5a, which is taken from the Keele
database. The referenceGA regions are shown in the correspondingEGGsignal using a
thick line (blue) (Fig. 7b). These reference regions are obtained from the corresponding
positive pitch (F0) values given in the database for GA (Fig. 7c). The non-GA regions
are marked with a value zero (Fig. 7b). Now, the estimated GA regions are depicted in
Fig. 7d using a thick line (red). By comparing Fig. 7b, d, it is clear that the estimated
GA regions nearly coincide with the ground-truth regions.

3.2.2 Effectiveness of the Proposed Method in Comparison with Other Methods for
GAD

The effectiveness of the proposed approach in detecting GA regions from the speech
signal containing different sound units (such as vowels, semivowels, voiced/unvoiced
stop sounds and fricatives) is illustrated in this section. We took a speech signal (utter-
ing the sentence ‘She had your dark suit in greasywashwater all year’ named ‘kdt001’)
from the KED-Timit database. Figure 8a shows the speech signal with phoneme level
markings provided in the database (indicated on top with red line separation). The
description of the phoneme category of labeled sounds is given in “Appendix D”.
Figure 8c shows the HE values computed using the proposed method. The estimated
GA/non-GA regions are shown on top of HE values using a thick red line. The EGG
signal corresponding to the utterance is depicted in Fig. 8b for a visual comparison of
actual and estimated GA/non-GA regions. It is to be noted that the manual phoneme
labeling has an error in the region marked using a dashed blue circle in Fig. 8a. By
visual inspection of the simultaneous EGG signal, it is evident that the circled region
does not correspond to a regionwith vocal fold vibration. However, the region has been
marked as a voiced stop consonant (/d/ and its closure /dcl/) during manual labeling.
Further, we observe that the proposed method is able to identify the GA regions in
weak voicing regions (between time instants 5501–5900 and 6851–7050) and voiced
stop consonant (around the time instant 5400) as shown in Fig. 8c. Moreover, frica-
tives (/s/ and /sh/) and unvoiced stop consonant (/k/ and its closure /kcl/) are correctly
identified as non-GA regions.

Furthermore,we compare the proposed approachwith state-of-the-artmethods such
as GEFBA, ZFF and SRH. The estimated GA regions are represented (using a thick
red line) on top of the output signal from each method (Fig. 9b–e). GEFBA relies on
the estimation of epochs (GCIs) from the speech signal for GAD. Precisely, GEFBA
includes twomajor phases such as glottal flow estimation and simultaneous GAD/GCI
(andGOI) estimation. A rough approximation of the excitation signal, known as glottal
flow derivative (GFD), is obtained by LP-based inverse filtering of the speech signal
(Fig. 9b). Then, move-forward and move-backward procedures are followed per pitch
period to detect an epoch/GCI (marked using ‘*’) and other glottal parameters (instants
of glottal opening, return phase, closed phase). Most importantly, the algorithm fixes
six strict criteria based on a set of control parameters for simultaneous GAD and GCI



2134 Circuits, Systems, and Signal Processing (2020) 39:2118–2150

Fig. 8 GAD from the speech signal containing different sound units. a Speech signal with phoneme sound
labeling on top, b EGG signal, cHE values obtained using the proposed method. The estimated GA regions
are shown in thick red line. A manual labeling error is indicated in the dashed blue circle (Color figure
online)

(and GOI) estimation. The criteria will be satisfied when the structure of the pulses
(negative spikes) in the GFD is almost similar. Also, GEFBA hypothesizes that two
consecutive GA regions are separated by a distance greater than the maximum pitch
period. However, if at least one criterion fails, GEFBA discards the glottal parameters
including epochs. This is evident from Fig. 9b where the epochs are discarded at the
weak voicing regions (between time instants 6851–7050). Consequently, GA regions
are identified as non-GA regions.

The ZFF method also depends on the epochs extracted from the speech signal for
reliable GAD. As discussed in Sect. 1.1, the ZFF method estimates epochs as the
zero crossings of the ZFF signal. The slope of the ZFF signal around the estimated
epochs corresponds to the SoE. Any region with SoE less than one percent of the
maximum SoE is identified as non-GA regions [12]. Though the method provides
reliable detection in regions of higher SoE, the performance is found to be degraded
(Fig. 9c)when theSoE is veryminimal (toward the end portion of semivowel or glide /r/
around the time instant 7050 and 8550). Further, the SRHmethod relies on the residual
harmonics of the speech signal for GAD. The method initially takes the sum of the
harmonics and inter-harmonics of the residual signal for each frequency in the range
F0,min to F0,max for estimating the mean pitch F0,mean. Then, the process is repeated in
the range 0.5F0,mean to 2F0,mean, assuming the range as standard for normal speakers.
Finally, a threshold of 0.07 is fixed on the estimated SRH for GAD. The SRH is
expected to show a high value for GA regions. However, we find that the SRHmethod
shows error across the boundaries of voiced segments as shown in Fig. 9d. Moreover,
the method shows inconsistent behavior at unvoiced segments (as observed in the
region around the time instant 9200). This might be due to the variation in residual
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Fig. 9 Illustration of the effectiveness of the proposed method in comparison with other methods for GAD.
a Speech signal with phoneme sound labeling on top bGFD signal fromGEFBAwith GCIs/epochs marked
using ‘*,’ c SoE obtained from the ZFF signal, d SRH values, e HE values obtained using the proposed
method. The estimated GA regions are shown in thick red line on b–e. A manual labeling error is indicated
in the dashed blue circle (Color figure online)

harmonics. In contrast, we found that the proposed method performs comparatively
better than othermethods in identifyingGA regions, especially inweak voicing regions
(Fig. 9e).

3.3 Performance Evaluation

The performance of the proposed method is evaluated on both speech signals from the
Keele database, KED-Timit database, CMU-arctic databases. Besides VUVE, we use
measures such as accuracy of detection (AC), voicing error (VE) and unvoicing error
(UE) for the performance evaluation [3]. These measures are defined as follows:

AC = 100 − VUVE (7)

VE = nv
nref

, UE = nu
nref

(8)

where nv is the total number of voiced samples identified as unvoiced, nu is the
total number of unvoiced samples identified as voiced and nref is the total number of
samples. Moreover,

VUVE = VE +UE. (9)

We evaluate the performance of the proposed approach in estimating GA regions
from speech signals using the aforesaid measures. The performance is then com-
pared with standard algorithms such as the ZFF, GEFBA and SRH. The results of
the performance comparison are given Tables 1, 2 and 3 with the best performance
indicated in boldface for the accuracy measure. From the results, it is clear that the
proposed approach provides comparable accuracy in the identification of GA regions
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Table 1 Performance
comparison results (%) on
speech signals from Keele
database

Method Keele

AC VUVE VE UE

ZFF 90.82 9.18 5.48 3.70

SRH 92.21 7.79 3.00 4.79

GEFBA 92.92 7.08 4.73 2.35

Proposed 93.73 6.27 3.03 3.24

Best values in accuracy are highlighted in boldface

Table 2 Performance
comparison results (%) on
speech signals from KED-Timit
database

Method KED-Timit

AC VUVE VE UE

ZFF 93.15 6.85 4.65 2.20

SRH 91.59 8.41 2.14 6.27

GEFBA 92.44 7.56 4.12 3.44

Proposed 93.21 6.79 2.01 4.78

Best values in accuracy are highlighted in boldface

with respect to the state-of-the-art methods. The average performance of the proposed
method on the Keele database and CMU-arctic BDL (in terms of accuracy) is found to
be slightly higher than the next best performing GEFBA method. For the KED-Timit
database, the performance of the proposed method is near to the next best performing
ZFF method. The performance of GEFBA is also near to the proposed approach in
the KED-Timit database. Furthermore, the performance of the GEFBA is found to
be slightly higher than that of the proposed method for CMU-arctic SLT and JMK
databases. We observed that the GEFBA estimates GCIs more reliably (higher iden-
tification rate) from the speech signals of SLT and JMK when compared to that from
the BDL. This is reflected in the voicing error (as indicated by high VE) correspond-
ing to BDL when compared to that of SLT and JMK. The voicing error for the ZFF
method is also found to be higher due to the degraded performance of the ZFF at the
voicing offset regions. For the Keele database, the difference in error for GEFBA and
SRH is found to be very minimal. The higher unvoicing error (as indicated by high
UE) for SRH implies that more non-GA regions are identified as GA regions. This in
turn indicates the degraded performance of the SRHmethod in discriminating GA and
non-GA regions. Furthermore, the voicing error for the proposed method is lower than
that of GEFBA and ZFF methods in all databases considered. Precisely, the proposed
method detects GA regions more reliably than these methods. This is because of the
effectiveness of the HEmeasure in identifying the temporal correlation in GA regions.

Furthermore, the robustness of the proposed method is evaluated for different noise
degradations. The evaluation is done on all the speakers from the CMU-arctic, Keele
andKED-Timit databases.We computed theVUVE during the detection ofGA regions
from the speech signal in the presence of white noise and babble noise. The noise
signals are taken from the NOISEX database [51]. Each of these noise signals is
added separately to the clean speech signal at varying levels of SNR (20dB, 10dB,
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Table 4 Performance
comparison the proposed
method with other methods on
CMU-arctic database for various
noise level degradations in terms
of VUVE (%)

Noise SNR (dB) VUVE

ZFF SRH GEFBA Proposed

White 20 8.44 9.98 7.87 7.63

10 8.52 10.44 8.49 8.21

5 9.26 11.60 8.83 11.65

0 10.58 13.66 9.34 17.04

Babble 20 9.47 13.97 8.57 8.25

10 11.14 14.54 8.74 12.13

5 12.65 19.89 12.36 15.53

0 18.52 22.81 16.43 20.14

Best values in VUVE are highlighted in boldface

Table 5 Performance
comparison the proposed
method with other methods on
Keele database for various noise
level degradations in terms of
VUVE (%)

Noise SNR (dB) VUVE

ZFF SRH GEFBA Proposed

White 20 10.18 9.64 8.54 8.12

10 11.79 10.25 9.27 8.69

5 11.81 10.69 9.85 12.48

0 14.51 13.49 10.19 18.34

Babble 20 11.82 12.39 9.51 8.87

10 18.21 23.14 10.11 9.73

5 22.34 26.34 12.58 16.18

0 25.36 29.03 19.15 21.27

Best values in VUVE are highlighted in boldface

5dB and 0dB). Tables 4, 5 and 6 show the average VUVE obtained for different
noise degradations on speech signals from the CMU-arctic, Keele and KED-Timit
databases, respectively. The results indicate that the proposed method detects GA
regions with comparable error to the next best performing method for a relatively high
SNRcondition (20dB and 10dB). Precisely, the performance of othermethods is lower
when compared to that of the proposedmethod for white noise degradation up to 10dB
in the three databases considered. For babble noise, the proposed approach provides
slightly better performance than that of other methods for SNR greater than or equal
to 20dB. Furthermore, the performance of all methods is found to be degraded under
low SNR values, with GEFBA providing the least detection error in all the databases.
The GEFBA method outperforms all the other methods for a higher level of noise
degradation. This is in line with the observation of [26], since GEFBA removes any
high-frequency contents during the estimation of GFD. The performance of the ZFF
method is also degraded under babble noise when compared to white noise. This
is due to the impulse-like characteristic arising from different speakers. Again, the
performance of the SRH method is inferior to the proposed method for babble noise.
This is due to the degradation of the spectral contents at lower frequencies.
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Table 6 Performance
comparison the proposed
method with other methods on
KED-Timit database for various
noise level degradations in terms
of VUVE (%)

Noise SNR (dB) VUVE

ZFF SRH GEFBA Proposed

White 20 8.23 10.15 8.38 8.22

10 9.17 10.85 9.19 8.97

5 10.47 11.43 10.46 11.29

0 11.38 14.09 11.27 18.17

Babble 20 9.49 11.45 9.08 8.88

10 12.18 13.05 10.63 10.66

5 13.15 18.87 12.83 15.17

0 19.48 23.16 17.15 22.91

Best values in VUVE are highlighted in boldface

Fig. 10 Illustration of spurious multifractality at low SNR. a A voiced speech segment added with babble
noise at SNR level of 20dB, corresponding b linear magnitude spectrum and c multifractal spectrum, d–f
equivalent plots for 5dB, g–i equivalent plots for 0dB

It is found that the VUVE for the proposed method is higher for low SNR val-
ues. The degradation in performance is due to the spurious multifractality caused by
crossover [54]. That is, the voiced segment under analysis may contain fluctuations
due to more than one characteristic timescale due to the influence of additive noise.
This is illustrated in Fig. 10, where a voiced segment of the speech signal is shownwith
additive babble noise degradations at SNR levels of 20dB, 5dB and 0dB. From the
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subplots, it is clear that the magnitude spectrum of the speech segments shows sharp
peaks (representing pitch period oscillations) for SNR of 20dB (Fig. 10b). In contrast,
the magnitude spectrum corresponding to 0dB shows a broad frequency profile with
many shallow peaks (Fig. 10h). That is, the fluctuation occurs at different timescales.
This in turn results in spurious multifractality in the voiced region. In other words,
the voiced segments do not possess a loss of multifractal behavior. This is clearly evi-
dent from the multifractal spectrum corresponding to voiced segments having SNR
of 20dB (Fig. 10c) and 0dB (Fig. 10i), respectively. The spectrum is concentrated
around the zero value for 20dB, whereas its width increases for 0dB. Hence, the HE
estimated for voiced segments would show a higher value than the optimal threshold.
This in turn categorizes the voiced segments as unvoiced ones and increases theVUVE.
Further investigation is required to address this issue.

4 Conclusion

In the present study, the usefulness of multifractal analysis in the detection of GA from
the speech signal is explored. The main contributions of the study are the following:

• A complete characterization of the scaling behavior of fluctuations in GA and
non-GA regions in speech using multifractal analysis.

• Reliable detection of the GA/non-GA regions of the speech signal using HE mea-
sure.

The study confirms that the variation in the scaling behavior of fluctuations during
the production of a voiced and unvoiced sound can be better analyzed using MFDFA.
We show that the slope of the fluctuation function, HE, can discriminate between GA
and non-GA regions. Experimental analysis shows that the non-GA regions exhibit
either multifractal or random noise-like nature. In contrast, the GA regions/voiced
regions are found to show a loss of multifractal behavior. This difference in the fractal
nature is utilized in the detection of GA regions in the speech signal. The HE is found
to show a gradual decrease (toward zero) when there is a transition from non-GA to
GA. Empirical experiments reveal that a threshold fixed in the range of 0.1–0.14 is
optimal in detecting the GA regions.

We evaluated the performance of the proposed approach on speech signals taken
from CMU-arctic, Keele and KED-Timit databases using standard measures of GAD.
Moreover, we compared the performance of the proposed approach with other stan-
dard methods. The performance comparison results show that the proposed method
provides slightly better performance than other methods on CMU-BDL and Keele and
KED-Timit databases. Also, the performance is found to be comparable with the best
performing algorithm on CMU-SLT and CMU-JMK databases. The evaluation of the
robustness in the presence of additive noise shows that the proposed method gives
lower error rates at higher SNR. However, the performance of the proposed approach
reduces for SNR below 10dB and 20dB, respectively, for white noise and babble
noise. Nevertheless, the present study is an advancement in the understanding of the
fractal behavior of the speech signal during GA.
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A Surrogate Test and Relevance of Fractal Analysis

Basically, the surrogate test examines the validity of a null hypothesis (H0) formulated
for the original time series. H0 is formulated based on the origin of the time series
under investigation. Now, surrogates for the original time series are created by a
surrogate algorithm, preserving the amplitude distribution, autocorrelation, localmean
and variance of the original data. Then, a discriminating statistic is measured for the
original data (To) and its surrogates (Ts). Also, the distribution of Ts obtained for
the surrogate data can be estimated. If To and Ts are significantly different, the null
hypothesis H0 can be rejected. However, the rejection is carried out in a probabilistic
manner, specifying the significance level. The significance level is determined by the
number of surrogate data sets as, p = 2 × 1

(ns+1) where ns is the total number of
surrogates. The measure of significance for rejection is given by

t = |To − mean(Ts)|
σs

(10)

where σs is the standard deviation of the distribution for surrogates.
The general techniques employed for the generation of surrogate data are random

permutation (RP), Fourier transform (FT) and amplitude-adjusted Fourier transform
(AAFT) [41,48]. RP shuffles the data so that any linear correlations present in the
original data may be destroyed. However, surrogates preserve the amplitude distribu-
tion of the original data. The FT surrogate is based on the null hypothesis that the data
originate from a linear Gaussian process. It maintains the amplitude spectrum but the
phases are randomized. AAFT algorithm was developed based on the null hypothesis
that the original data are a monotonic nonlinear transformation of a linear Gaussian
process. Here, the original data are initially rescaled to preserve the Gaussian property.
Then, FT surrogates are generated and rescaled back to the amplitude distribution of
the original data. Further, the choice of the discriminating statistic is also crucial in
the surrogate analysis. The statistic should be selected in such a way that it should not
preserve the hypothesis governing the surrogate algorithm. For example, the selection
of mean as a discriminating statistic will always satisfy the null hypothesis governing
random permutation. In this work, we use the HE estimated using MFDFA as the
discriminating statistic.

We use an ensemble of 99 surrogates of the same length as the original speech signal
(‘kdt001’ fromKED-Timit) in each of the surrogate methods. Figure 11 shows the dis-
tribution of the discriminating statistics for the surrogates (Ts) and the original speech
signal (To). The corresponding measure of significance t obtained for each surrogate
test is also shown in Fig. 11. Here, H0 for each surrogate method is rejected if the mea-
sure of significance (t) is greater than 2. This is evident from Fig. 11a where the null
hypothesis governing RP surrogates is rejected, revealing some temporal correlation
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Fig. 11 Surrogate test for the speech signal ‘kdt001’ from KED-Timit database. Distribution of HE for the
surrogates generated using a RP, b FT and c AAFT. The statistic for the original utterance is shown as a
vertical dashed line (red). The measure of significance t is indicated on top right for each method (Color
figure online)

in the speech signal. Such a correlated time series is then tested using FT surrogates.
If FT is also rejected, then the analysis is continued with AAFT surrogates. Here, we
observe that H0 governing FT and AAFT are also rejected (Fig. 11b, c). The rejection
of H0 governing RP, FT and AAFT is an indication of nonlinear process involved in
the production of the speech signal. Further, we verified results of the surrogate test
in two ways. Firstly, a voiced segment from the same utterance is simulated using LP
coefficients and impulse train as excitation. The LP coefficients are obtained by LP
analysis (of order 12) of the original speech segment. We use a frame size of 20 ms
and frame shift of 10 ms for the LP analysis. The simulated speech output is tested
using RP and FT surrogates. We find that the H0 governing RP is rejected and FT
is accepted (Fig. 12). Secondly, a synthetic version of the aforesaid Timit utterance
is generated using ‘HTS-2005’ online tool [11], which uses a source–filter model.
Again, we observe that H0 governing FT is accepted (Fig. 13b). This is an indication
of the linear process involved in the production of both the simulated (LP-based) and
HTS synthetic speech signals. Thus, we conjecture that the source–filter model gives
a linear approximation of the speech signal. The actual speech production process
involves nonlinear interaction of the subsystems/parts from lungs to lips. In this con-
text, a nonlinear technique like fractal analysis appears to be appropriate/relevant for
the analysis of speech signals.

In order to investigate the relevance of fractal analysis in characterizing GA/non-
GA regions of the speech signal, we have conducted the following experiment. Firstly,
we took the aforesaid simulated voiced speech (/aa/) and its original version. Then,
we perform MFDFA on these segments. The multifractal spectrum obtained for each
of these segments is shown in Fig. 14c. It is observed that the multifractal spectrum
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Fig. 12 Surrogate test for the simulated speech signal using LP analysis and impulse excitation. Distribution
of HE for the surrogates generated using a RP and b FT. The statistic for the original utterance is shown as
a vertical dashed line (red). The measure of significance t is indicated on top right for each method (Color
figure online)

Fig. 13 Surrogate test for the synthetic version of ‘kdt001’ speech signal generated using HTS-2005, which
uses source–filter model. Distribution of HE for the surrogates generated using a RP and b FT. The statistic
for the original utterance is shown as a vertical dashed line (red). The measure of significance t is indicated
on top right for each method (Color figure online)
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Fig. 14 Multifractal analysis on original and simulated voiced speech signal. a Original voiced speech
signal, corresponding b simulated version, c multifractal spectrum

Fig. 15 Multifractal analysis on original and simulated unvoiced speech signal. aOriginal unvoiced speech
signal, corresponding b simulated version, c multifractal spectrum

of both the segments is clustered near to zero. Secondly, we simulated an unvoiced
speech segment (/s/) from the same Timit utterance using LP analysis and random
noise excitation. Then, we repeated the fractal analysis on the simulated unvoiced
speech and its original version. Figure 15c depicts the resultant multifractal spectrums.
From the plot, we can infer that the original unvoiced speech corresponds to a large
inverted arc (indicating its strong multifractal nature). In contrast, the spectrum of the
simulated unvoiced speech corresponds to a small arc (indicating an approximately
monofractal nature). Precisely, the multifractal nature of the unvoiced speech is lost
in the LP analysis. This is due to the limitation of the LP analysis in identifying the
source–filter interaction. The LP analysis relies on the assumption that source and
filter are decoupled entities and the excitation source has no influence on the vocal
tract system parameters. However, the excitation source can influence the vocal tract
system parameters in the actual speech production process. This in turn can contribute
to spatial and temporal variations in the speech signal, resulting in its multifractal
nature.

Thus, we can conclude that the simulated voiced speech preserves the fractal nature
of the original version. However, the simulated unvoiced speech did not capture the
spatial and temporal variations (multifractal nature) in the original version. There-
fore, the characterization/detection of GA/non-GA (voiced/unvoiced) region based on
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Fig. 16 Comparison of estimated ground-truth GA regions using different methods. a EGG signal with
actual GA regions indicated using dashed blue line, b DEGG signal with estimated epochs from SIGMA
marked using ‘∗,’ c SoE obtained from the ZFF signal, dVMD output signal with estimated epochs marked
using ‘∗. The estimated GA regions are shown in thick red line on b–d (Color figure online)

multifractal analysis may not be effective in the simulated speech signal using LP
coefficients and impulse/random noise excitation.

B A Comparative Study of Different Ground-Truth GA Estimation
Methods

The ground-truth GA regions of the speech signal from CMU-arctic and KED-Timit
databases can be estimated from the corresponding EGG signals. Here, we investi-
gated the performance of three state-of-the-art methods, such as the ZFF method, the
’SIGMA’ algorithm and the VMD method in estimating the ground-truth GA regions
from the EGG signal. The ZFF method uses a simple threshold operation on the
SoE at the estimated epochs (from the EGG) for the identification of reference GA
regions. Precisely, an epoch with SoE greater than one percent of the maximum SoE
is considered as the ground-truth GA region [12]. Using the SIGMA algorithm, the
boundaries of GA regions are estimated based on the initial and final instants of glottal
closure [26]. That is, if the distance between consecutive GA regions is greater than
twice the maximum pitch period, the corresponding region is marked as a non-GA
region. The VMD method relies on the estimation of epochs from the mode which
oscillates close to the fundamental frequency of the speech signal [27,28]. For GA
regions, the method estimates epochs as the positive zero crossings of the selected
mode.

Figure 16 shows the demonstration of GAD from the EGG signal (taken from the
Keele database since it has proper ground truth) using the aforementioned methods.
The detected GA/non-GA regions from these methods are marked using a thick line
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Fig. 17 A comparative evaluation of the performance of the proposed method and state-of-the-art methods
in GAD from speech signal using the ZFF- and VMD-based ground-truth references. Evaluation on a BDL,
b SLT and c JMK databases. I—ZFF method, II—SRH method, III—GEFBA, IV—proposed method

(red) on the corresponding output signals (Fig. 16b–d). ReferenceGA/non-GA regions
are shown in Fig. 16a using a dashed blue line. From the visual inspection of Fig. 16c,
d, it is clear that the VMDmethod and ZFF method outperform SIGMA in estimating
GA regions, especially at voicing offset regions (region indicated using dashed circle).
Therefore, one can choose either the ZFF method or the VMD method for estimation
of ground-truth GA regions. Nevertheless, we perform a performance evaluation of the
proposed method (and other state-of-the-art methods) using ground-truth GA regions
obtained from the ZFF method and VMD method. The evaluation is done on a test
database (here, we choose CMU-arctic) since a comprehensive study on ground-truth
GAD algorithms is beyond the scope of the present work. Precisely, we compute the
VUVE during the detection of GA regions from the speech signal with respect to
references from the ZFF method and VMD method. Figure 17a–c shows the VUVE
obtained for each method (with respect to the two references) on BDL, SLT and JMK
databases, respectively. From the results, it is evident that the VUVE is nearly equal for
the two references. Hence, the choice of a method for the estimation of ground-truth
GA region is not very critical.

C Phase Space Reconstruction

Generally, all variables defining the state of a complex system are not available in
practice. In such a scenario, the dynamics of the system can be visualized by recon-
structing the phase space of evolution of the measured variable or time series [33]. The
reconstructed phase space will be topologically equivalent to the original one. Also,
the variation in the dynamics is always found to be reflected in the structure of the
phase space. Therefore, we employ the phase space reconstruction method to visu-
alize the dynamics of the speech production system during the production of voiced
and unvoiced speech sounds. We use the time delay embedding technique [46] for
reconstruction. Precisely, the speech data are converted into an ensemble of delay
vectors. Each delay vector corresponds to a state in the reconstructed phase space. For
faithful reconstruction, the embedding parameters such as optimum time delay τ and
least embedding dimension d0 are properly determined. τ is obtained by computing
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Fig. 18 Demonstration of the reconstructed phase space of the voiced and unvoiced segment of a speech
signal. a, bA voiced speech segment and corresponding reconstructed phase space, c, d an unvoiced speech
segment and corresponding reconstructed phase space

the first minimum of the average mutual information (AMI). Further, the false nearest
neighbors (FNN) technique is used for determining d0.

For a demonstration of the difference in complexity of the phase space correspond-
ing to the GA/non-GA, we took the same voiced and an unvoiced segment shown
in Fig. 4. Then, optimum time delay τ and minimum embedding dimension d0 are
computed for the segments separately. Figure 18b, d shows the reconstructed phase
space for the voiced (Fig. 18a) and unvoiced segments (Fig. 18c), respectively. By
visual inspection of Fig. 18b, it is clear that the phase space for voiced segment shows
circular patterns (closed trajectories) representing periodic/quasiperiodic oscillations.
This occurs due to the periodic/quasiperiodic vibration of vocal folds during the pro-
duction of voiced speech sounds. On the other hand, the attractor for unvoiced sound
(Fig. 18d) is expanded in all directions indicating irregular fluctuations in the airflow.
The reconstructed phase space also reveals that the voiced and unvoiced sounds pos-
sess different multifractal structure and can be characterized based on multifractal
measures.

D Phoneme Category of Sounds

Table 7 gives the phoneme category of sounds mentioned in Figs. 3,4, 8 and 9.
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Table 7 Phoneme category of
sounds

Sound Category

/sil/ Silence

/y/, /r/ Semivowel/glide

/iy/, /hv/, /ae/, /ax/, /aa/, /uw/ Vowel

/d/ Voiced stops

/s/, /sh/ Unvoiced fricative

/k/ Unvoiced stops

The closure symbols of stops /d/ and /k/ are /dcl/ and /kcl/, respectively
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