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Abstract
Brain tumors are the most destructive disease, leading to a very short life expectancy
in their highest grade. The misdiagnosis of brain tumors will result in wrong medi-
cal intercession and reduce chance of survival of patients. The accurate diagnosis of
brain tumor is a key point to make a proper treatment planning to cure and improve
the existence of patients with brain tumors disease. The computer-aided tumor detec-
tion systems and convolutional neural networks provided success stories and have
made important strides in the field of machine learning. The deep convolutional layers
extract important and robust features automatically from the input space as compared
to traditional predecessor neural network layers. In the proposed framework, we con-
duct three studies using three architectures of convolutional neural networks (AlexNet,
GoogLeNet, and VGGNet) to classify brain tumors such as meningioma, glioma, and
pituitary. Each study then explores the transfer learning techniques, i.e., fine-tune and
freeze usingMRI slices of brain tumor dataset—Figshare. The data augmentation tech-
niques are applied to theMRI slices for generalization of results, increasing the dataset
samples and reducing the chance of over-fitting. In the proposed studies, the fine-tune
VGG16 architecture attained highest accuracy up to 98.69 in terms of classification
and detection.

Keywords Brain tumor · Deep learning · Transfer learning · AlexNet · GoogLeNet ·
VGG · Figshare dataset

1 Introduction

Over the past decades, diseases have stumbled that are overcome with the human
intelligence and biomedical advance, but still cancer, by virtue of its unstable nature,
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Fig. 1 Types of brain tumor

remains a curse to the mankind. One of the fatal and most growing diseases is brain
tumor cancer. Brain is the core and most complex organ of human body that comprises
nerve cells and tissues to control the foremost activities of the entire body like breath-
ing, movement of muscles and our senses. Every cells have their own capabilities;
some cells grow with their own functionality, and some lose their capacity, resist, and
grow aberrant. These mass collections of abnormal cells form the tissue are called as
tumor. Cancerous brain tumors are uncontrolled and unnatural growth of brain cells
[12]. It is one of the most life-threatening and lethal cancers. In 2015 [23], approx-
imately 23,000 patient were diagnosed brain tumor in the USA. According to 2017
cancer statistics [22], brain tumor is measured as one of the foremost causes of cancer-
related indisposition, morbidity, and mortality around the world both in children and
in adults.

Generally, brain tumor can be classified into two types, i.e., benign and malignant
tumors. Benign tumor is a non-cancerous type (non-progressive), and it is originated
in the brain and is growing slowly. This type of tumor cannot spread anywhere else in
the body thus assumed to be less aggressive. The abnormal growth of cell can press
tissue or part of brain which can be removed on time. On contrary, malignant tumor
type is a cancerous, produce quickly with undefined boundaries, invade other healthy
cells, and spread other parts of the body. When this type of tumor is originated in the
brain, then it is known as primary malignant tumor. When it is emanated elsewhere in
the body and spread to the brain, then it is known as secondary malignant tumor [2].
However, meningioma, glioma, and pituitary tumors are the other common types of
brain tumors. Meningiomas are the most common benign tumors that instigate in the
thin membranes that surround the brain and spinal cord. The gliomas are assortment
of tumors that grow within the substance of the brain [1]. High-grade gliomas are one
of the aggressive brain tumors with a minimum survival of almost two years. Pituitary
tumors are irregular growth of the brain cells. Pituitary tumors develop in the pituitary
gland of the brain. These tumors have uniform shape and intrinsic nature that can
produce anywhere in the brain. These types of brain tumors are depicted from Fig. 1.

The progression of brain tumor classification is one of the foremost challenging
tasks due to the heterogeneity, isointense and hypo-intense properties, and related
perilesional edema creates obscurity in tumor classification. Normally, T1-weighted
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contrast-enhanced images are used for classification of primary tumors such as menin-
gioma (MEN), glioblastoma multiforme (GBM), astrocytoma (AS), medulloblastoma
(MED), and secondary tumors like metastases (MET). These tumors are significantly
better visualized on T1-weighted contrast-enhanced images due to the stimulation of
0.150.20 mMol/kg of contrast material (gadolinium) in the patients. Classification of
brain tumors is accomplished with the aid of features. Expedient features are extracted
using the intricate structures of diverse tumors on brain magnetic resonance images
(MR). The main methodologies of brain tumors classification conventionally relay
on region-based tumor segmentation rather than feature extraction and classification.
Thus, the paradigm shifted toward the classification tasks with the aid of deep learning
approaches.

Deep learning is the subfield of machine learning that provides the capability to the
computer to make predictions and take conclusions on data with its ability of learning
data representations. Specifically, these approaches are extensively used for medical
imaging classification and act as one of major computational intelligence techniques.
Although deep learning approaches have revealed incredible success in a diversity
of applications in numerous domains in different fields [10,11,13,14,14,16,17,21],
nevertheless, it is data starving approach and necessitates as a minimum ten times
the degree of freedom data samples. To address the challenge of limited training
samples, transfer learning could be employed to fine-tune the already gained storing
information on similar problem. Transfer learning is the deep learning technique in
which the network is trained on the large dataset (base dataset) and transfers the
learned knowledge to the small dataset (target dataset) [18]. Two main scenarios of
transfer learning are: fine-tune the ConvNet and freeze the layers of ConvNet. In
former scenario, replace and retain the pretrained ConvNet on the target dataset for
continuing backpropagation. Finally, the last fully connected layer classifies the target
dataset. While in later case, ConvNet is pretrained on the base dataset and the last fully
connected layers are removed. In this way, fully connected or desired convolutional
layer acts as features were passed to the linear classifier (SVM, NN, LDA, Naive
Bayes, etc.) for classification. The motivation of this paper is to perform an extensive
experiments using deep convolutional neural network (CNN), transfer learning, and
its scenarios.

The main contributions of our proposed studies are:

– A novel and robust techniques of transfer and deep learning are presented for
classification and automated detection of brain tumor that is effective in extraction
of important and rich features on a benchmark Figshare dataset

– To explore the three different architectures of deep convolutional networks like
AlexNet, GoogLeNet, and VGGNet using MRI images of brain tumor and deploy
transfer learning techniques on the target dataset.

– To deliver an in-depth performance assessment of the critical factors affecting the
fine-tuning approach of pretrained models.

– To employ the different freeze layers of pretrained model and then pass to the
support vector machine (SVM) for classification.

– To conduct the comparative analysis in terms of accuracy of each architecture of
CNN for brain tumor classification and detection.
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The rest of paper is structured as: Sect. 2 deliberates the closely related work. Sec-
tion 3 explains the brain tumor classification and the CNN architectures in detail.
Experimental design of the proposed brain tumor classification and detection system
thoroughly discusses in Sect. 4. Section 5 details the experimental results along with
the comparison of existing systems. Lastly, the conclusion with future direction has
been drawn in Sect. 6.

2 RelatedWork

Numerous methods with solutions for identification of the brain tumor using MRI
images had been proposed by number of researchers in the past years. These methods
vary from conventional machine learning algorithms to the deep learning models. We
here present the related work of brain tumor detection rely on brain tumor dataset—
Figshare [4]. In this regard, Cheng et al. [6] conducted experiment on brain tumor
dataset—Figshare. They used augmented tumor region as region of interest and split
these regions into subregions by employing adaptive spatial division method. They
extracted intensity histogram, gray-level co-occurrence matrix (GLCM), and bag-
of-words (BoW) model-based features. They reported highest accuracy of 87.54%,
89.72%, and 91.28% on extracted features using ring-form partition method. Another
contribution of same authors was presented in [5]. They deployed Fisher Vector for
the aggregation of local features from each subregion. Mean average precision (map)
of 94.68% was retrieved. Similarly, Ismael and Abdel-Qader [8] extracted statistical
features from MRI slices with the aid of 2D discrete wavelet transform (DWT) and
Gabor filter techniques. They classified the brain tumors using backpropagation mul-
tilayer perceptron neural network and retrieved highest accuracy of 91.9%. Abir et al.
[1] deployed probabilistic neural network (PNN) for classification of brain tumors.
They performed image filtering, sharpening, resize, and contrast enhancement in pre-
processing and extracted GLCM features. They attained highest accuracy of 83.33%.

Still the available automated tumor detection systems are not providing satisfactory
output, and there is a big demand to get a robust automated computer-aided diagnosis
systems for brain tumor detection. The conventional machine learning-based algo-
rithms and models require domain specific expertise and experience. These methods
need efforts for segmentation and manual extraction of structural or statistical features
which may result in degradation of accuracy and efficiency of the system perfor-
mance [15]. The deep transfer learning-based techniques overcome these issues due
extraction of visual and discriminative features using different convolutional layers
automatically. These extracted features are supposed to be rich and robust for classi-
fication purpose. Widhiarso et al. [26] computed GLCM and fed to the convolutional
neural network. They claimed that GLCM combined with contrast feature gave 20%
improved accuracy. They achieved highest accuracy of 82% using this scenario. Table
1 elaborates the related work of Figshare dataset. Abiwinanda et al. [2] employed five
different architectures of CNN and reported highest accuracy on architecture 2. The
architecture 2 contains two convolutional layers, ReLU layer, and max-pool followed
by 64 hidden neurons. They achieved 98.51% and 84.19% on training and valida-
tion sets, respectively. Afshar et al. [3] proposed a novel model Capsule networks
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Table 1 Related work of brain tumor detection using Figshare dataset

References Features Model Accuracy (%)

Cheng et al. [6] Intensity histogram SVM 87.54

GLCM 89.72

Bag of words 91.28

Cheng et al. [5] Local features using Fisher Vector SVM 94.68

Ismael and Qader [8] Fabor features MPNN 98.9

Abir et al. [1] GLCM PNN 83.33

Widhiarso et al. [26] GLCM CNN 82

Abiwinanda et al. [2] Model based CNN 84.19

Afshar et al. [3] Model based CapsNet 86.56

MPNN Multilayer perceptron neural network, SVM support vector machine, CNN convolutional neural
network, PNN probabilistic neural network, CapsNet capsule network, GLCM gray-level co-occurrence
matrix

(CapsNets) for the classification of brain tumor. They varied the feature maps in the
convolutional layer of CapsNet in order to increase accuracy. They achieved highest
accuracy of 86.56% using 64 feature maps with one convolutional layer of CapsNet.
Table 1 summarizes the state-of-the-art techniques presented by numerous researchers
for brain tumor detection and classification using manual features with conventional
networks and model-based features with deep neural networks.

3 Materials, Methods, andMeasurement’s Metrics

We use the Caffee library 7 for our implementation. The Caffee library 7 is used with
the single GPU (NVIDIA CUDA) having the multiple processors of 2.80 GHz, 16GB
DDR4-SDRAM, 1TB HDD, 128 GB SSD. In this section, we present different archi-
tectures of deep convolution neural network for proposed framework using brain tumor
dataset—Figshare [4], for brain tumor classification and detection. We explore and
evaluate thewell-knownCNNarchitectures (AlexNet,GoogLeNet, andVGG16) using
augmentedMRI slices of brain tumor dataset. These pretrained CNN architectures are
used to deploy the transfer learning techniques to extract the visual discriminative
and rich features. Finally, the visual patterns are classified using log-based softmax
layer or support vector machine (SVM). The key elements of proposed framework
are discussed in the subsections. Then, the measurement matrices are discussed for
evaluation for performance of our proposed systems.

3.1 Dataset

We used publicly available brain tumor dataset—Figshare [4], to analyze and evaluate
our proposed framework using different architectures of CNN. It is developed by
Cheng in 2017. The dataset comprises 3064 brain MRI slices collected from 233
patients. It contains three kinds of brain tumors: meningioma, pituitary, and glioma.
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The total number of images(slices) for meningioma is 708, 930 for pituitary, and 1426
for glioma tumor . The dataset is publicly available on Figshare Web site in MATLAB
“.mat” format. Each MAT-file contains a structure comprising a patient ID, unique
label that demonstrates the type of brain tumor, 512 × 512 image data in uint16
format, vector containing tumor border with the coordinates of discrete points, and
ground truth in binary mask image. In our experiments, each CNNmodel takes image
as input unit; thus, we only use the image data from the .mat files as depicted in Fig. 1.

3.2 CNN-Based Architectures

A CNN or ConvNet is the acronym of convolutional neural network. It has designed
for recognizing important visual patterns from raw pixels of images automatically
with less preprocessing efforts. The competition of ImageNet Large-Scale Visual
Recognition Challenge (ILSVRC) has brought a breakthrough in 2012 [9] and new
architectures of deep CNNs presented by increasing the complexity and number of
convolutional layers for fantastic and better accuracy on ImageNet dataset [7]. The
different CNN architectures coupled with transfer learning techniques, i.e., fine-tune
and freeze layers, havemade great successes for their improved performance on image
classification and beat the traditional machine learning models in the past few years.

We are employing and exploring the three popular and powerful state-of-the-art
architectures of CNN for classification and identification task of brain tumor using
MRI images of brain tumor dataset—Figshare. A brief and comprehensive framework
of architectures ofAlexNet,Google, andVGG16 is illustrated inFig. 2 for our proposed
automatic brain tumor classification and identification system.

3.2.1 AlexNet

AlexNet [9]was proposed byAlexKrizhevsky in 2012. It has been successfully trained
on ImageNet Large-Scale Visual Recognition Challenge (ILSVRC) dataset [20] that
contains 1.2 million natural images of 1,000 different categories. It was the winner of
ILSVRC 2012. Its architecture encompasses 60 million parameters, 650,000 neurons,
and 630million connections, with five convolutional layers, max-pooling layer at each
three convolution layers, and three fully connected layers. The input layer takes the
image size of 227 × 227.

The first convolutional layer applies 96 filter of 11x11 on the input images at stride
4 in Conv1, whereas 3 × 3 filters are applied at stride 2 in pool1. Likewise, the second
convolutional layer applies 256 filters of 5 × 5. Similarly, 3 × 3 filter size is used in
the third, fourth, and fifth layer with the filters of 384, 384, and 256. ReLU activation
function is applied in each convolution layer. Fully connected layers are fc6 and fc7,
and each has 4096 neurons. Furthermore, output layer fc8 uses softmax classifier that
initiates 1000 neurons according to the classes of ImageNet.

3.2.2 GoogLeNet

GoogLeNet [25] was developed by Szegedy et al. in 2014. It is the first winner of
ILSVRC 2014 trained on ILSVRC dataset. The architecture contains approximately
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(a) AlexNet Architecture

(b) GoogLeNet Architecture

(c) VGGNet Architecture

Fig. 2 The overall framework for proposed automatic brain tumor classification system

6.8 million parameters comprising nine inception modules, two convolutional layers,
fourmax-pooling layers, one convolutional layer for dimension reduction, one average
pooling, two normalization layers, one fully connected layer, and finally a linear layer
with softmax activation in the output. Furthermore, each inception module contains
onemax-pooling layer and six convolutional layers, from that four convolutional layers
are used for dimension reduction. ReLU activation function is applied in all the fully
connected layers, and dropout regularization is used in the fully connected layers.
Moreover, it is more precise than AlexNet on original ILSVRC dataset.
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3.2.3 VGGNet

Another CNN architecture proposed in 2014 was VGGNet16 [24], which secured the
second position in challengewith respect to accuracy but the first runner-up in ILSVRC
2014. The largest VGGNet16 architecture contains roughly 144 million parameters
from 16 convolutional layers, three fully connected layers, five max-pooling layers in
each convolutional layer with size of 2 × 2, and a softmax linear layer in the output.
ReLU activation function is applied in all the fully connected layers, and dropout reg-
ularization is used in the fully connected layers. It is computationally more expensive
CNN model due to the large parameters as compared to AlexNet and GoogLeNet.

3.3 EvaluationMetrics

The effectiveness of proposed brain tumor classification and detection system is eval-
uated by computing evaluation measures based on four major outcomes that are used
to test the classifier: true positives (tp), false positives (fp), true negatives (tn), and
false negatives (fn). The performance of the proposed system is computed using the
following measures:

Accuracy determines the ability to differentiate the brain tumor types correctly. To
estimate the accuracy of a test, we calculate the proportion of true positive and true
negative in all evaluated cases computed by the following relations:

Accuracy = tp + fn

tp + tn + fp + fn
(1)

Sensitivitymeasures the capability of system to accurately classify the brain tumors
and is calculated from the proportion of true positives using relation:

Sensitivity = tp

tp + fn
(2)

Specificity is the capability of themodel to accurately classify the actual brain tumor
type and is computed as:

Specificity = tn

tn + fp
(3)

Precision is the true positive measure and is computed using relation:

Precision = tp

tp + fp
(4)

4 Experimental Setting

In this section, we provide the comprehensive methods of evaluation for proposed
automated brain tumor classification and detection system . We perform the brain
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Fig. 3 Proposed block diagram of brain tumor classification system

tumor classification using T1-weighted contrast-enhanced images from 233 patients
with three kinds of brain tumors. The proposed work employs three pretrained archi-
tectures of CNN, i.e., AlexNet, GoogLeNet, andVGGNet. The framework of proposed
system contains three main phases: preprocessing, feature extraction, and classifica-
tion/detection as illustrated in Fig. 3.

In the first phase, MRI images are enhanced using contrast stretching technique.
Data augmentation techniques like rotation and flipping are applied to generate the
large amount of data for CNN architectures and to reduce over-fitting. In the next
step, three pretrained architectures of CNN on ImageNet dataset [7] are employed
on a target brain tumor dataset—Figshare, to extract the discriminating visual and
distinct features fromMRI images. In this phase, the fine-tune and freeze strategies of
transfer learning are deploying using each CNN architecture (AlexNet, GoogLeNet,
or VGGNet). In final phase, automated features are classified in the last step using
linear classifier in case of freeze layers strategy and using log-softmax layer in case
of fine-tune layers strategy.

4.1 Preprocessing and Data Augmentation

Preprocessing is the data cleaning phase that enhances and improves the input data
for further tasks.

The primary task of medical imaging analysis is to clean the MRI images and to
enhance the contrast. The MRI images were obtained from different modalities that
cause artifacts and false intensity levels. Thus, different machine leaning and image
processing algorithms were deployed to enhance the contrast of MRI images. We
used the contrast stretching algorithm of preprocessing to generate the high-resolution
contrast images. The objective of contrast stretching is to increase the dynamic range
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(a) Orignal Image (b) Contrast Enhanced
Image

Fig. 4 Result of contrast enhancement

of gray levels for low- contrastMRI images. The contrast enhancement ofMRI images
is obtained using the relation:

g(x, y) = f (x, y) − fmin

fmax − fmin
∗ 2bpp (5)

In our case, MRI images of brain tumor dataset—Figshare, are 8 bpp, so levels of
grayscale are 256. The minimum value is 0, and the maximum value is 255. Figure 4
depicts the original and the resultant enhance image.

In order to increase the dataset samples, different variations of images created using
traditional data augmentation techniqueswhich help in reducing the over-fitting during
the CNNs training. We have applied several data augmentation techniques (rotations
and flipping) to increase the training dataset for providing large input space to CNNs.
One of the basic data augmentation techniques is rotation inwhich the input images are
rotated on various angles like angle of 90, 180, and 270. Another employed technique
is flipping in which image is mirrored from vertical and horizontal direction. Figure 5
shows the resultant images of data augmentation.

4.2 CNN-Based Feature Extraction

After data augmentation, an enormous image samples are generated for the training
set, based on which the next step is to extract the discriminative and visual features
to represent their properties. Regarding different feature extraction strategies [19], the
success of deep neural networks is revealed tremendously due to the large spread of
ConvNets. One of the significant achievements of CNNs is the transfer learning that
is deployed where less instances of dataset samples are available like the case under
consideration. In this study, we have deployed three pretrained architectures such as
AlexNet,GoogLeNet, andVGGNet ofCNNfor features extraction. The discriminative



Circuits, Systems, and Signal Processing (2020) 39:757–775 767

(a) Original Image (b) 90° Rotation (c) 180° Rotation

(d) 270° Rotation (e) Horizental Flip (f) Vertical Flip

Fig. 5 Data augmentation applied on a meningioma image

visual features are extracted using two scenarios of transfer learning, i.e., fine-tune and
freeze using each architecture, independently. Fine-tuning of transfer learning is used
to increase the efficiency and productivity of a CNN network by making replacing the
last layers of the pretrained network. In this scenario, ConvNet weights are initialized
from the top of the pretrained network rather than replacing and retraining the whole
architecture of CNN classifier. This scenario works by transferring the weights of the
pretrained network from source dataset (ImageNet) to our target dataset (Figshare).
The common practice is to truncate the softmax layer of the pretrained network and
replace it with our new softmax layer that is relevant to our own problem. In this
paper, using each architecture of CNN, last fully connected layer is replaced with the
neurons of target dataset. In other words, 1000 classes of ImageNet are replaced with
the three classes of brain tumor dataset—Figshare. In the second scenario, pretrained
network layers are frozen andworked as fixed features. This scenarioworks by deriving
the weights of the pretrained model from source dataset (ImageNet), and the desired
features vector can be used from fully connected layers or from convolutional layers
for training a linear classifier (SVM) on the data of target task (Figshare dataset). More
detail is provided in Sect. 5 using each architecture with different experiments.

4.3 Classification and Detection of Brain Tumors

As we extract the useful and important visual features and patterns successfully using
transfer learning techniques, then we perform classification and detection on target
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Table 2 Experimental results of fine-tune AlexNet on test of brain tumor dataset—Figshare

Parameters Original dataset Augmented dataset

Solver name Adam RMS prop SGDM SGDM Adam RMS prop SGDM SGDM

Batch size 10 10 7 10 10 10 7 10

Initial learn rate 1e−4 1e−4 1e−4 1e−4 1e−4 1e−4 1e−4 1e−4

Time (min:s) 49:46 9:19 38:51 13:46 40:20 39:10 50:40 42:36

Validation frequency 300 300 500 300 300 300 500 300

Max epochs 17 8 17 15 14 13 15 7

Test accuracy 95.86 90.41 95.42 97.17 92.93 93.13 94.42 97.39

The numbers in bold show the best results/performing-parameters

dataset. The classification is performed in two ways, i.e., log-softmax layers of pre-
trainednetworkusingfine-tune features and linear classifier (SVM)using freeze layers.
In first scenario, the learned visual features from each CNN architecture are fine-tuned
to target dataset and brain tumor is classified using softmax layer by initializing the
number of neurons to three classes. The parameters of fine-tuning method are not set
by the network itself, and it is essential to set and optimize these parameters according
to the results of training the MRI images in improving the performance. In our case,
stochastic gradient descent momentum (SGDM) is trainedwith 0.9momentum in each
architecture. The value of batch size is set to 10 with the initial learn rate of 1e−4 and
the maximum epochs of 30. The number of best epochs is varied according to valida-
tion criteria with the validation frequency of 300 iterations. The highest accuracy of
best network is achieved up to 98.69% using VGG16 on epoch 7. In the second sce-
nario of classification, the freeze layers (different ConvNets or fully connected layers)
of pretrained networks are passed to the linear classifier, i.e., support vector machine
(SVM). Different feature vectors from each architecture are passed to the SVM for
the brain tumor classification, independently. In case of AlexNet, Conv5 features are
more discriminative, abstract, and more expressive; thus, the dimensions are unified
through vectorization and fed to the SVM. The best network is attained with highest
of 96.73% accuracy in this case. The GoogLeNet inception layers are explored and
vectorized through activation process for unifying dimension. In this case, highest
accuracy of 97% is achieved using inception-4e-output features. Similarly in case of
VGG16, Fc7 features are more expressive thus passed to the SVM for classification.
The highest accuracy in case is 89.76%. The detailed results’ analysis is given in next
section.

5 Comparative Analysis, Results, and Discussion

As discussed earlier, the experimental study of the system is carried out using the
publicly free available brain tumor dataset— Figshare [4], comprising 3064 brain
MRI slices with 708 slices for meningioma tumor, 1426 for glioma tumor, and 930
for pituitary tumor. We used 70% of dataset in training, 15% for validation, and 15%
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Table 3 Experimental results of freeze AlexNet on test set of brain tumor dataset—Figshare

Freeze layer Accuracy (%) Sensitivity (%) Specificity (%) Precision (%)

Comparative analysis of accuracy using different features vector

Conv1 49.67 54.32 76.24 55.67

Conv2 56.21 49.19 75.27 56.97

Conv3 62.54 68.13 82.96 70.55

Conv4 81.92 79.33 90.16 80.84

Conv5 94.79 93.78 97.30 94.37

FC6 95.44 94.96 97.53 95.30

FC7 91.21 90.48 95.48 90.36

Table 4 Experimental results of fine-tune GoogLeNet on brain tumor dataset— Figshare

Parameters Original dataset Augmented dataset

Solver name Adam RMS prop SGDM SGDM Adam RMS prop SGDM SGDM

Batch size 10 10 7 10 10 10 7 10

Initial learn rate 1e−4 1e−4 1e−4 1e−4 1e−4 1e−4 1e−4 1e−4

Time (min:s) 14:15 13:59 27:51 21:40 40:20 46:47 60:45 79:25

Validation frequency 300 300 500 300 300 300 500 500

Max epochs 5 6 10 19 6 9 7 7

Test accuracy 95.61 91.07 92.59 94.55 96.60 92.89 94.39 98.04

The number in bold shows the best results/performing-parameters

Table 5 Experimental results of freeze GoogLeNet on test set of brain tumor dataset—Figshare

Freeze layer Accuracy (%) Sensitivity (%) Specificity (%) Precision (%)

Comparative analysis of accuracy using different features vector

Inception 3a-Output 46.62 51.23 55.65 45.65

Inception 3b-Output 55.99 63.26 80.58 71.64

Inception 4a-Output 81.92 75.24 89.40 83.86

Inception 4b-Output 94.55 93.40 97.16 94.38

Inception 4c-Output 91.94 90.20 95.92 90.85

Inception 4d-Output 95.77 96.38 95.74 94.70

Inception 4e-Output 95.42 95.38 97.74 94.69

Inception 5a-Output 91.94 90.09 95.69 91.41

Inception 5b-Output 93.46 95.38 97.74 94.30

for testing. Three studies are carried out to evaluate the efficiency and performance of
three CNN architectures named as AlexNet, GoogLeNet, and VGG16. In each study,
two cases of transfer learning techniques such as fine-tune and freeze are explored
in depth. Series of experiments conducted in both cases of each study independently
and compared their results in Tables 2, 3, 4, 5, 6, 7. We explored different parameters
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Table 6 Experimental results of fine-tune VGG16 on test set of brain tumor dataset—Figshare

Parameters Original dataset Augmented dataset

Solver name Adam RMS prop SGDM SGDM Adam RMS prop SGDM SGDM

Batch size 10 10 7 10 10 10 7 10

Initial learn rate 1e−4 1e−4 1e−4 1e−4 1e−4 1e−4 1e−4 1e−4

Time (min:s) 19:4 15:1 10:45 17:52 40:20 39:10 50:40 89:30

Validation frequency 300 300 500 300 300 300 500 300

Max training epochs 7 7 4 8 14 13 15 7

Test accuracy 88.24 91.07 91.29 95.42 93.93 95.13 95.42 98.69

The numbers in bold show the best results/performing-parameters

Table 7 Experimental results of freeze VGG16 on test set of brain tumor dataset—Figshare

Freeze layer Accuracy (%) Sensitivity (%) Specificity (%) Precision (%)

Comparative analysis of accuracy using different features vector

Conv1-1 43.62 51.23 55.65 43.65

Conv2-1 50.90 67.70 66.99 50.00

Conv3-1 65.99 63.26 80.58 71.64

Conv4-1 75.90 73.31 86.95 75.36

Conv5-1 79.69 80.78 88.98 79.01

FC6 88.89 87.87 94.49 87.47

FC7 89.76 87.81 94.64 88.67

The number in bold shows the best results/performing-parameters

and reported the best network with the optimal parameters as shown in Tables 2, 4,
6. These tables show trained work of each model with different solvers and keep the
default parameters, i.e., 30 epochs, 0.9 momentum, positive scalar for initial learning
rate, 0.0001 L2 regularization, 0.1 learn rate drop factor, and 10 learn rate drop period.
Each architecture of CNN in each study uses different numbers of parameters and
features depending on the depth of the convolution layer and the fully connected
network.

In first study, AlexNet is deployed to explore the transfer learning techniques as
depicted in Fig. 2. In case of fine-tune approach of the pretrained AlexNet, we have
evaluated number of parameters to get best performance of network and get highest
accuracy. We have trained the network with three basic solvers such as sgdm, adam,
and rms prop with different batch sizes and validation frequencies as reported in Table
2. The best network produces highest accuracy of 97.39% when trained with SGDM
with the batch size of 10, validation frequency of 300. In case of freeze approach
of the pretrained AlexNet, convolutional and fully connected layers are investigated
for feature extraction as illustrated in Table 3. We have extracted the features from
convolutional layers (Conv1, Conv2, Conv3, Conv4, and Conv5) that contain generic
representation of source dataset’s images (like edge, blob, etc.). We also extracted
features from fully connected layers (FC6 and FC7) that represent a more detailed
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and specific features of the images of source dataset (ImageNet). The best results are
reported using Conv5 of AlexNet having 95.46% accuracy.

In second study, GoogLeNet model is employed to investigate the transfer learn-
ing techniques as illustrated from Fig. 2. Eight series of experiments are conducted
using fine-tuning technique of the pretrained GoogLeNet by varying the parameters
as shown in Table 4. The highest identification rate of 98.04% is achieved when the
pretrained GoogLeNet is trained with SGDM solver with the batch size of 10. Fur-
thermore in case of freeze technique of the pretrained GoogLeNet, inceptions layers
are investigated to extract the features and to explore which layers outperform the
network as reported in Table 5. Nine inception layers are vectorized, and the extracted
features from vectorization are passed to the SVM for classification. We have realized
95.77% accuracy using inception-4d-output layer.

In third study, VGG16 architecture of CNN is implemented to explore the effec-
tiveness of the transfer learning techniques as shown in Fig. 2 on the given data. Table
6 shows accuracy of different networks using different solvers and other parameters
using fine-tuned of VGG15 classifier. The VGG16 fine-tuned-based best network has
got on epoch 7. In this case, highest identification rate of 98.69% is achieved when the
network is trained with SGDM solver, batch size of 10, and maximum epoch of 30.
In case of freeze of the pretrained VGG16, convolutional and fully connected layers
are investigated for feature extraction as illustrated in Table 7. The best with network
with accuracy of 89.77% is attained using FC7 layer.

By analyzing and comparing the results of each architecture using fine-tuned tech-
nique as depicted in Fig. 6, we could observe that all architectures of convolutional
neural networks outperform with the marginal difference. However, the highest accu-
racy is attained using VGG16 out of the three CNN architectures by generalizing the
brain tumor images. The VGG16 network with fine-tuned approach achieved 98.69%
accuracy on test set, 98.79% on validation set, and 99.02% on train set (Fig. 6c). The
best network achieved when the validation criteria meet at epoch 7 at 8500 iterations
with SGDM with batch size of 10 and training stopped automatically.

We have investigated and compared the evaluation of proposed systemwith existing
brain tumor classification and detection-based systems on brain tumor dataset—
Figshare, as given in Table 1. A significant comparison of our proposed system is
possible with researches of Afshar et al. [3] and Abiwinanda et al. [2] as deliberated
in Table 8. As they provided the insight work of brain tumors classification using deep
learning model-based automated features, Afshar et al. [3] deployed model Capsule
networks (CapsNets) for the classification of brain tumor. They vary the feature maps
in the convolutional layer of CapsNet in order to increase accuracy. They achieved
highest accuracy of 86.56%using 64 featuremapswith one convolutional layer ofCap-
sNet. However, Abiwinanda et al. [2] employed five different architectures of CNN
for the classification of brain tumors and reported highest accuracy on architecture 2.
The architecture 2 comprises of two convolutional layers, ReLU layer, and max-pool
followed by 64 hidden neurons. They achieved 84.19% on validation set and 98.51%
on training set, respectively. The literature divulges that transfer learning techniques
using pretrained deep learning models had not been explored yet. Our work is the
pioneer study to explore the transfer learning techniques using three renowned and
pioneer pretrained CNN architectures. To increase the size of training dataset, we have
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(a)AlexNet-Finetune

(b)GoogLeNet-Finetune

(c) VGG16-Finetune

Fig. 6 Progress graph of fine-tune approach of transfer learning using train set and validation set of brain
tumor dataset— Figshare
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Table 8 Comparison with the closely related existing systems

References Features Model Accuracy (%)

Afshar et al. [3] Model based CapsNet 86.56

Abiwinanda et al. [2] Model based CNN 84.19

Proposed systems Fine-tune AlexNet Log-based softmax 97.39

Fine-tune GoogLeNet 98.04

Fine-tune-VGG16 98.69

Freeze AlexNet-Conv5 95.77

Freeze GoogLeNet-inception-4e SVM 95.44

Freeze-VGG16-Conv5-1 89.79

The numbers in bold show the best results/performing-parameters

employed several techniques of data augmentation (rotation and flipping) with raw
images. We have investigated the number of parameters using fine-tune of pretrained
CNN networks. In reusing of freeze features of transfer learning, we have explored
the features at each convolutional layer, inception layer and fully connected layer in
three studies composed of architectures of AlexNet, GoogLeNet, and VVG16. Our
proposed framework reveals the promising results on MRI images of Figshare using
different techniques of data augmentation and as compared to the existing systems in
the literature as shown in Table 8. We have attained the highest accuracy of 98.69%
using fine-tuned VGG16 among fine-tune networks of AlexNet and GoogLeNet. In
case of freeze technique of transfer learning, the highest accuracy 95.77% uses freeze
Conv5–AlexNet layer as compared to other layers of AlexNet and also to all layers of
architectures of GoogLeNet and VGG16. We have presented a pioneer study for brain
tumors classification using brain tumor dataset—Figshare, and achieved the highest
accuracy up to 98.69% using fine-tuned VGG16 approach.

6 Conclusion

In summary, the presented work is a pioneer study in the domain of brain tumor clas-
sification using transfer learning and deep CNN architectures. We applied transfer
learning techniques using natural images of ImageNet dataset (source task) and clas-
sified the brain tumor type from glioma, meningioma, and pituitary using Figshare
dataset (target task). We deployed three powerful deep CNN architectures (AlexNet,
GoogLeNet, and VGGNet) on MRI slices of Figshare to identify the tumor type. To
evaluate and explore the performance of deep networks, two studies of transfer learn-
ing (fine-tune and freeze) are conducted to extract the discriminative visual features
and patterns fromMRI slices. We have attained the highest accuracy of 98.69% using
fine-tune VGG16 network among all experiments.

Although this paper explored three architectures of deep CNN and transfer learning
approaches for brain tumor in the medical imaging domain, still much remains to be
investigated. In future, we explore other essential powerful deep neural network’s
architectures for brain tumor classification with less time complexity.
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