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Abstract
To improve the performance of the diffusion Huber-based normalized least mean
square algorithm in the presence of impulsive noise, this paper proposes a distributed
recursion scheme to adjust the thresholds. Because of the decreasing characteristic
of the thresholds, the proposed algorithm can also be interpreted as a robust diffu-
sion normalized least mean square algorithm with variable step sizes so that it has
not only fast convergence but also small steady-state estimation error. Based on the
contaminated Gaussian model, we analyze the mean square behavior of the algorithm
in impulsive noise. Moreover, to ensure good tracking capability of the algorithm for
the sudden change of parameters of interest, a control strategy is given that resets the
thresholds with their initial values. Simulations in various noise scenarios show that
the proposed algorithm performs better than many existing diffusion algorithms.
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1 Introduction

Distributed adaptive technique is an emerging and promising topic to estimate param-
eters of interest from the streaming data collected at nodes (or agents) of wireless
sensor networks [42,43]. In distributed adaptive algorithms, each node is allowed to
estimate parameters of interest in an adaptive loop and to share its local estimate with
the neighboring nodes each other, obtaining better estimation performance than the
no cooperation way among nodes. In contrast with the centralized processing over
networks, on the other hand, the distributed processing does not require a power-
ful central processor, thus being more flexible and saving communication bandwidth
resources. Due to these advantages, distributed adaptive algorithms have been used in
a variety of applications such as the frequency estimation in power grids [22,26], the
spectrum estimation in cognitive radio networks [17,21,34], the source localization
over unmanned aerial vehicle networks [2,55], and the compressed estimation [50].

According to different cooperation strategies between interconnected nodes, exist-
ing distributed adaptive algorithms can be categorized as incremental [27,51],
consensus [23,46], and diffusion [1,8,13,25,30,56] types. For the incremental type,
a Hamiltonian cycle path [27] that runs across all the nodes must be determined and
retained until the final estimate is achieved. The incremental type has the lowest com-
munication burden among these three types. However, maintaining such a path is very
difficult especially in large-scale networks, since it does not permit any failure of
nodes and links. Both consensus and diffusion types have no Hamiltonian cycle, due
to the fact that interconnected nodes exchange information each other. The consensus
strategy enforces a property to the network that all the nodes obtain the same estimate.
Nonetheless, studies in [47] have revealed that the stability of the diffusion algorithm
does not rely on the network topology so that it is more stable than the consensus algo-
rithm. Also, the diffusion algorithm exhibits better performance than the consensus
algorithm in terms of convergence rate and steady-state estimation error (i.e., estima-
tion accuracy). Comparatively speaking, therefore, the diffusion distributed strategy
has got more attention. The diffusion least mean square (dLMS) algorithm is one of
themost popular distributed algorithms, due to its simplicity and stable performance in
Gaussian noise environment [8]. However, the range of step sizes ensuring the dLMS
convergence is dependent of the covariance matrix of input signal. Benefited from the
advantage of the normalized LMS (NLMS) to weaken such dependence, the diffusion
NLMS (dNLMS) algorithm was proposed [20]. To overcome the trade-off between
fast convergence rate and low steady-state estimation error for the dLMS and dNLMS
algorithms, many variable step-size (VSS) variants have been promoted, see [20,24]
and references therein.

In signal processing area, Gaussian noise is concerned frequently by researchers.
However, the noisemay also be non-Gaussian, which includes not only Gaussian noise
but also impulsive noise [6,18,33]. Although realizations of impulsive noise are sparse
and random, the amplitude is far higher than that of Gaussian noise; in this case, the
noise is best modeled by heavy-tailed distributions, e.g., the contaminated Gaussian
(CG) and the α-stable distributions. Such noise scenarios exist in many applications
such as echo cancelation, underwater acoustics, audio processing, communications,
cognitive radio, and extreme learning [6,9,10,18,33,58,59]. In distributed estimation,
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even if impulsive noise appears only at one node in the network, its adverse influence
could be propagated over the entire networkdue to information exchange amongnodes.
That is to say, the dLMS/dNLMS algorithms suffer from performance degradation in
impulsive noise, owing to the squared error-based minimization criteria. In standalone
adaptive filter, several approaches have been presented to deal with impulsive inter-
ferences [11,12,16,44,57]. At present, some of these approaches have been used in
distributed networks to develop robust distributed adaptive algorithms in combating
impulsive noise.

In [49], the diffusion least mean pth power (dLMP) algorithm by minimizing the
cost function consisting of the p-power of the output errors at nodes was proposed,
where the parameter p, 1 ≤ p < 2, controls the robustness of dLMP against impul-
sive noise. As a special case of the dLMP with p = 1, the diffusion sign error LMS
(dSE-LMS) algorithm [37] provides good robustness in resisting impulsive noise,
while the disadvantage is slow convergence. Based on the weighted combination of
the preselected sign-preserving basis functions, the diffusion error nonlinearity LMS
(dEN-LMS) algorithm was proposed [40]; however, the basis functions need to be
chosen properly according to noise distributions. In [31], the diffusion maximum cor-
rentropy criterion (dMCC) algorithm was presented by maximizing the cost function
defined as the correntropy of error signals. This algorithm is able to suppress impulsive
noise, but this capability relies on the proper choice of the kernel width parameter.
By detecting whether impulsive noise occurs or not, reference [3] proposed a robust
variable weighting coefficients dLMS (RVWC-dLMS) algorithm, which rejects the
cooperation with the nodes at which impulsive noise occurs. Due to the robustness
of Huber function against outliers, in [14], it has been used to devise a robust dif-
fusion projection algorithm by resorting to the adaptive projected subgradient rule;
and in [29], the diffusion Huber-based NLMS (dHNLMS) algorithm was proposed
by resorting to the gradient-descent (GD) rule. However, setting the threshold in the
Huber function requires the prior knowledge of the noise distribution. In [5], by min-
imizing the pseudo-Huber-based cost function over nodes in the network, a robust
dLMS algorithm was developed, while its performance needs to choose properly the
threshold-like parameter. It is worth noting that the above robust diffusion algorithms
involve the choice of step sizes which leads to a performance balance problem between
convergence rate and steady-state estimation error. For the sake of addressing this
problem, a diffusion robust VSS LMS (dRVSS-LMS) algorithm was developed based
on the Huber function [19], but its implementation requires the prior knowledge of
background and impulsive noises.

In this paper, we propose a variable threshold (VT) dHNLMS algorithm, referred
to as VT-dHNLMS. The thresholds are recursively adjusted with the diffusion coop-
eration of neighboring nodes and with the diminishing property, which ensures good
robustness against impulsive noise. Furthermore, this algorithm can be considered as a
variable step-size dNLMS algorithm, with fast convergence and low steady-state esti-
mation error simultaneously. We provide the convergence and steady-state analyses
for the algorithm in the presence of impulsive noise. To recover the tracking capabil-
ity of the VT-dHNLMS algorithm when parameters of interest experience a sudden
change, a diffusion cooperation-based nonstationary control (NC) method is devised
that resets the thresholds. Although we have discussed similar idea for adjusting the
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Fig. 1 Schematic diagram of
diffusion network

thresholds in the incremental distributed NLMS algorithm [51], here the extension to
the diffusion distributed algorithm is not straightforward. Similar approach has also
been studied by us to improve the performance of diffusion recursive least squares
(dRLS) algorithm in impulsive noise [54], while the dRLS algorithm requires high
computational complexity. Thus, it is necessary to further generalize the VT approach
to improve the dHNLMS performance, with low-complexity.

This paper is organized as follows. In Sect. 2, the dHNLMS algorithm is intro-
duced. Then, in Sect. 3, the VT-dHNLMS algorithm is proposed. The convergence
and steady-state behaviors of the proposed algorithm are analyzed in Sect. 4. In Sect. 5,
simulation results in various noise scenarios are presented to verify the effectiveness
of the proposed algorithm. Finally, conclusions are given in Sect. 6.

The notations adopted in this paper include (·)T for the transpose, E{·} for the
expectation, ‖ · ‖2 for the l2-norm of a vector, ‖ · ‖∞ for the ∞-norm, col{·} for a
column vector formed by stacking its arguments on top of each other, diag{·} for the
(block) diagonal operation, Tr(·) for the trace of a matrix, and ⊗ for the Kronecker
product. Also, we denote the identity matrix of size M × M as IM .

2 dHNLMS Algorithm

Consider a network that consists of N nodes distributed in a geographic region as
shown in Fig. 1, where Nk is the set of nodes with a direct link to node k (including
itself) and known as the neighborhood of node k. The links among nodes indicate that
these nodes can communicate with each other. At every time instant i , every node k
has access to an M×1 input regressor uk(i) and a scalar measurement dk(i) following
the linear model:

dk(i) = uTk (i)wo + vk(i), (1)

where all the nodes in the network are to estimate the M ×1 vector wo. The model (1)
has been widely used in applications [41,42].

For estimatingwo, the well-knownmean square error (MSE) criteria over networks
are defined as

w = min
w

N∑

k=1

E
{
(dk(i) − uTk (i)w)2

}
. (2)
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In the light of the diffusion cooperation of interconnected nodes, (2) equivalently
becomes that every node k solves the following estimation problem:

wk = min
wk

J lock (wk),

J lock (wk) =
∑

m∈Nk

cm,k E
{
(dm(i) − uTm(i)wk)

2
}

,
(3)

for k = 1, . . . , N . The combination coefficients {cm,k} in (3) are nonnegative and
satisfy:

∑

m∈Nk

cm,k = 1, and cm,k = 0 if m /∈ Nk, (4)

where cm,k accounts for the weight that node k assigns to the data received from its
neighboring node m. In general, {cm,k} are determined by either static rules (e.g., the
Metropolis rule [45]) which keep them constant, or adaptive rules [35]. From (3), both
dLMS and dNLMS algorithms can be derived. Note that, the expectation term in (3)
is normalized by input regressors for the dNLMS algorithm, which show good perfor-
mance in Gaussian additive noise. In many practical situations, however, the additive
noise vk(i) at node k may compose of the Gaussian component and the impulsive
component with low occurrence probability. In this scenario, the data {uk(i), dk(i)}
have more outliers so that the MSE criteria are not favorable. Therefore, in order to
seek a good estimate of wo in impulsive noise, the dHNLMS algorithm solves the
Huber function-based estimation problem:

wk = min
wk

J lock (wk),

J lock (wk) =
∑

m∈Nk

cm,k E

{
ϕ

(
dm(i) − uTm(i)wk

‖um(i)‖2
)}

,
(5)

where the Huber function ϕ(·) is given by [38]

ϕ(rm) =
{
r2m/2, if |rm | ≤ √ξ
√

ξ |rm | − ξ/2, if |rm | >
√

ξ,
(6)

and ξ > 0 denotes the threshold. As can be seen in (6), the Huber function can be
interpreted as a piecewise combination of the MSE criteria (when |rm | ≤ √

ξ ) and
the sign criteria (when |rm | >

√
ξ ). The sign criteria are a popular benchmark in

resisting impulsive noise [32,36], which has prompted some robust algorithms such
as the dSE-LMS.

By applying the instantaneous GD principle into (5) and following the Adapt-then-
Combine (ATC) version of diffusion cooperation strategy among nodes, the update
equations of the ATC dHNLMS algorithm are described as [29]:
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ψk(i + 1) = wk(i) + μ

⎧
⎪⎪⎨

⎪⎪⎩

ek(i)uk(i)

‖uk(i)‖22
, if |ek(i)| ≤ √ξ

√
ξ
sign(ek(i))uk(i)

‖uk(i)‖2 , if |ek(i)| >
√

ξ,

(7)

wk(i + 1) =
∑

m∈Nk

cm,kψm(i + 1), (8)

where

ek(i) = dk(i) − wT
k (i)uk(i) (9)

is the output error of node k, sign(x) is the signum function of variable x , and μ > 0
is the constant step size.

It is clear that the ATC dHNLMS algorithm consists of an adaptation step (7) and
a combination step (8). In the adaptation step, each node k updates the estimate from
wk(i) to an intermediate estimate ψk(i + 1) using its own data {dk(i), uk(i)}. In the
combination step, the intermediate estimates {ψm(i + 1)} from the neighborhood of
node k are linearly fused based on the combination coefficients {cm,k}, thereby yielding
a more reliable estimatewk(i +1). Note that, the Combine-then-Adapt (CTA) version
of the dHNLMS algorithm can also be obtained in a straightforward way, namely
by reversing the orders of (7) and (8). However, we only discuss the ATC diffusion
implementation for brevity, since it generally outperforms the CTA version [8,43].
Hereafter, the notation ATC is omitted.

3 Proposed Algorithm

In this section, we develop the VT-dHNLMS algorithm and analyze the computational
complexity.

3.1 AlgorithmDesign

The adverse effect of impulsive noise on the dHNLMS performance occurs in the
adaptation step (7). Specifically, the robustness of the algorithm against impulsive
noise is determined by the preselected threshold ξ . To remedy this flaw, we propose
to replace ξ with the time-varying threshold ξk(i), thus (7) becomes

ψk(i + 1) = wk(i) + μ

⎧
⎪⎪⎨

⎪⎪⎩

ek(i)uk(i)

‖uk(i)‖22
, if |ek(i)| ≤ √ξk(i)

√
ξk(i)

sign(ek(i))uk(i)
‖uk(i)‖2 , if |ek(i)| >

√
ξk(i).

(10)

From (10), we are able to obtain the following relation:
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∥∥ψk(i + 1) − wk(i)
∥∥2
2 = μ2 min

[
ξk(i),

e2k (i)

‖uk(i)‖22

]

(a)≤ ξk(i),

(11)

where 0 < μ ≤ 1 is for satisfying the inequality (a). It means that for every node k, the
updated distance from wk(i) to ψk(i) in the adaptation (10) is limited to at most the
amount of the threshold ξk(i) for any disturbance (including impulsive noise). There-
fore, ξk(i) controls not only the robust level of the algorithm to suppress impulsive
noise but also its convergence behavior. Generally, it is desired to have relatively large
values of ξk(i) at the beginning of the adaptation, thereby leading to a good initial speed
of convergence. Also, it should not be too large to guarantee the robust performance
against impulsive noise. On the other hand, at the steady-state stage of the algorithm,
smaller values of ξk(i) lead to a lower estimation error. Hence, according to the above
requirements, a simple and effective way is that the adaptation of ξk(i) depends on the
maximum updated distance of the estimates shown in (11). Also, taking advantage of
the diffusion cooperation for ξk(i), we propose to adaptively update it as follows:

ζk(i + 1) = υξk(i) + (1 − υ)μ2 min

[
e2k (i)

‖uk(i)‖22
, ξk(i)

]
, (12)

ξk(i + 1) =
∑

m∈Nk

cm,kζm(i + 1), (13)

whereυ is the forgetting factorwith 0 < υ < 1 and ζk(i) denotes the intermediate vari-
able of ξk(i). In (12), at every node k, ξk(i) can be initialized as ξk(0) = σ 2

d,k/(Mσ 2
u,k),

where σ 2
d,k and σ 2

u,k are the powers of signals dk(i) and uk(i), respectively. As a result,
(8), (9), (10), (12) and (13) constitute theVT-dHNLMSalgorithm, and for claritywhich
is summarized in Table 1 after rearranging (10).

Remark 1 Intuitively, from (10) we can get some insights. In most of time instants,
impulsive noise does not happen due to small probability, which means (|ek(i)| /
‖uk(i)‖2) ≤ √

ξk(i) and the VT-dHNLMS algorithm works as a dNLMS algorithm
with the fixed step size μ ≤ 1. Whenever impulsive noise appears, due to its large
amplitude we have (|ek(i)| /‖uk(i)‖2) >

√
ξk(i). In this case, (10) reduces to

ψk(i + 1) = wk(i) + μk(i)sign(ek(i))uk(i),

which reveals that the VT-dHNLMS algorithm becomes the dSE-LMS algorithm with
time-varying step sizes μk(i) = μ

√
ξk(i)/‖uk(i)‖2, thereby providing good robust-

ness against impulsive noise. Furthermore, ξk(i) given in (12) and (13) is decreasing
as the algorithm converges, which further ensures the robustness of the algorithm. In
a nutshell, the proposed VT-dHNLMS algorithm has good anti-jamming capability
by switching automatically modes from the dNLMS to the dSE-LMS when impulsive
noise appears.
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Table 1 Summary of the VT-dHNLMS algorithm

Initialization: wk (0) = 0, ξk (0) = σ 2
d,k/(Mσ 2

u,k )

Parameters: 0 < υ < 1, and 0 < μ ≤ 1

for iteration i do

Adaptation step:

for each node k do

ek (i) = dk (i) − wT
k (i)uk (i)

μk (i) = μmin
[√

ξk (i)
‖uk (i)‖2|ek (i)| , 1

]

ψk (i + 1) = wk (i) + μk (i)
ek (i)uk (i)
‖uk (i)‖22

ζk (i + 1) = υξk (i) + (1 − υ)μ2 min

[
e2k (i)

‖uk (i)‖22
, ξk (i)

]

end

Combination step:

for each node k do

wk (i + 1) = ∑

m∈Nk

cm,kψm (i + 1)

ξk (i + 1) = ∑

m∈Nk

cm,kζm (i + 1)

end

end

On the other hand, we rearrange (10) as:

ψk(i + 1) = wk(i) + μk(i)
uk(i)ek(i)

‖uk(i)‖22
, (14)

where

μk(i) = μmin

[√
ξk(i)‖uk(i)‖2

|ek(i)| , 1

]
. (15)

Evidently, (14) and (15) illustrate that the proposed algorithm can be interpreted as
a modified dNLMS algorithm with time-dependent step sizes. Moreover, whenever
impulsive noise occurs, (15) will immediately force the step size μk(i) to a tiny value.
It is well-known that for the GD-based adaptive algorithms, reducing the step size
is also able to mitigate the adverse influence of impulsive noise on the performance
of algorithms [44,52]. In an ideal case, we should set μk(i) = 0 for the occurrence
instant of impulsive noise meaning that the adaptation is halted. In addition, the step
sizes given by (15) are always limited in the range of 0 to μ and go toward zero as
i → ∞ since ξk(i) converges to zero as i → ∞ (see “Appendix A” for the proof).
Therefore, (15) is a novel VSS approach (which can also be observed in Fig. 7) so that
the proposed VT-dHNLMS algorithm not only speeds up the convergence but also
reduces the steady-state estimation error.
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Table 2 The NC method

Initialization: Θold,k = Θnew,k = 0, σ̂e,k = 0

if i = nVt , n = 0, 1, 2, . . .

Ae,k (i) =
[

e2k (i)

‖uk (i)‖22
,

e2k (i−1)

‖uk (i−1)‖22
, . . . ,

e2k (i−Nw+1)

‖uk (i−Nw+1)‖22

]

σ̂e,k = κσ̂e,k + (1 − κ)median(Ae,k (i))

Θnew,k = ∑

m∈Nk

cm,k σ̂e,m

Δk (i) = Θnew,k−Θold,k
ξk (i)

end

if Δk (i) > lth
ξk (i + 1) = ξk (0)

else if Θnew,k > Θold,k

ξk (i + 1) = ξk (i) + (Θnew,k − Θold,k )

else

ζk (i + 1) = υξk (i) + (1 − υ)μ2 min

[
e2k (i)

‖uk (i)‖22
, ξk (i)

]

end

ξk (i + 1) = ∑

m∈Nk

cm,kζm (i + 1)

Θold,k = Θnew,k

Remark 2 The adaptation of ξk(i)given by (12) and (13) is the decreasing functionwith
respect to the iteration i . Accordingly, after wo changes suddenly, ξk(i) will continue
to become small rather than a desired large value so that the convergence of the
algorithm again to the steady-state (i.e., the tracking capability) is poor. To overcome
this limitation, by referring to our previous NC method in [54], we take advantage of
similar method to reset ξk(i) for adapting the sudden change of wo. Table 2 gives this
method, whereΘold,k denotes the past value ofΘnew,k , and 0 < κ < 1 is the weighting
factor. As one can see, if Δk(i) > lth meaning that wo undergoes a sudden change,
ξk(i) will be reset as ξk(0), where lth > 0 is predefined. Differing from [54], we here
employ the median operator, median(·), to remove the abnormal data disturbed by
impulsive noise from the sliding data window with the length of Nw so that Δk(i)
is insensitive to impulsive noise. It is stressed that larger Nw leads to a more robust
Δk(i) but requires a higher complexity, so Nw should be properly chosen. SinceΔk(i)
is computed only every Vt iterations, large Vt reduces the computational cost but with
delayed tracking capability; typically, good choice is Vt = �M with 1 � ρ � 3.
Note that these parameters in the NC method are not coupled each other, i.e., each
parameter plays a specific role, and thus, their choices are easy.

3.2 Computational Complexity

Table 3 compares the computational complexity of the dSE-LMS [37], dNLMS,
VSS-dNLMS presented in [20], dHNLMS [29] algorithms with that of the proposed
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Table 3 Computational complexity of algorithms for node k per iteration

Algorithms Multiplications Additions Divisions Comparisons Square roots Medians

dSE-LMS M |Nk | + 2M M |Nk | + M – – – –

dNLMS M |Nk | + 3M + 1 M |Nk | + 2M 1 – – –

VSS-dNLMS (M+1)|Nk |+
3M + 7

(M+1)|Nk |+
2M + 3

2|Nk | + 3 – – –

dHNLMS M |Nk | + 3M + 3 M |Nk | + 2M 2 1 1 –

VT-dHNLMS (M+1)|Nk |+
3M + 6

(M + 1)|Nk | +
2M

2 2 1 –

NC method (|Nk | + 2)/Vt |Nk |/Vt + 2 1/Vt 2 – 1/Vt

VT-dHNLMS algorithm for node k per iteration, where |Nk | denotes the cardinality
ofNk . Compared with the dHNLMS, the additional complexity of the proposed algo-
rithm arises from equations (12) and (13), which requires |Nk | + 3 multiplications,
|Nk | additions, and 1 comparison. Also, the proposed algorithm requires extra com-
munication cost for transmitting ζk to its neighbors, i.e., |Nk | − 1 scalars per node k.
In comparison with the VT-dHNLMS algorithm, the computational complexity of the
NC method is negligible due mainly to Vt ≥ M .

4 Performance Analyses

4.1 Stability Analysis

From (15) and inequality (11), we obtain, for any node k:

μk(i) ≤ μ ≤ 1 and E {μk(i)} ≤ μ ≤ 1. (16)

This means that μ is the upper bound of the time-varying step sizes. Remark 1 has
analyzed whenever impulsive noise happens, μk(i) will become very small for pre-
venting the proposed algorithm from divergence. Hence, we can indirectly determine
the stability of the proposed algorithm from the convergence condition of the dNLMS
algorithm with constant step sizes. For diffusion algorithms with only exchanging the
estimates between nodes [42,43,47], there is a conclusion that the diffusion algorithm
is stable only if each node is stable to independently perform the estimation task using
its own adaptation rule. Following this conclusion, the convergence condition of the
dNLMS algorithm is that the step sizes μk for nodes k = 1, . . . , N satisfy1

0 < μk < 2, (17)

which is also the step-size range of independently running the NLMS algorithm per
node. In addition, references [15,41] have been proved that the step size μ = 1 leads

1 The proof is omitted due to its simplicity.
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to the fastest convergence of the NLMS algorithm; likewise, we can simply extend
it to the dNLMS algorithm. It follows that the proposed VT-dHNLMS algorithm is
stable. Moreover, we recommend μ = 1 for the proposed algorithm to obtain the
fastest initial convergence.

In the sequel, we study the steady-state and evolution behaviors of the proposed
algorithm with μ = 1 in impulsive noise.

4.2 Steady-State Behavior

Let us suppose the unknown vectorwo to be stationary. Then, subtractingwo from (10)
and applying (12), we have the following equation:

ψ̃k(i + 1) = w̃k(i) −
√

ζk(i + 1) − υξk(i)

1 − υ

uk(i)sign(ek(i))
‖uk(i)‖2 , (18)

where w̃k(i) � wo − wk(i) and ψ̃k(i) � wo − ψk(i) denote the estimation error
vector and the intermediate estimation error vector at node k, respectively. Similarly,
using wo we change the combination step (8) to

w̃k(i + 1) =
∑

m∈Nk

cm,kψ̃m(i + 1). (19)

Equations (18) and (19) will be the start point of the following analyses for the VT-
dHNLMS algorithm. For convenience of analysis, some commonly used assumptions
are given.

Assumption 1 The input regressors {uk(i)} are zero mean with covariance matrices
Rk = E{uk(i)uTk (i)} and spatially independent.

Assumption 2 The input regressors {uk(i)} are independent of the additive noises
{vm( j)} for all k,m, i , and j .

Assumption 3 The input regressors {uk(i)} are independent of the estimates {wm( j)}
for j ≤ i and all k,m. It is so-called independence assumption, which is customary
for (distributed) adaptive algorithms [41,42,53].

Assumption 4 The additive noise vk(i) is described by the CG process, i.e., vk(i) =
θk(i) + ηk(i). The background noise θk(i) is a white Gaussian process with zero
mean and variance σ 2

θ,k . The impulsive noise ηk(i) is given by the Bernoulli–Gaussian
process, i.e., ηk(i) = bk(i)gk(i), where bk(i) is a Bernoulli process with P[bk(i) =
1] = pr ,k and P[bk(i) = 0] = 1 − pr ,k , and gk(i) is a zero-mean white Gaussian
process with variance σ 2

g,k = �σ 2
θ,k, � 
 1. Note that, pr ,k is also considered as the

probability of occurring impulsive noise. Accordingly, the mean and variance of vk(i)
are zero and σ 2

v,k = pr ,k(� + 1)σ 2
θ,k + (1 − pr ,k)σ 2

θ,k , respectively. The CG model is
used frequently for analyzing the performance of robust algorithms in impulsive noise
environments2 [28,37,48,54].

2 The α-stable process is also a useful impulsive noise model, but since it has no closed-form for the
probability density function (pdf), it is difficult for performance analysis [18,30].



2076 Circuits, Systems, and Signal Processing (2020) 39:2065–2093

First, taking the squared l2-norm of the both sides of (18), we obtain

‖ψ̃k(i + 1)‖22 = ‖w̃k(i)‖22
− 2

√
ζk(i + 1) − υξk(i)

1 − υ

sign(ek(i))ek,a(i)

‖uk(i)‖2
+ ζk(i + 1) − υξk(i)

1 − υ
,

(20)

where ek,a(i) � w̃T
k (i)uk(i) denotes the a priori output error at node k. Usually, the

forgetting factor υ is close to 1 so that the fluctuations of ξk(i) and ζk(i) computed
by (12) and (13) are relatively small compared to that of the input regressors and the
error signals. As such, the variances of ξk(i) and ζk(i) can be assumed to be small
enough, namely ξk(i)−E{ξk(i)} ≈ 0 and ζk(i)−E{ζk(i)} ≈ 0; thereby, the following
approximation can be established:

E

{√
ζk(i + 1) − υξk(i)

1 − υ

sign(ek(i))ek,a(i)

‖uk(i)‖2

}
≈

√
E{ζk(i + 1)} − υE{ξk(i)}

1 − υ
E

{
sign(ek(i))ek,a(i)

‖uk(i)‖2
}

.

(21)

By incorporating (21), the expectation for both sides of (20) is expressed as

E{‖ψ̃k(i + 1)‖22} = E{‖w̃k(i)‖22}

− 2

√
E{ζk(i + 1)} − υE{ξk(i)}

1 − υ
E

{
sign(ek(i))ek,a(i)

‖uk(i)‖2
}

︸ ︷︷ ︸
(b)

+ E{ζk(i + 1)} − υE{ξk(i)}
1 − υ

.

(22)

For M 
 1, we can assume that the fluctuation of 1/‖uk(i)‖2 be small so that the
term (b) in (22) is simplified as

E

{
sign(ek(i))ek,a(i)

‖uk(i)‖2
}

≈ rk E{sign(ek(i))ek,a(i)}
= rk E{sign(ek,a(i) + vk(i))ek,a(i)},

(23)

where rk � E
{

1
‖uk (i)‖2

}
. Based on the conditioned expectation property, we have

E{sign(ek,a(i) + vk(i))ek,a(i)} = E
{
E{sign(ek,a(i) + vk(i))ek,a(i)|w̃k(i)}

}
,

(24)
where the notation E{s|q} represents the expectation of s conditioned on q.
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Applying the law of total probability under Assumption 4, the follow equation is
established:

E{sign(ek,a(i) + vk(i))ek,a(i)|w̃k(i)}
= (1 − pr ,k)E{sign(ek,a(i) + θk(i))ek,a(i)|w̃k(i)}

+ pr ,k E{sign(ek,a(i) + θk(i) + ηk(i))ek,a(i)|w̃k(i)}.
(25)

Also, it is assumed that ek,a(i) is zero-mean Gaussian when M 
 1. As in [4], this
assumption can be verified by the central limit theorem. Hence, variables (ek,a(i) +
θk(i)) and (ek,a(i) + θk(i) + ηk(i)) can also be assumed to be Gaussian, and then we
can use Price’s theorem in [39] and Assumptions 2 and 3 to further change (25) to

E{sign(ek,a(i) + vk(i))ek,a(i)|w̃k(i)} = hk E{e2k,a(i)|w̃k(i)}, (26)

where

hk =
√

2

π

⎧
⎨

⎩
pr ,k√

E{e2k,a(i)} + (� + 1)σ 2
θ }

+ 1 − pr ,k√
E{e2k,a(i)} + σ 2

θ }

⎫
⎬

⎭ �= 0. (27)

Substituting (23), (24) and (26) into (22), we obtain

E{‖ψ̃k(i + 1)‖22} = E{‖w̃k(i)‖22}

− 2hkrk

√
E{ζk(i + 1)} − υE{ξk(i)}

1 − υ
E{e2k,a(i)}

+ E{ζk(i + 1)} − υE{ξk(i)}
1 − υ

.

(28)

Second, by means of Jensen’s inequality [7, p.77], we take the squared l2-norm for
both sides of (19) and the expectation to arrive at

E
{
‖w̃k(i + 1)‖22

}
≤
∑

m∈Nk

cm,k E
{
‖ψ̃m(i + 1)‖22

}
. (29)

To proceed, let us define two vectors over the network:

X (i) � col
{
E{‖ψ̃1(i)‖22}, . . . , E{‖ψ̃N (i)‖22}

}
,

W(i) � col
{
E{‖w̃1(i)‖22}, . . . , E{‖w̃N (i)‖22}

}
,

(30)

and two diagonal matrices over the network

H �diag {h1r1, . . . , hNrN } ,

Se(i) �diag
{
E{e21,a(i)}, . . . , E{e2N ,a(i)}

}
.

(31)
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Also, the matrix C collects the combination coefficients {cm,k}, i.e., [C]m,k = cm,k .
Then, using these definitions in (30), (31) and (A.1), we formulate (28) and (29) for
call the nodes as a unified form:

W(i + 1) ≤ CTX (i + 1)

= CT
[
W(i) − 2HSe(i)

√
ς(i) + ς(i)

]
,

(32)

where

ς(i) � E{ζ (i + 1)} − υE{ξ(i)}
1 − υ

. (33)

By taking the ∞-norm of both sides of (32) and using ‖CT‖∞ = 1, we obtain

‖W(i + 1)‖∞ ≤ ‖CT‖∞‖W(i) − 2HSe(i)
√

ς(i) + ς(i)‖∞
= ‖W(i) − 2HSe(i)

√
ς(i) + ς(i)‖∞.

(34)

SinceH and Se(i) are diagonal matrices and their elements are positive, (34) can be
equivalently rewritten as

E{‖w̃k(i + 1)‖22} ≤ E{‖w̃k(i)‖22}

− 2hkrk

√
E{ζk(i + 1)} − υE{ξk(i)}

1 − υ
E{e2k,a(i)}

+ E{ζk(i + 1)} − υE{ξk(i)}
1 − υ

,

(35)

for k = 1, . . . , N . Assuming that the algorithm has reached the steady-state, i.e.,
taking the limits of all the terms in (35) at i → ∞, it is established that

2hkrk E{e2k,a(∞)} ≤
√

E{ζk(∞)} − υE{ξk(∞)}
1 − υ

, (36)

where E{e2k,a(∞)} � limi→∞ E{e2k,a(i)}, E{ζk(∞) � limi→∞ E{ζk(i)}, and

E{ξk(∞) � limi→∞ E{ξk(i)}. As pointed out in “Appendix A”, E{ζk(∞)} and
E{ξk(∞)} approximate zero, and under Assumption 3, (36) leads further to

E{e2k,a(∞)} = Tr

{
lim
i→∞ E{w̃k(i)w̃

T
k (i)}Rk

}
≈ 0. (37)

Since Rk is positive definite, we obtain from (37) that

E{‖w̃k(∞)‖22} = Tr

{
lim
i→∞ E{w̃k(i)w̃

T
k (i)}

}
≈ 0, (38)

for k = 1, . . . , N . The relation (38) illustrates that after a sufficiently many iterations,
the proposed algorithm can converge to the true parameter vector wo in the mean
square sense, in spite of the presence of impulsive noise.
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4.3 Evolution Behavior

Although (38) reveals the convergence of the proposed algorithm in impulsive noise,
this is a qualitative analysis due mainly to Eq. (29). For a quantitative analysis, we
define the following vectors over the network:

w̃(i) � col{w̃1(i), . . . , w̃N (i)},
ψ̃(i) � col{ψ̃1(i), . . . , ψ̃N (i)}, (39)

and the block diagonal matrix over the network

Φ(i) � diag {Φ1(i), . . . ,ΦN (i)} , (40)

where

Φk(i) =
√

ζk(i + 1) − υξk(i)

1 − υ

uk(i)sign(ek(i))
‖uk(i)‖2 , for k = 1, . . . , N . (41)

Then, equations (18) and (19) for all the nodes are formulated as the matrix form:

w̃(i + 1) = CTψ̃(i)

= CT[w̃(i) − Φ(i)]. (42)

where C � C ⊗ IM .
Enforcing the autocorrelation operation to both sides of (42), we get the following

recursion:

Ξ(i + 1) = CT

⎡

⎣Ξ(i) − E{w̃(i)ΦT(i)}︸ ︷︷ ︸
I

− E{Φ(i)w̃T(i)}︸ ︷︷ ︸
II

+

E{Φ(i)ΦT(i)}︸ ︷︷ ︸
III

⎤

⎦C,

(43)

where
Ξ(i) � E{w̃(i)w̃T(i)} (44)

is the autocorrelation matrix of the network estimation error vector w̃(i). The kth
diagonal block of Ξ(i) with size of M × M , defined as Ξ k(i) � E{w̃k(i)w̃T

k (i)}, is
the autocorrelation matrix of the estimation error vector w̃k(i) at node k.

Next, we will show how to evaluate terms I–III in (43).
Applying the conditioned expectation into the (m, k)th block of the term I, we have

E{w̃m(i)ΦT
k (i)} = E{E{w̃m(i)ΦT

k (i)|w̃(i)}}
 E{w̃m(i)E{ΦT

k (i)|w̃k(i)}}.
(45)
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By recalling the Price’s theorem, Assumptions 2, 3 and 4, and the law of total proba-
bility (similar to manipulations in Sect.4.2), we arrive at the relation that

E{ΦT
k (i)|w̃k(i)} = hk(i)

√
E{ζk(i + 1)} − υE{ξk(i)}

1 − υ
w̃T

k (i)E

{
uk(i)uTk (i)

||uk(i)||2

}
,

(46)
where hk(i) in (27) is rewritten as

hk(i) =
√

2

π

⎧
⎨

⎩
pr ,k√

Tr(Ξ k(i)Rk) + (� + 1)σ 2
θ }

+ 1 − pr ,k√
Tr(Ξ k(i)Rk) + σ 2

θ }

⎫
⎬

⎭ . (47)

By combining (45) and (46), the term I can be arranged as

E{w̃(i)ΦT(i)} = Ξ(i)A(i)(h(i)χ(i) ⊗ IM ), (48)

where

A(i) � diag

{
E

{
u1(i)uT1 (i)

||u1(i)||2

}
, . . . , E

{
uN (i)uTN (i)

||uN (i)||2

}}
,

h(i) � diag {h1(i), . . . , hN (i)} ,

χ(i) � diag

{√
E{ζ1(i + 1)} − υE{ξ1(i)}

1 − υ
, . . . ,

√
E{ζN (i + 1)} − υE{ξN (i)}

1 − υ

}
.

(49)

The term II equals to the transpose of (48).
The evaluation of the term III is divided into two parts. For the kth diagonal block

of E{Φ(i)ΦT(i)}, it is expressed as

E{Φk(i)Φ
T
k (i)} = χ2

k (i)E

{
uk(i)uTk (i)

||uk ||22

}
, (50)

where χk(i) is the kth diagonal entry of χ(i). For the (m, k)th off-diagonal block of
E{Φ(i)ΦT(i)}, it is calculated by

E{Φm(i)ΦT
k (i)} = E{E{Φm(i)ΦT

k (i)|w̃(i)}}
 E

{
E{Φm(i)|w̃m(i)}E{ΦT

k (i)|w̃k(i)}
}

= hm(i)χm(i)Am(i)E{w̃m(i)w̃T
k (i)}Ak(i)χk(i)hk(i),

(51)
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where Ak(i) is the kth diagonal block of A(i). Thus, according to (50) and (51), we
obtain the term III:

E{Φ(i)ΦT(i)} = (h(i)χ(i) ⊗ IM )A(i)
[
Ξ(i) − Ξ̆(i)

]

× A(i)(h(i)χ(i) ⊗ IM ) + Ă(i),
(52)

where

Ξ̆(i) � diag {Ξ1(i), . . . ,Ξ N (i)} ,

Ă(i) � diag

{
χ2
1 (i)E

{
u1(i)uT1 (i)

||u1(i)||22

}
, . . . , χ2

N (i)E

{
uN (i)uTN (i)

||uN (i)||22

}}
.

(53)

By inserting (48) and (53) into (43), we establish the recursion expression forΞ(i):

Ξ(i + 1) = CT
{
Ξ(i) − Ξ(i)A(i)(h(i)χ(i) ⊗ IM ) − (h(i)χ(i) ⊗ IM )T

× AT(i)ΞT(i) + (h(i)χ(i) ⊗ IM )A(i)
[
Ξ(i) − Ξ̆(i)

]

× A(i)(h(i)χ(i) ⊗ IM ) + Ă(i)
}
C.

(54)

The network mean square deviation (MSD) over all the nodes is defined as
MSDnet(i) � 1

N Tr{Ξ(i)} = 1
N

∑N
k=1 MSDk(i), where MSDk(i) = Tr{Ξ k(i)} is the

MSD per node k. Thus, (54) formulates the MSD evolution of the proposed algorithm
in impulsive noise. It is necessary for stressing that the implementation of (54) requires
knowing E{ζk(i + 1)} and E{ξk(i)} beforehand. However, evaluating E{ζk(i + 1)}
and E{ξk(i)} is difficult from (12) and (13), due mainly to the minimum operation of
two random variables in impulsive noise. Consequently, we suggest that E{ζk(i + 1)}
and E{ξk(i)} are obtained by the ensemble average in simulations. In a word, (54) is
a semi-analytic result, but which is also useful for clarifying the evolution behavior of
the proposed algorithm.

5 Simulation Results

In this section, simulation examples in the estimation of parameters are presented
to assess the proposed algorithm and verify the performance analysis. The connected
distributed network with N = 20 nodes is shown in Fig. 2. The entries in the vectorwo

with length of M = 16 are generated randomly from a zero-mean uniform distribution
and then are normalized by woTwo = 1. The input regressor uk(i) per node has a
shifted structure, i.e., uk(i) = [uk(i), uk(i − 1), . . . , uk(i − M + 1)]T [14,27,54],
where uk(i) is drawn from a first-order autoregressive (AR) system:

uk(i) = tkuk(i − 1) + εk(i),
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Fig. 2 Topology of network with N = 20 nodes

εk(i) is a zero-mean white Gaussian process with variance σ 2
ε,k , and tk is the AR

coefficient. Figure 3a, b gives values ofσ 2
ε,k and tk at nodes in the network, respectively.

The networkMSD is used for measuring the algorithm performance. Unless otherwise
specified, the combination coefficients {cm,k} for all the diffusion algorithms are given
by theMetropolis rule [45]. The following figures are obtained by averaging the results
over 200 independent trails.

5.1 Comparison of Algorithms

Case (1): CG noise
The additive noise is randomly generated from a CG process, as in Assumption 4,

where the variance of the background noise, σ 2
θ,k , is given in Fig. 3c, and the variance

of the impulsive component is set to σ 2
g,k = 1000σ 2

y,k with σ 2
y,k being the power of

yk(i) = uTk (i)wo.
To begin with, Fig. 4 compares the performance of the VT-dHNLMS algorithm

with that of the dNLMS, VSS-dNLMS, and dSE-LMS algorithms in Gaussian noise
(i.e., the impulsive noise is absent, pr ,k = 0). The parameters of algorithms are set
based on the fact that they have the same either initial convergence rate or steady-
state MSD, where the notations of parameters are the same as references. As one
can see, the dSE-LMS algorithm has the slowest convergence rate. Both the VSS-
dNLMS and VT-dHNLMS algorithms have the convergence as fast as the dNLMS
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algorithm with large step size μk = 1, and they have lower steady-state MSD. With
small step size μk = 0.14, the steady-state MSD of the dNLMS algorithm is as small
as that of the VSS-dNLMS algorithm, but it converges slowly. It is worth noting that
the proposed VT-dHNLMS algorithm behaves lower MSD than the VSS-dNLMS
algorithm in the steady-state. In addition, the VSS-dNLMS algorithm requires the
priori knowledge about the variances of the background noises at nodes, {σ 2

θ,k}Nk=1,
while the VT-dHNLMS algorithm does not require it.

Then, Fig. 5 shows the performance of the algorithms in Fig. 4 in the situation
that only node 1 in Fig. 2 is disturbed by impulsive noise with pr ,1 = 0.01. It is
seen from Fig. 5 that the dNLMS and VSS-dNLMS algorithms have performance
deterioration, due to the fact that the wrong estimate (caused by impulsive noise)
at node 1 is propagated to its neighboring nodes. In comparison, the dSE-LMS and
VT-dHNLMS algorithms are insensitive to impulsive noise.

In addition to the algorithms in Fig. 5, Fig. 6 also examines the performance of the
dLMP and RVWC-dLMS [3] algorithms,3 in another scenario that all the nodes are
affected by impulsive noise with pr ,k = 0.01. It is clear that the dNLMS and VSS-
dNLMS algorithms suffer from substantial degradation in learning performance, since
they are based on the squared output errors minimization with sensitivity to impulsive
noise. The dSE-LMS (i.e., the dLMPwith p = 1) outperforms the dLMPwith p = 1.5
in the convergence, which illustrates that dLMP’s performance in impulsive noise
relies on the choice of p. Since the dSE-LMS does not use the amplitude information
of output errors to update the estimates, its convergence is slower than that of the

3 The dNLMS algorithm with large step size μk = 1 is omitted as it diverges in this case.
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Fig. 4 Network MSD curves of various diffusion algorithms. [No impulsive noise]. Parameter setting of
algorithms is as follows: μk = 0.008 (dSE-LMS); μk = 1 and 0.14 (dNLMS); β = 1.2, pk,0 = 10
(VSS-dNLMS); υ = 0.97 (VT-dHNLMS)
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Fig. 5 Network MSD curves of various diffusion algorithms in the case of node 1 with impulsive noise.
Parameter setting of algorithms is the same as Fig. 4

RVWC-dLMS. It is remarkable that the proposed VT-dHNLMS algorithm obtains
faster convergence and lower steady-state MSD than these robust algorithms.

Moreover, to show the tracking capability of the algorithms in Fig. 6, the vector
wo to be estimated is changed to −wo at iteration i = 2000. As can be seen, the
VSS-dNLMS and VT-dHNLMS algorithms can not track the sudden change of wo.
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Fig. 6 Network MSD curves of various diffusion algorithms. [Impulsive noise occurs at all the nodes.]
Parameter setting of algorithms is the same as Fig. 4, except μk = 0.008, p = 1.5 for the dLMP; L = 16,
α = 2.58, λ = 1 − 1/M , μk = 0.048 for the RVWC-dLMS. Also, the weighting coefficients in the
combination step of RVWC-dLMS are specified in [3]; the Metropolis rule is used for the weighting
coefficients in the adaptation step

Figure 7 depicts the evolution of the step size μ1(i) at node 1 (the results at other
nodes are similar), for the VT-dHNLMS algorithm with and without the proposed
NC method. The parameters of the NC method are chosen as Nw = 12, κ = 0.99,
lth = 30 and� = 3.Without theNCmethod, afterwo suddenly changes, themagnitude
of the normalized output error, |ek(i)|/‖uk(i)‖2, becomes much larger than

√
ξk(i)

due to the mismatch of the estimate so that the step size through (15) jumps to a
much smaller value rather than a desired larger value. This is why the VT-dHNLMS
algorithm has no tracking capability. However, the NC method can make the step size
through (15) jump to a large value in response to the change of wo so that it equips
the VT-dHNLMS algorithmwith the tracking capability, meanwhile not degrading the
algorithm’s convergence performance.

Figure 8 gives the performance comparison of the proposed VT-dHNLMS with
NC, the dHNLMS with the fixed threshold ξ , and the DRVSS-LMS [19] algorithms.
The notation “non-coop” denotes the VT-dHNLMS with no cooperation (C = IN ),
i.e., each node performs independently the estimation task. To fairly compare the
DRVSS-LMS algorithm, we choose parameters of impulsive noise as pr ,k = 0.05
and σ 2

g,k = 10000σ 2
θ,k , since this algorithm needs these priori information; also, the

input regressors of nodes are white Gaussian, i.e., by setting tk = 0 in the first-order
AR system. As expected, due to the cooperation among interconnected nodes, the VT-
dHNLMS algorithm improves the estimation performance for parameters of interest
relative to the non-coop version. Comparedwith the dHNLMS, due to the adaptation of
the threshold in (12) and (13), the VT-dHNLMS obtains faster convergence and lower
steady-stateMSD simultaneously. Although both DRVSS-LMS andVT-dHNLMS are
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Fig. 8 Network MSD curves of the VT-dHNLMS algorithm and its counterparts. For the DRVSS-LMS, we
use median(d2k (1), d2k (2), . . . , d2k (M)) to initialize σ 2

el,k , because how to initialize it has not been claimed
in [19]. We choose the parameters α = 2.8 and λ1,2,3 = 0.99 for the DRVSS-LMS and υ = 0.94 for the
VT-dHNLMS

robustVSS diffusion variants based on theHuber function, the proposedVT-dHNLMS
has better steady-state and tracking performance.

Table 4 shows the time required by the algorithms in Figs. 6 and 8, implemented in
MATLABR2013a, to be runon aPCwith Intel(R)Core(TM) i7-7700CPU@3.60GHz
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Table 4 Run time of various diffusion algorithms

Algorithms dSE-LMS dLMP dNLMS RVWC-dLMS

Time (s) 194.24 200.28 211.08 1257.11

Algorithms VSS-dNLMS dHNLMS DRVSS-LMS VT-dHNLMS with NC

Time (s) 298.65 213.91 1297.21 296.46
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Fig. 9 NetworkMSDcurves of various diffusion algorithms inα-stable noise.Referring toFig. 6, parameters
of some algorithms are tuned as follows: μk = 0.008 for the dSE-LMS; p = 1.2, μk = 0.008 for the
dLMP; ξ = 0.01 for the dHNLMS

processor and 8.00GB RAM. It is seen that the time cost of the proposed algorithm
is moderate among these algorithms, which is significantly lower than that of the
RVWC-dLMS and DRVSS-LMS algorithms.
Case (2): α-stable noise

In this example, we investigate the performance of the above shown algorithms in
α-stable noise.4 The characteristic function of α-stable noise is φ(t) = exp(−γ |t |α),
where α denotes the characteristic exponent (a small value leads to more outliers),
and γ is the dispersion of the noise [18,49]. When α = 1 and α = 2, it reduces to the
Cauchy distribution and the Gaussian distribution, respectively. Here, we set α = 1.25
andγ = 2/15.The comparison results are shown inFig. 9.As canbe seen, among these
robust algorithms (i.e., excluding the dNLMS and the VSS-dNLMS), the proposed
VT-dHNLMS with NC behaves the best performance in terms of convergence rate,
steady-state estimation error and tracking capability.

4 The DRVSS-LMS algorithm is not shown since its implementation depends on the CG noise model.
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Fig. 10 Network MSD curves of
the VT-dNLMS algorithm in CG
noise. a pr ,k = 0.01, b
pr ,k = 0.05, c pr ,k = 0.1
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5.2 Verification of Analysis

Figure 10 compares the simulated MSD evolution with the theoretical MSD evolution
computed by (54) for the proposed algorithm. Only E{ξ1(i)} at node 1 is shown due to
having similar results at other nodes.We set the impulsive parameters in the CGmodel
to pr ,k = 0.01, 0.05 or 0.1, and σ 2

g,k = 10000σ 2
θ,k . As can be seen, the theoretical

results are in agreement with the simulated results. Moreover, the deceasing property
of E{ξ1(i)} also supports the analysis in “Appendix A.”

6 Conclusion

In this study, we have improved the dHNLMS algorithm by adaptively adjusting the
thresholds in a recursivewayandproposed theVT-dHNLMSalgorithm.Such recursive
adjustment leads to that the proposed algorithm switch automatically from the dNLMS
mode to the dSE-LMS mode with time-varying step sizes whenever impulsive noise
appears. Theoretical analysis has shown that the proposed algorithm has good stability
and learning performance in impulsive noise environments. Moreover, to respond
quickly to the abrupt change of parameters of interest, we proposed a NC method for
the thresholds. Simulation results have demonstrated the superiority of the proposed
algorithm inGaussian noise,CG impulsive noise, andα-stable noise cases as compared
to the competing diffusion algorithms.
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Appendix A: Proof of E{�k(i)} Approximately Converging to Zero

We define the threshold vector over the network and its intermediate counterpart, as
follows:

ξ(i) � col{ξ1(i), . . . , ξN (i)},
ζ (i) � col{ζ1(i), . . . , ζN (i)}. (A.1)

Following this, equations (12) and (13) for all the nodes can be expressed in a matrix
form:

ξ(i + 1) = CTζ (i + 1)

= CT [υξ(i) + (1 − υ)min[ f (i), ξ(i)]] , (A.2)

where

f (i) � col

{
e21(i)

‖u1(i)‖22
, . . . ,

e2N (i)

‖uN (i)‖22

}
. (A.3)
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Taking the ∞-norm both sides of (A.2), we get

‖ξ(i + 1)‖∞ ≤ ‖CT‖∞ · ‖ζ (i + 1)‖∞
= ‖ζ (i + 1)‖∞
≤ ‖υξ(i) + (1 − υ)min

[
f (i), ξ(i)

] ‖∞
≤ ‖ξ(i)‖∞.

(A.4)

Since {ξk(i)} is a positive sequence, (A.4) can deduce that ξk(i) and ζk(i) from (12)
and (13) are decreasing as the iteration i increases. It follows that the expectations
E{ξk(i)} and E{ζk(i)} are also positive and decreasing. Thus, taking the expectations
of both sides of (A.2), we have

E{ξ(i + 1)} = CT[υE{ξ(i)} + (1 − υ)E{min[ f (i), ξ(i)]}]. (A.5)

To continue developing the expression (A.5), again using the assumption that the
variance of ξk(i) is small enough so that we can make the following approximation,

E

{
min

[
e2k (i)

‖uk(i)‖22
, ξk(i)

]}
≈

E{ξk(i)}Pk,i [zk >E{ξk(i)}] +
∫ E{ξk (i)}

0
zkdFk,i (zk),

(A.6)

where zk
.= e2k (i)/‖uk(i)‖22 denotes that both zk and e2k (i)/‖uk(i)‖22 have the same

distribution, Pk,i [a] denotes the probability of event a, and Fk,i (zk) denotes the dis-
tribution function of zk at time instant i at node k. Plugging (A.6) into (A.5), we
have

E{ξ(i + 1)} = CT[υE{ξ(i)} + (1 − υ)P(i)E{ξ(i)} + (1 − υ)z(i)], (A.7)

where

P(i) = diag
{
P1,i [z1 > E{ξ1(i)}], . . . , PN ,i [zN > E{ξN (i)}]} , (A.8)

and

z(i) = col

{∫ E{ξ1(i)}

0
z1dF1,i (z1), . . . ,

∫ E{ξN (i)}

0
zNdFN ,i (zN )

}
. (A.9)

Taking the limits for both sides of (A.7) as i → ∞, we obtain

E{ξ(∞)} = CT[υE{ξ(∞)} + (1 − υ)P(∞)E{ξ(∞)} + (1 − υ)z(∞)]. (A.10)
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Then, we take the ∞-norm of both sides of (A.10), and after some simple manipula-
tions with ‖CT‖∞ = 1, getting the following inequality:

‖E{ξ(∞)}‖∞ ≤ ‖P(∞)‖∞ · ‖E{ξ(∞)}‖∞ + ‖z(∞)‖∞, (A.11)

where
‖P(∞)‖∞ = max

1≤k≤N
Pk,∞[zk > E{ξk(∞)}]. (A.12)

Due to the property of (A.12), we can equivalently formulate (A.11) as

E{ξk(∞)} ≤ Pk,∞[zk > E{ξk(∞)}] · E{ξk(∞)}

+
∫ E{ξk (∞)}

0
zkdFk,∞(zk),

(A.13)

for k = 1, . . . , N , which further results in

Pk,∞[zk ≤ E{ξk(∞)}] · E{ξk(∞)} ≤
∫ E{ξk (∞)}

0
zkdFk,∞(zk). (A.14)

It is difficult to solve (A.14) with respect to E{ξk(∞)}, and thus for mathematical
tractability, we consider solving the equal sign case in (A.14), i.e.,

Pk,∞[zk ≤ E{ξk(∞)}] · E{ξk(∞)} =
∫ E{ξk (∞)}

0
zkdFk,∞(zk). (A.15)

For Eq. (A.15), Appendix A in [48] can be applied to obtain its solution that is
E{ξk(∞)}] = 0. Because (A.15) is the upper bound of (A.14), we can infer that
E{ξk(i)} for nodes k = 1, . . . , N will approximately converge to zero. Likewise, the
intermediate value E{ζk(i)} per node k also approximately converges to zero.
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