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Abstract
A direction-of-arrival (DOA) estimation algorithm, which is robust to sensor gain
and phase uncertainties for completely uncalibrated arrays in a non-uniform noise
environment, is proposed in this study. As a result of the sensor gain uncertainties or
the shielding effects for some baffled arrays, the noise power may vary with sensors.
Therefore, a non-uniform noise model is considered. A cost function established by
the orthogonality of subspaces is accumulated along several rough space intervals
surrounding the real angles of sources. After analyzing the influences of rough space
intervals, an iterative refinement operation is carried out to improve the estimation
performance of the DOA and sensor gain and phase responses. The Cramér–Rao
bounds of the DOA and sensor gain and phase in the non-uniform noise model are
derived. Simulations and experimental results show the superiority of the proposed
method.
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1 Introduction

Direction-of-arrival (DOA) estimation is an important task in underwater acoustic sig-
nal processing [11, 16, 27]. Eigenstructure-based direction-finding techniques (e.g.,
multiple signal classification (MUSIC) [15], estimation of signal parameters via rota-
tional invariance techniques (ESPRIT) [14], and weighted subspace fitting [18]) can
achieve a high resolution when ideal arrays without any model mismatch are consid-
ered. However, both signal and noise model mismatches degrade the performance of
DOA estimation, particularly in terms of the resolution ability and location accuracy.
Most applications have assembled sensors in fixed positions that can be measured
or well calibrated beforehand [3, 21]. However, the gain and phase uncertainties are
difficult to compensate, especially when the responses of sensors change with the
environment.

Self-calibration is a useful technique for uncalibrated arrays to provide the robust
DOA estimations [1, 2, 17, 22–24, 26, 29]. Friedlander and Weiss [22] applied an
iterative procedure to find the minimum of a cost function to compensate for sensor
gain and phase perturbations and estimate the unknown DOA. However, the initial
value of the iterative procedure seriously influences the performance of parameter
estimation, and the global minimum is hard to achieve. Then, Zhang and Zhu [29]
proposed a similar cost function in some rough space intervals of the real DOA of
sources to calibrate sensor gain and phase parameters. However, the large range of
rough space intervals degrades the accuracy of parameter estimation.

Another type of robust direction-finding technique focuses on DOA estimation
with partly calibrated sensor arrays [6–8, 12, 19, 20, 30]. The ESPRIT-like algorithm
[7] was proposed to achieve DOA estimation and calibrate sensor gain and phase
parameters with partly calibrated arrays exhibiting a rotational invariance structure. A
satisfactory DOA estimation can be obtained when at least two sensors are calibrated.
For quasi-stationary signals, an underdetermined DOA estimation method is proposed
by using the idea of ESPRIT-like algorithm in partly calibrated arrays [19]. In fully
using the aperture of arrays, an improved ESPRIT-like algorithm [8] can approach
the Cramér–Rao bounds (CRBs). Although these ESPRIT-like-based self-calibration
algorithms [7, 8, 19] can estimate DOA and sensor responses robustly, their applica-
tions are still limited due to the rational invariance of array structures. For complex
situations where the indices of the partly calibrated sensors are unknown and the array
shape is arbitrary, a compressive sensing-based robust DOA estimation method [20]
is proposed, and the miscalibrated sensors can be eliminated with adaptive weights on
the basis of maximum correntropy criterion. However, it only applies to the case that
only a few sensors are miscalibrated.

Noise model mismatch is another factor to degrade DOA estimation performances
[4, 9, 10, 25, 27, 28]. In some applications (e.g., the shielding effects for some baffled
arrays), the powers of additive noises are not uniform along the sensor array; thus, the
non-uniform noise model is widely studied [4, 9, 10, 28]. The influence on the non-
uniform noise power can be removed by considering the non-diagonal elements in the
covariance matrix. Hence, a kind of DOA estimation algorithms in non-uniform noise
environment is achieved [4, 9, 28]. Considering the parameterized covariance matrix,
an iterative algorithm for subspace estimation by maximizing the log-likelihood func-
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tion is proposed [10]. Combined with the ESPRIT-like algorithm, a subspace-based
DOA estimation method for partly calibrated arrays in non-uniform noise is obtained
[10].

In the field of sensor gain and phase calibrations, there are still some difficulties to
be solved, such as the global convergence problem for the iteration-based algorithms,
the requirement of partly calibrated sensors and the non-uniformity of additive noise.
To solve these problems, a robust DOA estimation algorithm for sensor gain and phase
uncertainties with completely uncalibrated arrays is proposed. The signal subspace of
the covariance matrix in the non-uniform noise environment is first estimated. To
achieve the global convergence, a robust initialization is calculated by solving a cost
functionwhich is established by the orthogonality of subspaces and accumulated along
several rough space intervals surrounding the real directions of sources. Then, an iter-
ative refinement operation is carried out to improve the estimation performance of the
DOA and the sensor gain and phase responses. In this manner, no partly calibrated
sensor is required. In addition, the CRBs of the DOA and sensor gain and phase in the
non-uniform noise model are derived. Simulation results showed that the proposed
method can estimate the DOA of sources and sensor responses precisely in compar-
ison with the CRBs. The effectiveness of the proposed method is also confirmed by
experimental results in an anechoic tank with a baffled uniform circular array (UCA).

2 Signal Model

Consider an array composed ofM sensorswith half-wavelength inter-element spacing.
K narrowband and uncorrelated signals impinge on the array from the far field. The
array observation vector x(n) at the nth snapshot is modeled as follows:

x(n) � diag{γ }A(θ )s(n) + e(n), (1)

where A(θ ) � [a(θ1), a(θ2), . . . , a(θK )] is the M × K nominal steering matrix when
dealing with the absence of gain and phase perturbations; a(θk) is the M × 1 nominal
steeringvector of the kth signal; θ � [θ1, . . . , θK ]T is theDOAof received signals. s(n)
and e(n) are the statistically independent waveforms of signals and noise, respectively,
and diag{γ } is a diagonal matrix of the bracketed vector γ , which denotes the sensor
gain and phase parameters. We assume that all sensor gain and phase parameters are
unknown and direction independent [7]. Then, the parameter γ can be modeled as
follows:

γ � [γ1, γ2, . . . , γM ]T, (2)

where γm � gme jϕm ; gm and ϕm are the sensor gain and phase responses, respectively;
and γ1 is generally equal to 1 for unique identification [22].

Considering the non-uniformity of sensor responses, especially for hydrophones in
an underwater environment, we utilize a non-uniform noise model applied as a non-
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uniform and uncorrelated zero-mean Gaussian process. Then, the data covariance
matrix R is given by the following:

R � diag(γ )A(θ )P AH(θ )diagH(γ ) + Q, (3)

where the noise covariance Q � diag(σ ); P � diag{ p}; p and σ denote the power of
the signals and the non-uniform noises, respectively; and (.)H is the conjugate trans-
pose. When N snapshots are available, the data covariance matrix can be calculated
by the sample covariance matrix as R̂ � 1

/
N

∑N
n�1 x(n)x

H(n).
The signal covariance matrix P in (2) is a full rank diagonal matrix, which can

be decomposed as P � TTH and T is a K × K nonsingular matrix. Then the data
covariance matrix R in (3) can be reformed as follows:

R � diag(γ )A(θ )TTHAH(θ )diagH(γ ) + Q

� BsBH
s + Q, (4)

where Bs � diag(γ )A(θ)T . Hence, the matrix Bs spans the same column space as
the matrix diag(γ )A(θ) (i.e., signal subspace).

3 Robust DOA EstimationMethod

In this section, we focus on the self-calibration technique in estimating sensor gain
and phase responses and DOA of signals simultaneously.

3.1 Cost Function for Robust DOA Estimation

The sensor gain and phase parameters are generally estimated by applying the orthog-
onality of signal and noise subspaces [17, 22–24, 29]. However, the solutions of the
sensor gain and phase parameters are sensitive to the DOA of sources. To solve this
problem, an optimization problem for self-calibration by integrating the orthogonal
relationship on an interval around the DOA is formed as [29]

min
γ

K∑

k�1

∫ θk,U

θk,L

γHdiagH{a(θ )}�Bsdiag{a(θ )}γ dθ s.t. eH1 γ � 1

⇔ min
γ

γHΓ γ s.t. eH1 γ � 1, (5)

where the noise subspace is calculated as�Bs � I−Bs(B
H
s Bs)

−1BH
s ; Bs is the signal

subspace in the non-uniform noise model in (4) which can be effectively estimated
by an iterative method [10]; and e1 is an M × 1 vector, with the first element equal
to 1 and the other equal to 0. Several rough intervals obtained by low-resolution
direction-finding methods such as conventional beamforming (CBF) are represented

as � �
K⋃

k�1
[θk, L , θk,U ], where θk,U and θk, L are the upper and lower bounds of the
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kth region, respectively; K is the number of sources; and the matrix Γ is expressed as
follows:

Γ �
K∑

k�1

∫ θk,U

θk,L

diagH{a(θ )}�Bsdiag{a(θ )}dθ. (6)

Hence, the result of theminimization problem in (5) can be easily solved as follows:

γ̂ � Γ −1e1
/
(eH1 Γ −1e1). (7)

3.2 Influence Analysis of Rough Space Intervals

The influence of rough space intervals is discussed as follows. First, we assume that
the noise subspace of the data covariance matrix R in (3) is expressed as Bn � [b1,
· · · , bM−K ], that is, �Bs � BnBH

n � ∑M−K
m�1 bmbHm . Therefore, Γ can be calculated

as

Γ �
∑M−K

m�1
diag{bm}GdiagH{bm}, (8)

where G �
K∑

k�1

∫ θk,U
θk, L

a∗(θ )aT(θ )dθ..

Without loss of generality, we assume that K � 1 and that the real DOA is θ0; then,
G � ∫ θU

θL
a∗(θ )aT(θ )dθ . The steering vector can be expressed by the Taylor series

expansion at the point of θ0, as follows:

a(θ ) ≈ a0 + D1(θ − θ0) + D2(θ − θ0)
2, (9)

where a0 � a(θ0). The third- and higher-order terms of θ − θ0 are ignored, and the

differential vectors D1 � ∂a(θ)
∂θ

∣∣
∣
θ�θ0

and D2 � ∂2a(θ)
2·∂θ2

∣∣
∣
θ�θ0

. Then, G can be formed
as

G �
∫ θU

θL

[a∗
0 + D∗

1(θ − θ0) + D∗
2(θ − θ0)

2][aT0 + DT
1 (θ − θ0) + DT

2 (θ − θ0)
2]dθ

≈
∫ θU

θL

a∗
0a

T
0+[a

∗
0D

T
1 + D∗

1a
T
0 ](θ − θ0) + [a∗

0D
T
2 + D∗

1D
T
1 + D∗

2a
T
0 ](θ − θ0)

2dθ

� α1a∗
0a

T
0+α2[a∗

0D
T
1 + D∗

1a
T
0 ] + α3[a∗

0D
T
2 + D∗

1D
T
1 + D∗

2a
T
0 ], (10)

where the third and higher-order terms of θ − θ0 are also ignored. The coefficients α1,
α2, and α3 can be expressed as follows:
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α1 � θU − θL

α2 � α1[(θU + θL )
/
2 − θ0]

α3 � 1

3
α1[(θU − θ0)

2 + (θL − θ0)
2 + (θU − θ0)(θL − θ0)], (11)

Considering that the real DOA θ0 is near the center of the integral intervals, we
have θ0 ≈ (θU + θL )

/
2 and θU − θ0 ≈ θL − θ0 ≈ (θU − θL )

/
2. Then, we can then

obtain the following equation:

α1 � θU − θL ,α2 ≈ 0,α3 � 1

4
α3
1 . (12)

According to (8), the matrix Γ can be computed as follows:

Γ ≈ α1

∑M−K

m�1
diag{bm}a∗

0a
T
0 diag

H{bm}

+
1

4
α3
1

∑M−K

m�1
diag{bm}[a∗

0D
T
2 + D∗

1D
T
1 + D∗

2a
T
0 ]diag

H{bm}

� α1diag
H{a0}

(∑M−K

m�1
bmbHm

)
diag{a0}

+
1

4
α3
1

∑M−K

m�1
diag{bm}[a∗

0D
T
2 + D∗

1D
T
1 + D∗

2a
T
0 ]diag

H{bm} (13)

Neglecting the scale factor in (13), which does not affect the result in (7), we obtain
the following equation:

Γ ≈ Γ̄ + Γ̃ , (14)

where Γ̄ � diagH{a0}
(∑M−K

m�1 bmbHm
)
diag{a0}, which is calculated by the precise

DOA information, and Γ̃ � 1
4α

2
1

∑M−K
m�1 diag{bm}[a∗

0D
T
2 + D∗

1D
T
1 + D∗

2a
T
0 ]diag

H{bm}.
If the value of θU − θL is small, then Γ̃ is a small quantity of the second order of
θU − θL , which can be approximately omitted. However, when the θU − θL value
increases, the perturbation term Γ̃ should not be ignored, and the performance of the
self-calibration algorithm in (5) degrades.

3.3 Refinement of DOA Estimation

A refinement operation is considered to boost the accuracy of the DOA and sensor
gain and phase parameter estimation. The sensor gain and phase parameters estimated
by (7) can be regarded as a reliable initial value of the iterative refinement operations.

The sensor gain and phase parameters at the i th iteration are calculated by the
following cost function:

min
γ

J � min
γ

γH

(
K∑

k�1

diagH{a(θ̂ (i)k )}�Bsdiag{a(θ̂ (i)k )}
)

γ
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Table 1 Summary of estimation procedure

Steps: initialization

1 Give the rough regions of sources � � K∪
k�1

[θk, L , θk,U ]

2 Set i � 0 and ε � 0.0001

3 Calculate matrix Γ in (6)

4 Compute γ̂ (0) � Γ −1e1

/
(eH1 Γ −1e1)

Iteration

5 Estimate spatial spectrum in (17) and get θ̂ (i)k , k � 1, 2, · · · , K
6 Compute γ̂ (i) in (16)

7 If
∣∣∣J (i+1) − J (i)

∣∣∣
2

> ε, then set i � i + 1 and go to step 5

8 Obtain θ̂
(I )
k and γ̂ (I ), respectively, where I is the final iteration number

s.t. eH1 γ � 1, (15)

where θ̂
(i)
k is the estimated direction of the kth source at the i th iteration. The optimal

solution of the above problem is calculated as follows:

γ̂
(i) � U−1e1

/
(eH1 U

−1e1)

U �
K∑

k�1

diagH{a(θ̂ (i)k )}�Bsdiag{a(θ̂ (i)k )}. (16)

Then, the DOA at the (i + 1)th iteration is estimated from the MUSIC spectrum:

P(θ ) � 1

aH(θ )diagH{γ̂ (i)}�Bsdiag{γ̂ (i)}a(θ ) . (17)

Similarly, the root-MUSIC-like method [13] can be also used to estimate DOA
efficiently if the array is a uniform linear array (ULA). When i � 0, the initial value
γ̂
(0) is calculated by (7). Finally, the DOAs and the sensor gain and phase parameters

are estimated alternately until convergence.

The iteration is terminated when the relative change
∣∣J (i+1) − J (i)

∣∣2 of the cost
function in (15) at the (i + 1)th iteration is less than a specified tolerance ε or when
the iteration number meets a fixed upper limit. An typical value of ε is 0.0001. Then,
the proposed estimator for self-calibration is summarized in Table 1.

3.4 Computational Complexities and CRBs

Complexities: According to (6) and (7), the computational complexity of the initial
sensor parameter estimation is O(M2K S), where K is the number of sources, S is the
number of discrete directions in the rough intervals, and K S is generally larger thanM .
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Table 2 Sensor gain and phase
parameters

Sensor Gain Phase (°) Sensor Gain Phase (°)

1# 1 0 6# 1.0408 −24.5838

2# 1 0 7# 0.5651 −8.9654

3# 0.6433 −3.3855 8# 0.7678 −16.1294

4# 1.3298 3.7199 9# 0.8558 −26.1513

5# 0.8144 18.2121 10# 0.5537 14.1120

Then the iterative refinement operations have a complexity of O(M3 I ), where I is the
final iteration number. Consequently, the algorithmic complexity is O(max(M2K S,
M3 I )).

CRBs: The CRBs of DOA and unknown sensor gain and phase are derived in
the references [8, 23] under a uniform noise model. In the present work, the CRBs
are generalized to a non-uniform noise model. The detailed derivations are shown in
Appendix.

4 Simulation Results

In this section, the performances of the proposed method and other self-calibration
methods are compared. A uniform linear array with 10 sensors and a half-wavelength
inter-element spacing is considered. The power of non-uniform noise is assumed as
σ � [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]T. Then, unknown gain and phase parameters
are randomly generated from uniform distributions gm ∼ U [0.5, 1.5] and φm ∼
U [−30◦, 30◦], respectively; they are listed in Table 2. The symbol U [a, b] denotes a
uniform distribution on the interval [a, b].

4.1 Example I

The spatial spectrum of the proposed method is compared with those of the CBF
method, ESPRIT-like algorithm, and MUSIC algorithm without calibration in this
example. The ESPRIT-like algorithm and the MUSIC algorithm both utilize the sig-
nal subspace under the non-uniform noise model estimated by the iterative method
proposed in the [10] instead of the principal eigenvectors of the sample covariance
matrix. Three uncorrelated narrowband sources with the same power impinge on the
array from the directions of −30°, 0°, and 5°. The signal-to-noise ratio (SNR) is the
ratio of each source power to the average noise power, as follows:
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Fig. 1 Spatial spectra

SN R � 1

M

M∑

m�1

ps
σm

, (18)

where ps is the signal power, and σm indicates the noise power in the mth sensor.
In this example, the SNR is set to 10 dB, and the number of snapshots is N � 200.

The firstMc � 2 sensors are calibrated well for the ESPRIT-like algorithm. Therefore,
the complex responses of the first two sensors are set to 1, that is, γ1 � γ2 � 1.
However, only the condition in which γ1 � 1 is needed for unique identification in
the proposed method.

The spatial spectra of the proposed method, ESPRIT-like algorithm, MUSIC algo-
rithm without calibration, and CBF are displayed in Fig. 1. The MUSIC algorithm
without calibration has poor precision in DOA estimation and shows a low spa-
tial resolution, particularly for close-spaced sources. The CBF as a low-resolution
and robust direction-finding method is utilized to obtain the rough space intervals of
sources selected as [−35◦, −24◦] ∪ [−4◦, 9◦] according to the 3 dB beamwidth of
the CBF beam pattern. Considering the advantages of calibrated parameters, the pro-
posed method and ESPRIT-like algorithm both obtain high-resolution abilities. The
statistical performances of the two methods are compared in the following examples.

4.2 Example II

The estimation performances of DOA and sensor responses are analyzed in this
example. Three uncorrelated narrowband sources impinge on the test array from the
directions of −20°, 0°, and 20°. The rough intervals of the sources in the proposed
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method are chosen as � � 3∪
k�1

[θk − �θ , θk + �θ ], where the parameter �θ is set as

5°. The first two sensors are well pre-calibrated for the ESPRIT-like algorithm.
The performance of DOA estimation is measured by the root mean square error

(RMSE), which is calculated as follows:

RMSEθ �
(

1

K L

L∑

l�1

K∑

k�1

(θ̂k,l − θk)
2

) 1
2

, (19)

where K is the number of sources and is equal to three in this example, θ̂k, n is the
estimated direction of the kth source at the lth experiment, and L denotes the total
number of Monte Carlo experiments. The RMSE of DOA in (19) is the average value
of the K sources [7, 8, 19, 20]. Meanwhile, the estimates of the mth sensor gain and
phase are measured as follows:

RMSEϕm �
(
1

L

L∑

l�1

(ϕ̂m,l − ϕm)
2

) 1
2

, (20)

and

RMSEgm �
(
1

L

L∑

l�1

(ĝm,l − gm)
2

) 1
2

, (21)

where ĝm, l and ϕ̂m, l are the estimated sensor gain and phase of the mth sensor at the
lth experiment, respectively.

A total of 200MonteCarlo experiments are conducted at each SNRwith the number
of snapshots N � 200. The RMSE of DOA estimation versus SNR is shown in
Fig. 2. The method in [29] which is the initial iteration result of the proposed method
obtained from (7) has the poorest performance among the results due to the large rough
interval parameter �θ . The whole array aperture is not fully utilized by the ESPRIT-
like algorithm. Hence, the RMSE of ESPRIT-like algorithm is higher than that of
the proposed method, whereas the proposed method exhibits an evident performance
improvement and its RMSE is close to the CRB.

The estimation performances of sensor gain and phase are also analyzed in this
example. Without loss of generality, the gain and phase estimations of the 4th, 7th
and 10th sensors versus the SNR levels are shown in Figs. 3 and 4, respectively. The
last subfigures in Figs. 3 and 4 show the average RMSE values over the uncalibrated
sensors. The proposedmethod keeps a stable RMSE values for different sensors, while
those of the compared methods have wide variances along the sensors. CRB is also
approached by the proposed method for the 4th, 7th, and 10th sensors, especially at
high SNR levels. According to the average RMSE values, the proposed method shows
a remarkable performance improvement relative to the other methods.

Then, the estimation performances of the methods are evaluated in terms of the
RMSEvalues versus the number of snapshots. Similarly, 200MonteCarlo experiments
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Fig. 2 RMSE of DOA estimation versus SNR (DOA of sources: [−20◦, 0◦, 20◦], the number of snapshots
is 200)

Fig. 3 RMSE of sensor gain estimation versus SNR (DOA of sources: [−20◦, 0◦, 20◦], the number of
snapshots is 200)

are operated in every snapshot, which ranges from 10 to 200 in a step of 10 with SNR
� 10 dB. The RMSEs of the DOA, the sensor gain, and the sensor phase versus
the number of snapshots are plotted in Figs. 5, 6, and 7, respectively. Similarly, the
proposed method obtains the best performance with the CRB well approached.



1954 Circuits, Systems, and Signal Processing (2020) 39:1943–1964

Fig. 4 RMSE of sensor phase estimation versus SNR (DOA of sources: [−20◦, 0◦, 20◦], the number of
snapshots is 200)

Fig. 5 RMSE of DOA estimation versus the number of snapshots (DOA of sources: [−20◦, 0◦, 20◦], SNR
� 10 dB)

In this simulation, the performance of the proposedmethod is compared in different
non-uniform noise environments. We assume that the noise power of each sensor
increases linearly between 1 and σmax, i.e., the noise power of the mth sensor σm �
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Fig. 6 RMSE of sensor gain estimation versus the number of snapshots (DOA of sources: [−20◦, 0◦, 20◦],
SNR � 10 dB)

Fig. 7 RMSE of sensor phase estimation versus the number of snapshots (DOA of sources: [−20◦, 0◦, 20◦],
SNR � 10 dB)
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Fig. 8 RMSE of DOA estimation versus the maximum value of non-uniform noise power (DOA of sources:
[−20◦, 0◦, 20◦], SNR � 10 dB, the number of snapshots is 200)

1 +
(
σmax − 1

)
(m − 1)

/
(M − 1), where σmax varies from 2 to 20. The SNR is fixed

at 10 dB, and 200 snapshots are available.
The RMSEs of the DOA, the sensor gain, and the sensor phase versus the maxi-

mum value of non-uniform noise power, i.e., σmax, are plotted in Figs. 8, 9, and 10,
respectively. The proposed method is robust to the non-uniform noise environment
and has a lower RMSE than in the compared methods. The CRBs in Figs. 8, 9, and 10
all slightly increase with an increase in the non-uniformity of noise powers. They are
well approached by the proposed method.

5 Experimental Results

To confirm the effectiveness of the proposed method further, we perform an experi-
ment by using a 12-hydrophone baffled UCA with a radius of 0.24 m (Fig. 11). The
experiment is performed in an anechoic tank. The geometric layout of the experiment
is plotted in Fig. 12. Two narrowband sources with a center frequency of 5.7 kHz are
sent by acoustic transducers, which are placed symmetrically along the x-axis. Note
that the distance between the source and UCA is larger than 2�2/λ [5], where the
aperture of the UCA � is 0.48 m and the wavelength λ is about 0.26 m. The acoustic
transducers are thus located in the far field of the UCA.

5.1 Experiment with a Single Source

First, source 1 is enabled, and the waveforms of all the hydrophones are plotted in
Fig. 13a. As a result of the shielding effect of the baffle, the amplitudes vary along



Circuits, Systems, and Signal Processing (2020) 39:1943–1964 1957

Fig. 9 RMSE of sensor gain estimation versus the maximum value of non-uniform noise power (DOA of
sources: [−20◦, 0◦, 20◦], SNR � 10 dB, the number of snapshots is 200)

Fig. 10 RMSE of sensor phase estimation versus the maximum value of non-uniform noise power (DOA of
sources: [−20◦, 0◦, 20◦], SNR � 10 dB, the number of snapshots is 200)

the array. The #1 and #8–#12 hydrophones are assembled on the back of the baffle.
Therefore, the amplitudes are smaller than the others.
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Fig. 11 Experimental UCA
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Fig. 12 Geometric layout of the experiment

Fig. 13 Experimental results of source 1. a Waveforms of 12 hydrophones and b spatial spectra

The spatial spectrum of the proposed method relative to those of the CBF, MUSIC
without calibration, and calibration method in [29] is displayed in Fig. 13b. The per-
formance of the MUSIC algorithm without calibration degrades rapidly due to the
uncertainties of the sensor gain and phase responses, whereas the spatial spectra of the
calibration method in [29] and the proposed method are both significantly improved.
An extremely sharp peak corresponding to the correct location of the transducer is
obtained in the spatial spectrum of the proposed method. The estimated sensor gain
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Table 3 Sensor gain and phase
parameter estimation with
enabled source 1

Sensor Gain Phase (°) Sensor Gain Phase (°)

1# 1.0000 0.0000 7# 0.7797 −9.9895

2# 1.2710 14.1105 8# 0.2924 −11.9459

3# 1.4679 13.1076 9# 0.1741 −47.5814

4# 1.5564 19.5110 10# 0.1746 28.1377

5# 1.2932 16.7338 11# 0.1933 −20.5763

6# 1.0556 8.4812 12# 0.4380 0.1113

Fig. 14 Experimental results of source 2. a Waveforms of 12 hydrophones and b spatial spectra

Table 4 Sensor gain and phase
parameter estimation with
enabled source 2

Sensor Gain Phase (°) Sensor Gain Phase (°)

1# 1.0000 0.0000 7# 0.8529 −5.0178

2# 1.2271 7.1686 8# 0.3435 −8.9898

3# 1.4940 20.4633 9# 0.1808 −32.9589

4# 1.5848 27.2291 10# 0.2612 30.9571

5# 1.3890 23.9615 11# 0.2591 −28.9373

6# 1.1678 19.0935 12# 0.3511 −2.9820

and phase parameters are listed in Table 3. The estimated gain responses of all the
hydrophones conform to the amplitude of the waveforms displayed in Fig. 13a.

Thewaveform and spatial spectrum for source 2 are displayed in Fig. 14a, b, respec-
tively. The proposed method achieves the best DOA estimation performance among
the compared methods. The estimated sensor gain and phase parameters are listed in
Table 4. The values of the estimated gain parameters are similar to the amplitudes of
the received waveforms.
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Fig. 15 Experimental results for double sound sources. aWaveforms of 12 hydrophones and b spatial spectra

5.2 Experiment with Double Sources

In this situation, sources 1 and 2 are enabled separately. The sample covariance matri-
ces of the two sources, i.e., R̂1 and R̂2, can be calculated, respectively. Then the
covariance matrix of the double sources can be equivalently calculated by summing
R̂1 and R̂2. This is because that

R1 � p1a1aH1 + diag{σ }
R2 � p2a2aH2 + diag{σ }

R1 + R2 � p1a1aH1 + p2a2aH2 + diag{2σ }
� [

a1 a2
][ p1 0

0 p2

][
a1 a2

]H + diag{2σ }, (22)

where R1 and R2 are the covariance matrix of sources 1 and 2, respectively; a1 and
a2 are the steering vector of sources 1 and 2, respectively; and p1, p2 and σ are the
power of source 1, source 2, and noise, respectively. In this manner, the covariance
matrix of two incoherent narrowband signals is obtained.

The superimposed waveforms of sources 1 and 2 are shown in Fig. 15a. After
calibrating the gain and phase responses of each hydrophone, we observe a significant
improvement in the performances of the method in [29] and the proposed method, as
shown in Fig. 15b. The proposed method utilizes an iterative scheme to improve the
estimates of the sensor gain and phase and the estimation results are listed in Table 5.
Due to the accurate calibrations of the sensor responses, a high resolution of DOA
estimation can be obtained by the proposed method.

6 Conclusions

A robust direction-finding method for uncalibrated arrays is presented. This method
is a robust estimator of unknown parameters, namely DOAs, sensor gains, and sensor
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Table 5 Sensor gain and phase
parameter estimation with
double sources

Sensor Gain Phase (°) Sensor Gain Phase (°)

1# 1.0000 0.0000 7# 0.8295 −0.4820

2# 1.1141 9.5137 8# 0.4217 −8.4875

3# 1.4285 12.4347 9# 0.1685 −29.5559

4# 1.4877 17.2260 10# 0.2048 63.1107

5# 1.2676 18.3475 11# 0.2078 −28.5719

6# 1.1360 18.9718 12# 0.3227 −12.0880

phases. The initial iteration step of the proposed method is generally polluted by the
perturbation matrix Γ̃ in (14), which degrades the estimation performance particularly
for the large ranges of rough intervals. Therefore, an iterative operation is carried out to
improve the accuracy of the estimation of DOA and sensor parameters. The proposed
method does not require a specific array structure or partly calibrated sensors.

The influence of the range of rough intervals is analyzed, and the CRBs with
unknown sensor gains and phases in the non-uniform noise model are derived. The
simulation results show that the proposed method can achieve excellent statistical
performance and is robust to the selection of the range of initial rough regions. The
effectiveness of the proposed method is also confirmed by experimental results in an
anechoic tank with a baffled UCA.
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Appendix: The CRB in the Non-uniform Noise Environment

In this appendix, the CRB under the non-uniform noise is calculated. The parameter
vector containing all unknown parameters is

z � [θT, gT,ϕT, pT, σT]T, (23)

where θ � [θ1, θ2, . . . , θK ]T is the direction of sources; g, ϕ, and p are the sensor
gains, phases, and signal powers, respectively; and σ � [σ1, σ2, . . . , σM ]T includes
the noise powers of each sensor.

When N independent samples of a zero-mean Gaussian process is given, the CRB
equals the inverse of the Fisher information matrix (FIM) whose (m, n)th entry is
given by

Fmn � N × tr

{
R−1 ∂R

∂ zm
R−1 ∂R

∂ zn

}
, (24)
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where tr{·} denotes the trace operator and R is defined in (3). Then, the FIM can be
expressed as a block matrix:

F �

⎡

⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎣

Fθθ

FT
θ g

Fθ g

Fgg

Fθϕ

Fgϕ

Fθ p

Fgp

Fθσ

Fgσ

FT
θϕ FT

gϕ Fϕϕ Fϕp Fϕσ

FT
θ p FT

gp FT
ϕp F pp F pσ

FT
θσ FT

gσ FT
ϕσ FT

pσ Fσσ

⎤

⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎦

. (25)

First, we define the matrices ˙̄Aθ ,
˙̄Ag , and

˙̄Aϕ as

˙̄Aθ �
K∑

k�1

∂ Ā
∂θk

, ˙̄Ag �
M∑

m�1

∂ Ā
∂gm

, ˙̄Aϕ �
M∑

m�1

∂ Ā
∂ϕm

, (26)

where Ā � diag{γ }A is the real steering vector and A is the nominal steering vector.
A (M − Mc) × M selection matrix H is constituted by l rows of the identity matrix;
the set l contains M − Mc uncalibrated sensors.

In consideration of the non-uniform noise model, the last column of the block
matrices should be recalculated, and the other blocks remain unchanged, such as that
in [8] and [23].

According to (3), we have

∂R
∂θ p

� ˙̄Aθ epe
T
p P AH + APepeTp

˙̄AH
θ , (27a)

∂R
∂ g p

� epeTp
˙̄Ag P AH + AP ˙̄AH

g epe
T
p, (27b)

∂R
∂ϕ p

� epeTp
˙̄Aϕ P AH + AP ˙̄AH

ϕ epe
T
p, (27c)

∂R
∂ pp

� ĀepeTp Ā
H
, (27d)

∂R
∂σ p

� epeTp, (27e)

where ep is a vector with the pth element equal to 1 and the other equal to 0.
Substituting (27a)–(27e) into (24), we can, respectively, obtain Fθσ , Fgσ , Fϕσ ,

F pσ , and Fσσ as
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Fθσ � 2Re

{(
P Ā

H
R−1

)
◦

(
R−1 ˙̄Aθ

)T}
, (28a)

Fgσ � 2Re

{
H

( ˙̄Ag P Ā
H
R−1

)
◦

(
R−1

)T}
, (28b)

Fϕσ � 2Re

{
H

( ˙̄Aϕ P Ā
H
R−1

)
◦

(
R−1

)T}
, (28c)

F pσ �
(
Ā
H
R−1

)
◦

(
R−1 Ā

)T
, (28d)

Fσσ �
(
R−1

)
◦

(
R−1

)T
. (28e)

The other block matrices of FIM are listed as follows:

Fθθ � 2Re

{
(
P Ā

H
R−1 ĀP

)
◦

(
˙̄AH

θ R−1 ˙̄Aθ

)T

+
(
P Ā

H
R−1 ˙̄Aθ

)
◦

(
P Ā

H
R−1 ˙̄Aθ

)T
}

,

Fθ g � 2Re

{[(
P Ā

H
R−1

)
◦

( ˙̄Ag P Ā
H
R−1 ˙̄Aθ

)T
+

(
P Ā

H
R−1 ¯

AP ˙̄A
H

g

)
◦

(
R−1 ˙̄Aθ

)T]
HT

}
,

Fθϕ � 2Re

{[(
P Ā

H
R−1

)
◦

( ˙̄Aϕ P Ā
H
R−1 ˙̄Aθ

)T
+

(
P Ā

H
R−1 ¯

AP ˙̄A
H

ϕ

)
◦

(
R−1 ˙̄Aθ

)T]
HT

}
,

Fθ p � 2Re

{(
P Ā

H
R−1 Ā

)
◦

(
Ā
H
R−1 ˙̄Aθ

)T}
,

Fgg � 2Re

{
H

[( ˙̄Ag P Ā
H
R−1

)
◦

( ˙̄Ag P Ā
H
R−1

)T
+

(
˙̄Ag P Ā

H
R−1 ¯

AP ˙̄A
H

g

)
◦ (

R−1)T
]
HT

}
,

Fgϕ � 2Re

{
H

[( ˙̄Ag P Ā
H
R−1

)
◦

( ˙̄Aϕ P Ā
H
R−1

)T
+

(
˙̄Aϕ P Ā

H
R−1 ¯

AP ˙̄A
H

g

)
◦ (

R−1)T
]
HT

}
,

Fgp � 2Re

{
H

[( ˙̄Ag P Ā
H
R−1 Ā

)
◦

(
Ā
H
R−1

)T]
HT

}
,

Fϕϕ � 2Re

{
H

[( ˙̄Aϕ P Ā
H
R−1

)
◦

( ˙̄Aϕ P Ā
H
R−1

)T
+

(
˙̄Aϕ P Ā

H
R−1 ¯

AP ˙̄A
H

ϕ

)
◦ (

R−1)T
]
HT

}
,

Fϕp � 2Re

{
H

[( ˙̄Aϕ P Ā
H
R−1 Ā

)
◦

(
Ā
H
R−1

)T]
HT

}
,

F pp �
(
Ā
H
R−1 Ā

)
◦

(
Ā
H
R−1 Ā

)T
.
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