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Abstract
The stabilization control of the quaternion-valued memristive system is investigated
in this paper. By starting from the basic quaternion-valued algorithms, the memristive
system described by quaternion-valued connection weights is derived. Subsequently,
a comprehensive set of results to ensure the existence of the equilibrium point and
its stability analysis have been developed. Particularly, vector ordering approach is
proposed in this paper, which can be employed to determine the “magnitude” of two
different quaternion-valued, and thus the closed convex hull derived by two differ-
ent quaternion-valued connections can be obtained correspondingly. In the end, the
proposed method is substantiated with two numerical examples.
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1 Introduction

Memristor was first envisioned and named byChua in 1971 [6]. Its physical implemen-
tation was successfully built by a research team from Hewlett–Packard laboratory in
2008 [23]. According to the research result, it is generally known that the memristor’s
resistance (memristance) depends on themagnitude and polarity of the voltage applied
over time. That is to say, when a sinusoidal, or any bipolar periodic signal that assumes
both positive and negative values, is applied to the memristor, it exhibits a hysteresis
loop in the u − i plane, which is pinched at the origin. This pinched hysteresis loop is
considered as a fingerprint of the memristor.

This passive electronic device has generated unprecedented worldwide interest
because of its potential applications in the next generation computers and powerful
brain-like “neural” computers. In the brain-like neuromorphic circuits, memristor is
used to fabricate artificial neural networks to implement synaptic weights between
neurons. It can work in a way that is similar to human brains and it prompts more and
more researchers to replace resistors in conventional neural networks by memristors,
and thus the memristive neural networks can be constructed.

From the viewpoint of circuit theory, the integration of memristor greatly enriches
the dynamic behaviors of traditional neural networks and provides a new perspective
on the design of powerful neural networks. As reported in [8], the number of EP in a
n-neuronmemristive system is up to 22n

2+n , which implies that the memristive system
can perform more information capacity than others.

Very recently, lots of interesting works on the memristive neural networks have
been raised in [1,12,21,26]. For example, in [12], it can be seen that memristive neural
networks can perform a number of applications, such as logical operations, image
processing operations, complex behaviors, higher brain functions and RSA algorithm.
Thus, it is meaningful to investigate the dynamic behaviors of the memristive neural
networks.

Among the rich dynamic behaviors, stabilization control can be reviewed as one
of the hot-button topics due to its successful utilization in many different science
and engineering fields [7,14,19,20,27,28,31–33], in which, the finite-time stability
analysis of memristive system with Markovian jump parameters was performed in
[14], via periodically intermittent control strategy the exponential stabilization for the
fuzzy memristive system was reported in [32], besides, Wei et al. [28] discussed the
dynamic behaviors of complex-valued memristive neural networks. However, in the
aforementioned results, the connection weights and the active functions take values in
the field of real or complex numbers.

For high-dimensional neural networks, complex-valued neural networks are known
as an effective solution for tasks requiring two-dimensional input vectors, while
quaternion neural networks are able to learn the local relations that exist within its
components through Hamilton product. Due to the capability to code multidimen-
sional data in real world, an increasing number of studies have been conducted for the
quaternion neural networks.

Quaternion was proposed in [9] for the first time and performed a number of mean-
ingful applications from various areas, such as attitude control, quantummechanics as
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well as computer graphics [4,5,18]. These measurements can be represented as vec-
tors in space R

3 and R
4. However, vector algebra is not a division algebra and suffers

from mathematical deficiencies when modeling orientation and rotation. In this case,
the quaternion domain H offers a convenient and unified way to process 3-D and 4-D
signals [11,17,25]. Therefore, quaternion neural networks are supposed to give further
investigation for their broad applications [3,15,16,22,24].

Motivated by the above observations, this paper aims to develop a rather complete
set of properties to study the stabilization control of quaternion-valued memristive
neural networks, which is an interesting and challenging topic in the memristive sys-
tem. The main contributions of this paper are highlighted as: (i) the quaternion algebra
is brought into thememristive neural networks, i.e., the states, connection weights take
values in quaternion field, which can be seen as an extension of the existing works on
real-valued neural networks; (ii) a partial order is proposed in this paper, which can
be employed to determine the “magnitude” of two different quaternion-valued; thus,
the closed convex hull derived by two different quaternion connections can be derived
correspondingly.

This paper is organized as follows. We present the model of a memristive system
with states, connection weights as well as active functions expressed by quaternion
in Sect. 2. The existence of the EP and its stability analysis are provided in the third
section. Section 4 illustrates through simulation results that a memristive system satis-
fying the given properties is indeed stable. The conclusion is given in the last section.

2 Preliminaries

2.1 Quaternion Algebra

A real quaternion can be given by:

h = hR + hI i + hJ j + hK k, (1)

which implies that a quaternion involving a real part and three imaginary parts i , j , k,
and i , j , k are subjected to the Hamilton rule.

DefineQ � {hR+hI i+hJ j+hK k|hR, hI , hJ , hK ∈ R} and denote the conjugate
of h by

h̄ = hR − hI i − hJ j − hK k.

The modulus of h ∈ Q is defined as:

|h| =
√
hh̄ =

√
(hR)2 + (hI )2 + (hJ )2 + (hK )2.

Besides, for h = (h1, h2, . . . , hn)T , let |h| = (|h1|, |h2|, . . . , |hn|)T be the modulus
of h and ‖h‖1 = ∑n

p=1 |h p| be the norm of h.
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2.2 Model Description

A simple mathematical model of a quaternion-valued memristive system can be
described by:

ẋ p(t)=−dpxp(t) +
n∑

q=1

apq(xp(t)) fq(xq(t))+
n∑

q=1

bpq(xp(t)) fq(xq(t−ς(t)))+ Jp,

(2)

for p = 1, 2, . . . , n, where xp(t) ∈ Q represents the neuron state, dp > 0 is the
self-feedback connection real weight, apq(xp(t)), bpq(xp(t)) ∈ Q is the feedback
connection weight and Jp ∈ R signifies the external input. Moreover, ς(t) stands for
the transmission delay subjected to 0 ≤ ς(t) ≤ ς , ς̇ (t) ≤ � < 1 and f p(xp(t)) is the
activation function satisfying (A1).

(A1): For q = 1, 2, . . . , n, the activation functions are subjected to

| fq(x1) − fq(x2)| ≤ mq |x1 − x2|, | fq(x)| ≤ Fq ,

where mq ,Fq > 0.
In this paper, the quaternion connection weights are assumed to own the following

properties.
(A2): apq(xp(t)), bpq(xp(t)) are subjected by:

apq(xp(t)) =
{
aᵀ
pq = aR

1pq + aI
1pq i + aJ

1pq j + aK1pqk, |xp(t)| ≤ �p,

aᵀᵀ
pq = aR

2pq + aI
2pq i + aJ

2pq j + aK2pqk, |xp(t)| > �p,

bpq(xp(t)) =
{
bᵀ
pq = bR1pq + bI1pq i + bJ1pq j + bK1pqk, |xp(t)| ≤ �p,

bᵀᵀ
pq = bR2pq + bI2pq i + bJ2pq j + bK2pqk, |xp(t)| > �p,

where �p > 0 is the switching jump.

Definition 2.1 (Generalized Inequalities [13]) For any cone N ⊆ R
n , the partial order-

ing relation in R
n is defined as:

(I). x � y ⇔ y − x ∈ N ;

(II). x ≺ y ⇔ y − x ∈ int N ,

where intN is the interior of N .

Remark 2.1 As one knows, the complex value can be seen as a two-dimensional vector;
thus, the generalized inequalities can be employed to compare the “magnitude” of two
complex values, i.e., if N stands for the first (or fourth) quadrant of the complex plane,
then any complex value on its “right” side is greater than it, and the complex number
in the “upper right” of a complex value is strictly greater than it.
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For example, for two different complex values x1 = a1 + b1i , x2 = a2 + b2i ,
yields, x2 − x1 = a2 − a1 + (b2 − b1)i . Now, two cases are proposed in the following
lines: (i) (a2 − a1) · (b2 − b1) ≥ 0, (ii) (a2 − a1) · (b2 − b1) < 0. For the case (i), if
a2 − a1 > 0, b2 − b1 > 0, then x1 ≺ x2; if a2 − a1 = 0, b2 − b1 > 0, or a2 − a1 > 0,
b2 − b1 = 0, then x1 � x2; if a2 − a1 < 0, b2 − b1 < 0, then x1 
 x2; For the case
(ii), if a2 − a1 > 0, b2 − b1 < 0, then x1 ≺ x2; if a2 − a1 < 0, b2 − b1 > 0, then
x1 
 x2.

For twodifferent quaternions x1 = a1+b1i+c1 j+d1k = (a1+b1i)+(c1+d1i) j �
x11 + x12 j , x2 = a2 + b2i + c2 j + d2k = (a2 + b2i) + (c2 + d2i) j � x21 + x22 j ,
the first step is to compare two pairs of two-dimensional vectors x11 and x21, x12 and
x22, respectively. If x11 ≺ (
)x21 and x12 ≺ (
)x22, then x1 ≺ (
)x2; if x11 � x21,
x12 ≺ x22, or x11 ≺ x21, x12 � x22, then one has x1 � x2; if x11 � (�)x21,
x12 
 (≺)x22, then x1 � (�)x2; if x11 ≺ (
)x21, x12 � (�)x22, then x1 � (�)x2.

According to the above analysis, system (2) can be written as:

ẋ p(t) ∈ −dpxp(t) +
n∑

q=1

co[a−
pq , a

+
pq ] fq(xq(t))

+
n∑

q=1

co[b−
pq , b

+
pq ] fq(xq(t − ς(t))) + Jp,

(3)

where ãpq = max{|aᵀ
pq |, |aᵀᵀ

pq |}, a−
pq = min{aᵀ

pq , a
ᵀᵀ
pq }, a+

pq = max{aᵀ
pq , a

ᵀᵀ
pq }, b̃pq =

max{|bᵀ
pq |, |bᵀᵀ

pq |}, b−
pq = min{bᵀ

pq , b
ᵀᵀ
pq }, b+

pq = max{bᵀ
pq , b

ᵀᵀ
pq }, | aᵀ

pq |=| aR
1pq | + |

aI
1pq | i+ | aJ

1pq | j+ | aK1pq | k. Besides, | aᵀᵀ
pq |, | bᵀ

pq |, | bᵀᵀ
pq | share the same

definition.
Recall that the differential inclusion means that there exist a∗

pq(t) ∈ co[a−
pq , a

+
pq ],

b∗
pq(t) ∈ co[b−

pq , b
+
pq ] such that

ẋ p(t) = −dpxp(t) +
n∑

q=1

a∗
pq(t) fq(xq(t))

+
n∑

q=1

b∗
pq(t) fq(xq(t − ς(t))) + Jp, p = 1, . . . , n. (4)

Before moving on, a preliminary result is given below.

Lemma 2.1 ([2]) Let � be a compact convex subset of a Banach space X. If the set-
valued map ϕ : � → G(�) is an upper semi-continuous convex compact map, then
ϕ has a fixed point in �, i.e., there exists x ∈ � such that x ∈ ϕ(x).

Lemma 2.2 ([24]) Let x, y ∈ Q, ε > 0 be a constant, then it holds that

yx + x̄ ȳ ≤ εx̄ x + 1

ε
y ȳ.
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Lemma 2.3 ([10]) Suppose that function x(t) is nonnegative when t ∈ (−d,∞) and
satisfies the following inequality:

ẋ(t) ≤ −ax(t) + bx(t − d(t)) + c, t ≥ 0,

where a, b, c are positive constants with a > b and 0 ≤ d(t) ≤ d. Then,

x(t) ≤ max−d≤θ≤0
x(θ)e−r t + c

r
,

where r is the positive solution of the following equation

a − be−rd − r = 0.

Definition 2.2 The EP of x̆ p of (2) is said to be globally exponentially stable (GES),
if there exist constants γ > 0 and π > 0 such that

‖x(t) − x̆‖1 ≤ γ e−π t sup
−ς≤s≤0

‖ζ(s) − x̆‖1, t ≥ 0,

where ζ(s) is the initial value.

3 Main Results

We are now ready to derive the conditions to ensure the existence and uniqueness of
the EP for system (2). Subsequently, its stability analysis is also provided.

3.1 Existence of the EP

Theorem 3.1 Suppose that (A1) holds, then the memristive system (2) has at least one
EP.

Proof Let x = (x1, . . . , xn)T ∈ X, where Xmeans a Banach space endowed with the
norm ‖x‖1 = ∑n

p=1 |xp|. Thus, the existence of EP for (2) is equivalent to

xp(t) ∈ 1

dp

n∑

q=1

[a−
pq , a

+
pq ] fq(xq(t)) + 1

dp

n∑

q=1

[b−
pq , b

+
pq ] fq(xq(t − ς(t))) + Jp

dp
.

(5)

Construct a compact convex subset ofX as� = {x = (x1, . . . , xn)T ∈ X : ‖x‖1 ≤ δ}
with

δ =
n∑

p=1

∣∣∣∣
Jp
dp

∣∣∣∣ +
n∑

p=1

n∑

q=1

ãpqMq

dp
+

n∑

p=1

n∑

q=1

b̃pqMq

dp
.
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Let ψ : X → G(X) with ψ(x) = (ψ1(x), . . . , ψn(x))T , and

ψp(x) = 1

dp

n∑

q=1

[a−
pq , a

+
pq ] fq(xq(t)) + 1

dp

n∑

q=1

[b−
pq , b

+
pq ] fq(xq(t − ς(t))) + Jp

dp
,

which implies that ψ(x) is an upper semi-continuous set-valued map with nonempty
compact convex values, i.e., ψ maps � into G(�), or for every fixed a∗

pq(t) ∈
[a−

pq , a
+
pq ], b∗

pq(t) ∈ [b−
pq , b

+
pq ], such that:

ηp = 1

dp

n∑

q=1

a∗
pq(t) fq R(xq(t)) + 1

dp

n∑

q=1

b∗
pq(t) f

R
q (xq(t − ς(t))) + Jp

dp
∈ ψp(x),

(6)

where η = (η1, . . . , ηn)
T ∈ ψ(x). Considering the expression appearing in (A1), one

has:

n∑

p=1

|ηp| ≤
n∑

p=1

∣∣∣∣
Jp
dp

∣∣∣∣ +
n∑

p=1

n∑

q=1

ãpqMq

dp
+ b̃pqMq

dp
= δ, (7)

which implies that

‖η‖1 =
n∑

p=1

|ηp| ≤ δ, x ∈ �.

Then, for any x ∈ �, η ∈ ψ(x), one can conclude that η ∈ �. Then, according
to Lemma 2.1, one can conclude that ψ : � → G(�) has at least one fixed point
x̆ = (x̆1, . . . , x̆n)T ∈ � ensuring x̆ ∈ ψ(x̆). Thus, there exists at least one EP of (2).
This completes the proof. ��

3.2 Stabilization Control of the EP

Suppose the EP of (2) is x̆ p = x̆ Rp + x̆ Ipi + x̆ J
p j + x̆ Kp k. Then, shifting the above EP

to the origin by yp(t) = xp(t) − x̆ p gives that

ẏp(t) = −dp yp(t) +
n∑

q=1

(a∗
pq(t) fq(xq(t)) − ă∗

pq fq(x̆q))

+
n∑

q=1

(b∗
pq(t) fq(xq(t − ς(t))) − b̆∗

pq fq(x̆q)). (8)

To derive the main conclusions, by adding the appropriate controller to the right
hand of (8), the corresponding controlled memristive system can be given by:
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ẏp(t) = −dp yp(t) +
n∑

q=1

(a∗
pq(t) fq(xq(t)) − ă∗

pq fq(x̆q))

+
n∑

q=1

(b∗
pq(t) fq(xq(t − ς(t)))

− b̆∗
pq fq(x̆q)) + u p(t)

= −dp yp(t) +
n∑

q=1

a∗
pq(t)( fq(xq(t)) − fq(x̆q)) +

n∑

q=1

(a∗
pq(t) − ă∗

pq) fq(x̆q)

+
n∑

q=1

b∗
pq(t)( fq(xq(t − ς(t))) − fq(x̆q))

+
n∑

q=1

(b∗
pq(t) − b̆∗

pq) fq(x̆q) + u p(t)

≤ −dp yp(t) +
n∑

q=1

a∗
pq(t)( fq(xq(t)) − fq(x̆q)) +

n∑

q=1

(a+
pq − a−

pq)Fq

+
n∑

q=1

b∗
pq(t)( fq(xq(t − ς(t))) − fq(x̆q)) +

n∑

q=1

(b+
pq − b−

pq)Fq + u p(t),

(9)

where u p(t) is the controller to be designed.

Theorem 3.2 Suppose that the assumptions (A1)–(A2) hold, if there exist two constants
�1 > 0, �2 > 0, such that

�2 max
p

m2
p < (1 − �)

is true, then the trivial solution of the controlled memristive system (9) is stable under
the following controller:

{
u p(t) = −ϑp(t)yp(t) − νp,

ϑ̇p(t) = ηp ȳp(t)yp(t),
(10)

where ϑp(t) ∈ R
n, ηp is an arbitrary positive constant and

νp 

n∑

q=1

(a+
pq − a−

pq)Fq +
n∑

q=1

(b+
pq − b−

pq)Fq .
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Proof The auxiliary function is formatted as:

V (t) =
n∑

p=1

ȳp(t)yp(t) +
∫ t

t−ς(t)
ȳp(s)yp(s)ds +

n∑

p=1

1

ηp
(ϑp(t) − Mp)

2, (11)

where

2Mp ≥ −2dp + 1 + �1m
2
p + 1

�1

n∑

q=1

ãpq ¯̃apq + 1

�2

n∑

q=1

b̃pq
¯̃bpq .

Before moving on, a new tight estimation can be derived:

ẏp(t) ≤ −dp yp(t) +
n∑

q=1

a∗
pq(t)( fq(xq(t)) − fq(x̆q)) +

n∑

q=1

(a+
pq − a−

pq)Fq

+
n∑

q=1

b∗
pq(t)( fq(xq(t − ς(t))) − fq(x̆q))

+
n∑

q=1

(b+
pq − b−

pq)Fq − ϑp(t)yp(t) − νp

≤ −dp yp(t) +
n∑

q=1

a∗
pq(t)( fq(xq(t)) − fq(x̆q))

+
n∑

q=1

b∗
pq(t)( fq(xq(t − ς(t))) − fq(x̆q))

− ϑp(t)yp(t).

(12)

Then, evaluating the time derivative of V (t) along the solutions of (12) gives:

V̇ (t) =
n∑

p=1

˙̄yp(t)yp(t) +
n∑

p=1

ȳp(t)ẏp(t) +
n∑

p=1

ȳp(t)yp(t)

− (1 − ς̇ (t))
n∑

p=1

ȳp(t − ς(t))yp(t − ς(t))

+
n∑

p=1

2

ηp
(ϑp(t) − Mp)ϑ̇p(t)

≤
n∑

p=1

⎛

⎝−dp ȳp(t) +
n∑

q=1

( f̄q(xq(t)) − f̄q(x̆q))ā
∗
pq(t)
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+
n∑

q=1

( f̄q(xq(t − ς(t))) − f̄q(x̆q))b̄
∗
pq(t)

−ϑp(t)ȳp(t)
)
yp(t) +

n∑

p=1

ȳp(t)
(−dp yp(t)

+
n∑

q=1

a∗
pq(t)( fq(xq(t)) − fq(x̆q))

+
n∑

q=1

b∗
pq(t)( fq(xq(t − ς(t))) − fq(x̆q)) − ϑp(t)yp(t)

⎞

⎠

+ 2
n∑

p=1

ϑp(t)ȳp(t)yp(t)

− 2
n∑

p=1

Mp ȳp(t)yp(t) +
n∑

p=1

ȳp(t)yp(t)

− (1 − �)

n∑

p=1

ȳp(t − ς(t))yp(t − ς(t)). (13)

It follows from Lemma 2.2, there exist two constants �1, �2 > 0 such that

( f̄q(xq(t)) − f̄q(x̆q))ā
∗
pq(t)yp(t) + ȳp(t)a

∗
pq(t)( fq(xq(t)) − fq(x̆q))

≤ �1( f̄q(xq(t)) − f̄q(x̆q))( fq(xq(t)) − fq(x̆q)) + 1

�1
ȳp(t)a

∗
pq(t)ā

∗
pq(t)yp(t)

≤ �1m
2
q ȳq(t)yq(t) + 1

�1
ȳp(t)ãpq ¯̃apq yp(t),

( f̄q(xq(t − ς(t))) − f̄q(x̆q))b̄
∗
pq(t)yp(t) + ȳp(t)b

∗
pq(t)( fq(xq(t − ς(t)))− fq(x̆q))

≤ �2m
2
q ȳq(t − ς(t))yq(t − ς(t)) + 1

�2
ȳp(t)b̃pq

¯̃bpq yp(t).
(14)

Thus, together with (12)–(14) and the parameters defined above, a new tight esti-
mation can be derived:

V̇ (t) ≤ −
n∑

p=1

⎛

⎝2dp − 1 − �1m
2
p − 1

�1

n∑

q=1

ãpq ¯̃apq − 1

�2

n∑

q=1

b̃pq
¯̃bpq + 2Mp

⎞

⎠ ȳp(t)yp(t)

+ (�2 max
p

m2
p − (1 − �))

n∑

p=1

ȳp(t − ς(t))yp(t − ς(t))

< 0.
(15)
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Based on the above discussions, we can conclude that the stabilization control
for system (2) can be realized via the suggested controller (10). The proof is thus
completed. ��
Remark 3.1 Theproof ofTheorem3.2 can be explained byLaSalles invariant principle.
LaSalles invariant principle is an extension of Lyapunov function, andwhat is different
from the Lyapunov method is the function of V (t) does not require to be positive
definite.

Remark 3.2 According to the conclusions derived in Theorem 3.2, an estimation
described by the partial order is presented, which gives a new method to compare
the “magnitude” of two different quaternions.

Theorem 3.3 Under the assumption (A1)–(A2), the trivial solution of (9) is globally
exponentially stable based on the following controller:

u p(t) = −kp yp(t), (16)

where

2kp ≥ −2dp + �̃1m
2
p + 1

�̃1

n∑

q=1

ãpq ¯̃apq + 1

�̃2

n∑

q=1

b̃pq
¯̃bpq .

Besides, the control gains are given by

γ1 = min
p

⎛

⎝2dp + 2kp − �̃1m
2
p − 1

�̃1

n∑

q=1

ãpq ¯̃apq − 1

�̃2

n∑

q=1

b̃pq
¯̃bpq

⎞

⎠ ,

γ2 = �̃2 max
p

m2
p, γ1 > γ2 > 0.

Proof The structure of the suggested function is formulated as:

V (t) =
n∑

p=1

ȳp(t)yp(t). (17)

Then, repeating the proof of Theorem 3.2 yields,

V̇ (t) =
n∑

p=1

˙̄yp(t)yp(t) +
n∑

p=1

ȳp(t)ẏp(t)

≤
n∑

p=1

⎛

⎝−dp ȳp(t) +
n∑

q=1

( f̄q(xq(t)) − f̄q(x̆q))ā
∗
pq(t)

+
n∑

q=1

( f̄q(xq(t − ς(t))) − f̄q(x̆q))b̄
∗
pq(t)
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−kp ȳp(t)
)
yp(t) +

n∑

p=1

ȳp(t)

⎛

⎝−dp yp(t) +
n∑

q=1

a∗
pq(t)( fq(xq(t)) − fq(x̆q))

+
n∑

q=1

b∗
pq(t)( fq(xq(t − ς(t))) − fq(x̆q)) − kp yp(t)

⎞

⎠

≤ −
n∑

p=1

⎛

⎝2dp + 2kp − �̃1m
2
p − 1

�̃1

n∑

q=1

ãpq ¯̃apq − 1

�̃2

n∑

q=1

b̃pq
¯̃bpq

⎞

⎠ ȳp(t)yp(t)

+ �̃2

n∑

p=1

m2
p ȳp(t − ς(t))yp(t − ς(t))

≤ −γ1V (t) + γ2V (t − ς(t)), (18)

where �̃1, �̃2 are two constants.
In view of Lemma 2.3, we have

V (t) ≤ max−ς≤θ≤0
V (θ)e−r t , (19)

where r is the solution of the following equation:

γ1 − γ2e
−r� − r = 0.

According to the definition of V (t), one has:

‖x(t) − x̆‖1 ≤ max−ς≤θ≤0
‖ζ(θ) − x̆‖1e−r t . (20)

By Definition 2.2, one can conclude that the trivial solution system (9) is globally
exponentially stable. This completes the proof. ��
Corollary 3.1 For two given assumptions (A1)–(A2), the trivial solution of (9) is glob-
ally asymptotically stable under the following controller:

u p(t) = −kp yp(t), (21)

where

2kp > −2dp + σ1m
2
p + 1

σ1

n∑

q=1

ãpq ¯̃apq + 1

σ2

n∑

q=1

b̃pq
¯̃bpq ,

σ2 max
p

m2
p < (1 − �),

in which σ1, σ2 are two constants.
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Proof Consider a functional defined by:

V (t) =
n∑

p=1

ȳp(t)yp(t) +
∫ t

t−ς(t)
ȳp(s)yp(s). (22)

Then, calculating the time derivative of V (t) along with (12) gives:

V̇ (t) ≤ −
n∑

p=1

⎛

⎝2dp − 1 − σ1m
2
p − 1

σ1

n∑

q=1

ãpq ¯̃apq − 1

σ2

n∑

q=1

b̃pq
¯̃bpq

⎞

⎠ ȳp(t)yp(t)

+ (σ2 max
p

m2
p − (1 − �))

n∑

p=1

ȳp(t − ς(t))yp(t − ς(t)) < 0.

(23)

Hence, we can conclude that the trivial solution of (9) is globally asymptotically
stable. The proof is thus completed. ��
Remark 3.3 To derive the main conclusions of this paper, two different control strate-
gies are proposed, i.e., adaptive controller and feedback controller, from which one
can easily find that the control gain in the adaptive controller can be adjusted according
to system parameters, which is very different with the feedback controller.

4 Numerical Example

This section is devoted to verifying the effectiveness of the obtained theoretical results,
which can further highlight the conclusions furnished by the proposed methodology.

Example 1 Consider the following two-dimensional memristive neural networks:

a11(x1(t)) =
{
0.6 + 1.2i + 0.6 j + 0.57k, |x1(t)| ≤ 0,
0.8 + 1.1i + 0.7 j + 0.3k, |x1(t)| > 0,

a12(x1(t)) =
{−0.2 − 0.2i − 0.12 j − 0.13k, |x1(t)| ≤ 0,

−0.1 − 0.1i − 0.2 j − 0.1k, |x1(t)| > 0,

a21(x2(t)) =
{−0.2 − 0.2i − 1.1 j − 0.7k, |x2(t)| ≤ 0,

−0.1 − 0.9i − 1 j − 0.6k, |x2(t)| > 0,

a22(x2(t)) =
{
0.5 + 1.2i + 1.2 j + 0.19k, |x2(t)| ≤ 0,
0.8 + 1.1i + 1.23 j + 0.1k, |x2(t)| > 0,

b11(x1(t)) =
{−1.5 − 0.35i − 0.5 j − 0.5k, |x1(t)| ≤ 0,

−1.5 − 0.5i − 0.45 j − 0.25k, |x1(t)| > 0,

b12(x1(t)) =
{−0.11 − 0.1i − 0.1 j − 0.1k, |x1(t)| ≤ 0,

−0.1 − 0.1i − 0.2 j − 0.6k, |x1(t)| > 0,
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b21(x2(t)) =
{−0.3 − 0.28i − 0.2 j − 0.28k, |x2(t)| ≤ 0,

−0.28 − 0.2i − 0.28 j − 0.28k, |x2(t)| > 0,

b22(x2(t)) =
{−0.25 − 1i − 1.5 j − 0.9k, |x2(t)| ≤ 0,

−0.5 − 0.7i − 1.5 j − 0.7k, |x2(t)| > 0.

Furthermore, d1, d2 are chosen as d1 = d2 = 2, the activation functions are
described by f (s) = 0.1 tanh(s). It can be easily verified that the activation functions
satisfying the condition derived in (A1) with F1 = F2 = 0.1.

Based on the above parameters, a straightforward calculation from Theorem 3.2
gives:

ν1 

2∑

q=1

(a+
1q − a−

1q)Fq +
2∑

q=1

(b+
1q − b−

1q)Fq

= 0.031 + 0.015i − 0.013 j − 0.099k,

ν2 

2∑

q=1

(a+
2q − a−

2q)Fq +
2∑

q=1

(b+
2q − b−

2q)Fq

= 0.067 − 0.102i + 0.005 j − 0.001k.

Thus, under the adaptive controller (10), one can choose ν1 = ν2 = 0.07 + 0.02i +
0.02 j + 0.01k. Hence, the conditions in Theorem 3.2 are corrected. Then, the trivial
solution of the memristive system (9) can be stabilized by the adaptive controller (10).

In the numerical simulations, the delay is taken as ς(t) = 0.5+0.2 sin(2t). Besides,
set η1 = η2 = 0.5. The state response with the above conditions is shown in Fig. 1,
from which one can see that the states tend to be zero with respect to t , and the control
parameters ϑ(t) turn out to be constants eventually. The above numerical simulations
are in accordance with our main results.

Remark 4.1 By using the continuous linear state-feedback control method, Wu and
Zeng [30] investigated the exponential stabilization of the delayed memristive neural
networks. Based on the Lyapunov–Krasovskii functional method and free weight-
ing matrix technique, Wen et al. [29] also studied the exponential stabilization
problem of memristive neural networks. By comparison, we can find the above
mentioned works are derived based on the LMIs. However, in this paper, the main
conclusions are proposed in the form of algebraic inequality, which is very easy to
verify.

Besides, the aforementioned memristive system does not involve quaternion con-
nection weights and active functions. For the high-dimensional neural networks,
complex-valued neural networks are known as an effective solution for tasks requiring
two-dimensional input vectors, while quaternion neural networks are able to learn the
local relations that exist within its components through the Hamilton product, which
is much more practical to tackle with the multidimensional data in real world. Thus,
the conclusions derived in this paper are more general.
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Fig. 1 Time evolutions of the states ỹp(t) and trajectories of control parameters ϑp(t), p = 1, 2

Example 2 The highlight of this example is to expound the effectiveness of the tech-
nical analysis given in Theorem 3.3 by considering the system expressed in (3) with
coefficients given below:

a11(x1(t)) =
{
1.8 + 1.9i + 1.7 j + 1.9k, |x1(t)| ≤ 0,
1.7 − 1.2i + 1.67 j + k, |x1(t)| > 0,

a12(x1(t)) =
{−0.1 − 0.1i − 0.09 j − 0.11k, |x1(t)| ≤ 0,

−0.2 + 0.1i − 0.17 j − 0.2k, |x1(t)| > 0,

a21(x2(t)) =
{−2.7 − 3.7i − 3.4 j − 1.7k, |x2(t)| ≤ 0,

−2.3 − 3.2i − 3.5 j − 1.3k, |x2(t)| > 0,

a22(x2(t)) =
{
3.8 + 3.9i + 2.7 j + 3.7k, |x2(t)| ≤ 0,
3 + 3.2i + 2.9 j + 3.1k, |x2(t)| > 0,

b11(x1(t)) =
{−1.5 − 1.7i − 1.5 j − 1.5k, |x1(t)| ≤ 0,

−1.3 − 1.34i − 1.3 j − 1.1k, |x1(t)| > 0,

b12(x1(t)) =
{−0.1 − 0.2i − 0.1 j − 0.12k, |x1(t)| ≤ 0,
0.1 + 0.09i + 0.1 j + 0.1k, |x1(t)| > 0,
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Fig. 2 Time evolutions of the states y(t) without any controller

b21(x2(t)) =
{−0.3 − 0.32i − 0.28 j + 0.3k, |x2(t)| ≤ 0,
0.2 + 0.22i + 0.18 j + 0.1k, |x2(t)| > 0,

b22(x2(t)) =
{−2 − 2.2i − 1.9 j − 2.2k, |x2(t)| ≤ 0,

−2.5 − 2.4i − 2.9 j − 2.1k, |x2(t)| > 0.

Besides, d1 = d2 = 2, the delays are selected as ς(t) = 0.5 + 0.1 sin(t), the
active functions are fq(xq(t)) = 0.1 tanh(xq(t)), which comply with the restrictions
appeared in (A1) with mq = 0.1, Fq = 0.1, q = 1, 2.

Besides, set �̃1 = �̃2 = 5, then, a direct consequence of the above parameters and
the developed conditions in Theorem 3.3 gives:

2k1 ≥ −2d1 + �̃1m
2
1 + 1

�̃1

2∑

q=1

ã1q ¯̃a1q + 1

�̃2

2∑

q=1

b̃1q
¯̃b1q = 0.67,

2k2 ≥ −2dp + �̃1m
2
p + 1

�̃1

n∑

q=1

ãpq ¯̃apq + 1

�̃2

n∑

q=1

b̃pq
¯̃bpq = 14.57.
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Fig. 3 Time evolutions of the states y(t) with the proposed controller (16)

Thus, one can choose k1 = 2, k2 = 7.5 and design the control gains as

γ1 = min
p

⎛

⎝2dp + 2kp − �̃1m
2
p − 1

�̃1

n∑

q=1

ãpq ¯̃apq − 1

�̃2

n∑

q=1

b̃pq
¯̃bpq

⎞

⎠ = 0.43,

γ2 = �̃2 max
p

m2
p = 0.05,

which implies γ1 > γ2 > 0.
Now, all the conditions derived in Theorem 3.3 are satisfied. The stability of the

trivial solution to the controlled system (8) with the designed controller (16) can be
shown by the simulation results illustrated in Figs. 2 and 3. The state trajectories of (8)
without controller are plotted in Fig. 2, while Fig. 3 exhibits the transient behaviors
with the control strategy. As a result, one can see that the control technique performs
as expected.

5 Conclusion

This paper studies a novelmemristor systemwith the states, connectionweights aswell
as active functions taking values in quaternion field. Based on the theory of set-valued
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mapping, differential inclusion and vector ordering approach, a comprehensive set of
results to ensure the existence of the EP and its stability analysis are developed. What
should be pointed is that a partial order is proposed in this paper, which makes the
closed convex hull derived by two different quaternion-valued connections meaning-
ful. The analysis motivated by this study suggests some new and interesting dynamical
phenomena. In the end, the validity of the proposedmethodology is tested by numerical
examples.
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