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Abstract
In this paper, the cooperative adaptive fault-tolerant tracking control problem of high-
order nonlinearmulti-agent systemswith signal transmission faults is studied.A neural
network-based adaptive fault-tolerant control scheme is proposed, which guarantees
that all followers asymptotically synchronize to a leader with tracking errors converg-
ing to a small neighborhood of the origin in spite of signal transmission faults. Based
on algebraic graph theory and Lyapunov theory, the analysis of stability and parameter
convergence of the proposed algorithm are conducted. Finally, an example is provided
to validate the theoretical results.

Keywords Cooperative control · Fault-tolerant control · Multi-agent systems ·
Signal transmission faults · Nonlinear systems

1 Introduction

In the research field of multi-agent systems, due to the greater efficiency and opera-
tional capability, the distributed cooperative control has attracted extensive attention
from a large number of domestic and foreign researchers in the past two decades [1,17].
Many results have been available for the consensus control problem of multi-agents
systems [8,16,22,27]. The fundamental research on cooperative control of multi-agent
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systems mainly included cooperative regulator problems and cooperative tracking
problems. As the basis of distributed cooperative control of multi-agent systems, the
consensus problem has attracted researchers’ interests [8]. In [1], a method was pro-
posed for the stability of the Vicsek model and proved that the first-order agent system
can achieve consensus under the undirected communication topology. In addition,
Jadbabaie et al. changed the Vicsek model and studied a model with leader–follower
form in [9]. In [16], the consensus problem was investigated for single integrator
multi-agent systems and proposed a basic framework for multi-agent system consen-
sus algorithm. It turned out that balanced digraphs played a critical role in addressing
consensus problems. Based on the convexity theory with the Lyapunov method, the
authors solved the consensus problem for discrete multi-agent systems. It pointed out
that as long as the coupling relationship between the agentsmeet certain convexity con-
ditions and the communication structure is connected, the behavior of the multi-agent
system will eventually become consensus [15]. In [18], the form of communication
network was extended to weighted directed communication topology, and the authors
proposed the sufficient condition for consensus. In [27], the synchronization problem
was studied for networked higher-order nonlinear systems with an active leader, and
a robust adaptive sliding mode control scheme was proposed. In [24], a distributed
control method was proposed to solve the distributed consensus tracking problems
of multi-agent systems. In [20], the consensus problem was investigated for uncer-
tain second-order nonlinear multi-agent systems with unknown nonlinear dead zone.
In [29], the finite-time consensus tracking control problem was studied for uncertain
nonlinear multi-agent systems. However, the above studies do not take into account
the situation, in which the system becomes faulty.

In general, actuators, sensors and components may become faulty in practical appli-
cation and these faults may cause system instability, which can lead to catastrophic
consequences. Therefore, many experts have proposed effective fault-tolerant control
methods to improve the system reliability and ensure the stability of the controlled sys-
tem in all situations [2–5,7,19,25,26,28]. In [21], a novel cooperative adaptive fuzzy
tracking control scheme was proposed to guarantee that all followers asymptotically
synchronize a leader in spite of actuator faults. The leader-following consensus prob-
lem was studied for multi-agent systems in [23], where it was assumed that there exist
gain and bias transmission nonlinearities in the links in the communication network.
Two distributed adaptive control schemes were designed to compensate for the faults.
In [13], the finite-time fault-tolerant control problem was investigated for multiple-
input multiple-output nonlinear systems. However, only actuator faults are considered
in [3–5,12–14,21,30].

In this paper, we investigate the cooperative adaptive fault tolerant tracking control
problem of high-order multi-agent systems and propose an active fault-tolerant control
scheme against signal transmission faults. Compared with the results in [8,15,20,24,
27,29], signal transmission faults in communication network are considered, and a
novel distributed adaptive control method is designed.

The rest of paper is organized as follows. In Sect. 2, the basic graph theory and
radial basis function neural networks are introduced. The problem under study is
formulated. In Sect 3, the distributed adaptive control scheme is designed. Based on
Lyapunov theory, the closed-loop system stability analysis is developed in Sect 4.
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Simulation results and discussion are reported in Sect. 5. The conclusion is drawn in
Sect. 6.
NotationsThroughout this paper, R, RN denote the real numbers and the real n vectors,
respectively; | · | is the absolute value of a real number; || · || is the Euclidean norm
of a vector; tr{·} is the trace of a matrix; σ(·) is the set of singular values of a matrix;
σ̄ (·) is the maximum singular value of a matrix; (·) is the minimum singular value of
a matrix; matrix P > 0 means P is positive definite.

2 Preliminaries

2.1 Basic Graph Theory and Notations

Let G = (υ, E) be a weighted digraph, υ = (υ1, . . . , υN ) is the nonempty set of
nodes/agents, E ⊆ υ × υ is the set of edges, (υk, υ j ) ∈ E means υ j can obtain
information from υk . Define an adjacency matrix A = [akj ] ∈ RN×N with akj > 0
if (υk, υ j ) ∈ E ; otherwise, akj = 0. In this paper, it is assumed that akk = 0 and the
topology is fixed, i.e., A is time invariant. Define dk = ∑N

j=1 akj as the weighted in-

degree of node k and D = diag(d1, . . . , dN ) ∈ RN×N as in-degree matrix. The graph
Laplacian matrix is L = [lk j ] = D − A ∈ RN×N . Let 1 = [1, . . . , 1]T ∈ RN×1 with
appropriate dimension; then, L1 = 0 . We use the set Nk to describe all neighboring
agents of υk , i.e.,Nk = { j |(υ j , υk) ∈ E}.

2.2 Problem Formulation

In this paper, we consider a team of N + 1 agents consisting of N followers and one
leader. The dynamics of the kth follower agent is described as

{
ẋk,i (t) = xk,i+1(t), i = 1, . . . , nk − 1

ẋk,nk (t) = fk(x̄k) + uk(t) + hk(t)
(1)

where k = 1, . . . , N , nk denotes the order number, xk,i ∈ R denotes the i th state and
x̄k = [xk,1, . . . , xk,nk ]T ∈ Rnk denotes the state vector of node k; fk(x̄k) ∈ R is an
unknown continuous function; uk ∈ R is the control input; hk(t) ∈ R is an external
disturbance, which is unknown but bounded.

The dynamics of the leader is given by

{
ẋ0,i (t) = x0,i+1(t)

ẋ0,n0(t) = f0(x̄0, t)
, i = 1, . . . , n0 − 1 (2)

where n0 denotes the order number, x0,i ∈ R denotes the i th state and x̄0 =
[x0,1, . . . , x0,n]T ∈ Rn0 is the state vector of the leader; f0(x̄0, t) ∈ R is piece-
wise continuous in time t and locally Lipschitz in x̄0 with f0(0, t) = 0 for all ∀t ≥ 0
and x̄0 ∈ Rn .
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In this paper, we assumed n0 = n1 = · · · = nk = n.
Define xi = [x1,i , . . . , xN ,i ]T ∈ RN , (1) can be written in the following compact

form: {
ẋi (t) = xi+1(t)

ẋn(t) = f (x̄) + u(t) + h(t)
, i = 1, . . . , n − 1 (3)

where f = [ f1, . . . , fN ]T = [ f1(x̄1), . . . , fN (x̄N )]T, u = [u1, . . . , uN ]T, x̄ =
[x̄T1 , . . . , x̄TN ]T, h = [h1, . . . , hN ]T = [h1(t), . . . , hN (t)]T.

Under normal condition (no fault), define the i th tracking error for follower k as
follows:

δk,i = xk,i − x0,i , i = 1, . . . , n, k = 1, . . . , N (4)

Let δi = [δ1,i , . . . , δN ,i ]T ∈ RN , then

δi = xi − x0,i (5)

where x0,i = [x0,i , . . . , x0,i ]T ∈ RN .
The control objective of this paper is to design a distributed controller u for each fol-

lower such that each follower tracks the leader and the tracking error δi (i = 1, . . . , n)

converges to the small neighborhoods of the origin.
Define the neighborhood synchronization error

ek,i (t) =
∑

j∈Nk

ak j (x j,i − xk,i ) + bk(x0,i − xk,i ) (6)

Note that if the node k can obtain the leader information, then bk > 0; otherwise,
bk = 0;

Define the following notations: ei = [e1,i , . . . , eN ,i ]T ∈ RN , f
0

= [ f0(x0, t), . . . ,
f0(x0, t)]T ∈ RN , B = diag{b1, . . . , bN } ∈ RN×N .
The above tracking error can be written as:

{
ėi (t) = ei+1(t) , i = 1, . . . , n − 1

ėn(t) = −(L + B)( f + u(t) + h − f
0
)

(7)

Define the new augmented graph as Ḡ = {ῡ, Ē}, ῡ = {υ0, υ1, . . . , υN } and Ē ⊆
ῡ × ῡ.

It is well known that information transmission in multi-agent systems is via com-
munication network. There is a communication link between each two agents. For
example, there are three agents k, j and h. Agents h and j are the neighbors of agent
k, which can obtain the information from agent k, shown in Fig. 1. From Fig. 1, it is
easily seen that there exist two communication links. One is used for the signal trans-
mission between agents k and j , and the other one is used for the signal transmission
between agents k and h.

In practical applications, communication links in the network may become faulty.
From Fig. 1, when the state of node k is transmitted to node j , the polluted state
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Fig. 1 Information transmission with faults

obtained by node j is
x f ,k,i = xk,i + g j,k,i (8)

where g j,k,i is an unknown real constant, which denotes a bounded signal transmission
fault. When the state of node k is transmitted to node h, the polluted state obtained by
node h is

x f ,k,i = xk,i + gh,k,i (9)

where gh,k,i is an unknown real constant, which denotes bounded a signal transmission
fault.

In this paper, for convenience, let g j,k,i = gh,k,i . The following fault model is
considered:

x f ,k,i = xk,i + gk,i , x f ,0,i = x0,i + g0,i

where gk,i and g0,i are unknown bounded constant, which, respectively, denote fol-
lower and leader communication link faults.

Define the following symbols:

x f ,k = x̄k + gk, x f = x̄ + g

where x f ,k = [x f ,k,1, . . . , x f ,k,nk ]T, gk = [gk,1, . . . , gk,nk ]T, x f = [xTf ,1, . . . , xTf ,N ]T,
g = [gT1 , . . . , gTN ]T. If signal transmission becomes faulty, the neighborhood synchro-
nization error ea,k,i is

ea,k,i =
∑

j∈Ni

ak j (x f , j,i − x f ,k,i ) + bk(x f ,0,i − x f ,k,i )

=
∑

j∈Ni

ak j [(x j,i + g j,i ) − (xk,i + gk,i )]

+ bk[(x0,i + g0,i ) − (xk,i + gk,i )]
= ek,i +

∑

j∈Ni

ak j (g j,i − gk,i ) + bk(g0,i − gk,i )

(10)
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Let ωk = ∑

j∈N1

akj (g j,1 − gk,1) + bk(g0,1 − gk,1), then

ea,k,1 = ek,1 + ωk (11)

The following assumptions are made for cooperative tracking problems.

Assumption 1 The augmented graph Ḡ contains a spanning tree with the root node
being the leader node 0.

Assumption 2 There exists a positive constant M0 ∈ R and M f 0 ∈ R such that
||x̄0(t)|| ≤ M0, | f0(x̄0, t)| ≤ M f 0.

Assumption 3 There exists a positive constant Mh,k > 0 ∈ R k = 1, . . . , N such
that |hk(x̄k, t)| ≤ Mh,k .

Assumption 4 There exists a positive constant Mω,k > 0 ∈ R k = 1, . . . , N such
that |ωk | ≤ Mω,k .

Lemma 1 [27] Define q = [q1, . . . , qN ] = (L + B)−11, 1 = [1, . . . , 1]T ∈ RN ,
P = diag{pi } = diag{1/qi }, Q = P(L + B) + (L + B)TP, then P > 0 and Q > 0.

Lemma 2 [27] ||ϕi || ≤ ||ea,i ||/σ(L+B), i = 1, . . . , n,where σ(L+B) is aminimum
singular value of matrix L + B.

2.3 Neural Networks

Neural networks have been widely used in modeling and controlling of nonlinear
systems. The feasibility of applying neural networks to unknown dynamic systems
control has been demonstrated in many studies [10,11]. As can be seen from Fig. 2,
radial basis function (RBF) neural networks (NNs) is presented in

fk(x̄k) = θTk ξk(Z̄k) + εk(Z̄k)

Fig. 2 RBF neural networks (in normal)
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where εk(Z̄k) denotes the optimal approximation error, Z̄k = [zk,1, . . . , zk,pk ]T =
[x̄Tk , 1]T, ξk(Z̄k) = [

ζk,1(Z̄k), . . . ζk,NW (Z̄k)
]T
, NW is the number of the NNs.

ζk,i (Z̄k) = exp(−∑ψk
j=1

(zk, j−qk,i, j )2

ck,i 2
), ψk is the dimension of Zk , where ck,i > 0

is the center of the receptive field, and qk,i, j is the width of the Gaussian function. Let

θ
∗
k = arg min

θ∈Ω θ

[

sup
z∈Ωz

∣
∣
∣θTk ξk(Z̄k) − fk(x̄k)

∣
∣
∣

]

Ωθ = {θk |||θk || ≤ βθ }

with a constant βθ > 0, Ωz denotes an enough large compact set.
From [6], we know NNs can approximate any continuous function to any accuracy

on a compact set.
From Fig. 2, we know the input of NNs contain the state. In this paper, signal

transmission faults are considered, the state x̄k cannot taken as the input of NNs,
and only x f ,k is accessed. Therefore, we use the neural network to approximate the
unknown smooth function fk(x̄k) in system (1). From Fig. 3, we know

fk(x̄k) = θ∗T
k ξk(Z̄k) + εk

= θ∗T
k ξk(Z̄ f ,k) − θ∗T

k ξk(Z̄ f ,k) + θ∗T
k ξk(Z̄k) + εk

= θ∗T
k ξk(Z̄ f ,k) − θ∗T

k [ξk(Z̄ f ,k) − ξk(Z̄k)] + εk

(12)

Assumption 5 There exists a positive constant Mε,k > 0 ∈ R k = 1, . . . , N such
that|εk | ≤ Mε,k .

Fig. 3 RBF neural networks (with faults)
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3 Main Results

Define the sliding mode error for the kth follower as follows:

sk =
(
d

dt
+ λ

)n−1

ek,1(t) =
n−1∑

i=1

ck,i ek,i (t) + ek,n(t), k = 1, . . . , N (13)

where ck,i = Ci−1
n−1λ

n−i , λk > 0. Let ēk(t) = [ek,1(t), . . . , ek,n(t)]T.
Lemma 3 [21] Let sk be defined by (13), and then

(1) if sk = 0, then limt→∞ēk(t) = 0;
(2) if |sk | ≤ αk, ēk(0) ∈ Ωαk , then ek(t) ∈ Ωαk ,∀t ≥ 0;
(3) if |sk | ≤ αk, ēk(0) /∈ Ωαk , then ∃Tk = (mk −1)/λk,∀t ≥ Tk, ēk(t) ∈ Ωαk ; where

Ωαk = {ēk(t)||ek,i | ≤ 2( j−1)λ
j−mk
k αk, i = 1, 2, . . . , n, j = 1, 2, . . .mk}.

Let c1,i = · · · = cN ,i = λi , λn = 1, then

sk = λ1ek,1 + · · · + λnek,n (14)

Define the global sliding mode error s = [s1, . . . , sN ]T, then

s = λ1e1 + · · · + λnen (15)

Differentiating s, we have

ṡ = λ1ė1 + · · · + λnėn =
∑n−1

i=1
λi ei + ėn

= γ − (L + B)( f (x̄) + u + h − f
0
)

(16)

where γ = ∑n−1
i=1 λi ei+1.

Let ξ f ,k = θ∗T
k [ξ(Z̄ f ,k) − ξ(Z̄k)], ξ f = [ξ f ,1, . . . , ξ f ,N ]T, ε = [ε1, . . . , εN ]T,

θ∗T = diag(θ∗T
1 , . . . , θ∗T

N ), ξ = [ξT1 (Z̄ f ,1), . . . , ξ
T
N (Z̄ f ,N )]T, then

f (x̄) = θ∗Tξ − ξ f + ε

where ξ f is a bounded vector function.
If the signal transmission becomes faulty, sk is not obtained and only s f ,k is accessed

which is defined as follows:

s f ,k =
(
d

dt
+ λ

)n−1

ea,k,1(t) =
n−1∑

i=1

ck,i ek,i (t) + ek,n(t)

+ λ1

⎡

⎣
∑

j∈Ni

ak j (g f , j,1 − g f ,k,1) + bk(g f ,0,1 − g f ,k,1)

⎤

⎦

= sk + λ1ωk

(17)
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Let s f = [s f ,1, . . . , s f ,n]T, ω = [λ1ω1, . . . , λ1ωn]T , then

s f = s + ω (18)

Differentiating s f with respect to time t , we have

ṡ f = ṡ + ω̇ = γ − (L + B)( f (x̄) + u + h − f
0
) (19)

Define the following Lyapunov function

Vs = sTPs/2 (20)

where P = PT > 0 ∈ Rn×n .
Differentiating Vs with respect to time t , we have

V̇s = sTP
[
γ − (L + B)(θ∗Tξ − ξ f + ε + u + h − f

0
)
]

= sTPγ − sTP(L + B)u − sTP(D + B)θ∗Tξ

+ sTPAθ∗Tξ + sTP(D + B)ξ f − sTPAξ f

− sTP(D + B)(ε + h − f
0
) + sTPA(ε + h − f

0
)

(21)

Define the following control law:

u = (D + B)−1γ − f̂ − sgn((s f − ω̂)TP(D + B)) ˆ̄Mεh f + m(s f − ω̂) (22)

where f̂ = [ f̂1, . . . , f̂N ]T, f̂k = θ̂Tk ξk(Z̄ f ,k) is the estimate of fk(Z̄ f ,k). Ps,k is the

kth element of (s f − ω̂)TP(D + B), ˆ̄Mεh f = [ ˆ̄Mεh f ,1, . . . ,
ˆ̄Mεh f ,N ]T, M̂εh f ,k is the

estimate of Mεh f = Mε,k + Mh,k + M f 0. m > 0 ∈ R is a design parameter, which
satisfies

mσ(Q)/2 − (5r + 2rm + λ̄2/4rλ2)σ̄ (A)σ̄ (P) − r σ̄ (P) > 0

Let θ̂T = diag(θ̂T1 , . . . , θ̂TN ), which θ̂Tk is the estimates of θ∗T
k .

Define the notations as follows:

θ̃ = θ∗ − θ̂ , ˜̄Mεh f = M̄εh f − ˆ̄Mεh f , ω̃ = ω − ω̂
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Substituting control law (22) in (21), one has

V̇s = − msTP(D + B)s + msTPAs − sTP(D + B)θ̃Tξ

− sTP(D + B) sgn(sTP(D + B)) ˜̄Mεh f + sTPAM̄εh f

+ msTPAω − msTPAω̂ + sTPAθ̃Tξ − sTPAξ f

− msTP(D + B)ω̃ − sTPA sgn(sTP(D + B)) ˆ̄Mεh f

+ sTPA(D + B)−1γ + sTP(D + B)ξ f

(23)

Since

−sTPAξ f ≤ σ̄ (P)σ̄ (A)rsTs + σ̄ (P)σ̄ (A)/4rξTf ξ f

sTPAθ̃Tξ ≤ σ̄ (P)σ̄ (A)rsTs + σ̄ (P)σ̄ (A)/4rξTθ̃ θ̃Tξ

msTPAω ≤ σ̄ (P)σ̄ (A)rmsTs + σ̄ (P)σ̄ (A)/4rmωTω

−msTPAω̂ ≤ σ̄ (P)σ̄ (A)rmsTs + σ̄ (P)σ̄ (A)/4rmβ2
ω

sTPAM̄εh f ≤ σ̄ (P)σ̄ (A)rsTs + σ̄ (P)σ̄ (A)/4r M̄T
εh f M̄εh f

sTPA(D + B)−1γ ≤ σ̄ (P)σ̄ (A)rsTs + σ̄ (P)σ̄ (A)/4rγ Tγ

sTP(D + B)ξ f ≤ σ̄ (P)rsTs + σ̄ (P)/4rξTf (D + B)T(D + B)ξ f

−sTPAsgn(sTP(D + B)) ˆ̄Mεh f ≤ σ̄ (P)σ̄ (A)rsTs + σ̄ (P)σ̄ (A)/4rβ2
M

where r > 0 ∈ R is a design parameter, and M̄εh f = [Mεh f ,1, . . . , Mεh f ,N ]T, one has

V̇s ≤ −msTP(L + B)s − sTP(D + B)θ̃Tξ − msTP(D + B)ω̃

− sTP(D + B) sgn(sTP(D + B)) ˜̄Mεh f + σ̄ (P)σ̄ (A)/4rγ Tγ

+ r σ̄ (P)(5σ̄ (A) + 2mσ̄ (A) + 1)sTs + σ̄ (P)/4rξTf (D + B)T(D + B)ξ f

+ σ̄ (P)σ̄ (A)/4r(ξTθ̃ θ̃Tξ + ξTf ξ f + β2
M + mβ2

ω + mωTω + M̄T
εh f M̄εh f )

(24)
Since θ∗

k and θ̂k are bounded, θ̃Tξ is bounded. From Assumptions 2, 3 and 5, M̄hε f

is bounded. Adaptive law (31) ensures that || ˆ̄Mhε f || ≤ βM . Further, ˜̄Mhε f is bounded
as well.

Since θ̃Tξ, M̄hε f and ω are bounded, there exists an appropriate parameter r , then

σ̄ (P)σ̄ (A)/4r(ξTθ̃ θ̃Tξ + ξTf ξ f + β2
M + mβ2

ω + mωTω + M̄T
εh f M̄εh f ) ≤ μs1

σ̄ (P)/4rξTf (D + B)T(D + B)ξ f ≤ μs2

Since

γ 2
k =

n−1∑

i=1

λ2i e
2
k,i+1 ≤ λ̄2s2k /λ

2
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γ Tγ =
N∑

k=1

γ 2
k ≤

N∑

k=1

λ̄2

λ2
s2k = λ̄2

λ2

N∑

k=1

s2k = λ̄2

λ2
sTs

where λ̄ = max{λ1, . . . , λn}, λ = min{λ1, . . . , λn}. Further, one has

V̇s ≤ − msTP(L + B)s + ((5r + 2rm + λ̄2/4rλ2)σ̄ (A) + r)σ̄ (P)sTs

− sTP(D + B)θ̃Tξ − sTP(D + B) sgn(sTP(D + B)) ˜̄Mεh f

− msTP(D + B)ω̃ + μs

(25)

where μs = μs1 + μs2, μs is a design parameter.
Define the Lyapunov function

Vθ = tr{θ̃Tθ̃}/2η1 + ˜̄MT

εh f
˜̄Mεh f /2η2 + ω̃Tω̃/2η3 (26)

where η1 > 0 ∈ R, η2 > 0 ∈ R, η3 > 0 ∈ R are design parameters.
Differentiating Vθ with respect to time t , we have

V̇θ = −tr{θ̃T ˙̂
θ}/η1 − ˜̄MT

εh f
˙̄̂
Mεh f /η2 − ω̃T ˙̂ω/η3 (27)

Define Lyapunov function
V0 = Vs + Vθ (28)

Differentiating V0 with respect to time t , we have

V̇0 ≤ − msTP(L + B)s + ((5r + 2rm + λ̄2/4rλ2)σ̄ (A) + r)σ̄ (P)sTs

− sTP(D + B)θ̃Tξ − sTP(D + B) sgn(sTP(D + B)) ˜̄Mεh f

− msTP(D + B)ω̃ − θ̃T
˙̂
θ/η1 − ˜̄MT

εh f
˙̄̂
Mεh f /η2 − ω̃T ˙̂ω/η3 + μs

(29)

Define the following adaptive laws:

˙̂
θ =

{
τθ , if ||θ̂ || < βθ or ||θ̂ || = βθ and θ̂Tτθ ≤ 0

τθ − θ̂ θ̂T

||θ̂ ||2 τθ , if ||θ̂ || = βθ and θ̂Tτθ > 0
(30)

˙̄̂
Mεh f =

⎧
⎪⎪⎨

⎪⎪⎩

τM , if || ˆ̄Mεh f || < βM or || ˆ̄Mεh f || = βM and ˆ̄MT
εh f τM ≤ 0

τM −
ˆ̄Mεh f

ˆ̄MT

εh f

|| ˆ̄Mεh f ||2
τM , if || ˆ̄Mεh f || = βM and ˆ̄MT

εh f τM > 0
(31)

˙̂ω =
{

τω, if ||ω̂|| < βω or ||ω̂|| = βω and ω̂Tτω ≤ 0

τω − ω̂ω̂T

||ω̂||2 τω, if ||ω̂|| = βω and ω̂Tτω > 0
(32)

where τθ = −η1ξ(s f − ω̂)TP(D + B) + ηθ θ̂ , τM = −η2 sgn((s f − ω̂)TP(D +
B))(s f − ω̂)TP(D + B) + ηM

ˆ̄Mεh f , τω = −η3mλ1(s f − ω̂)TP(D + B) + ηωω̂.
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ηθ > 0 ∈ R, ηM > 0 ∈ R, ηω > 0 ∈ R are design parameters. Note that project

operators are adopted to ensure that θ̂ , ˆ̄Mεh f and ω̂ are bounded.

4 Stability Analysis

Theorem 1 Considermulti-agent system (1)and leader node (2)underAssumptions1–
5. Using distributed control law (22) and adaptive laws (30)–(32), the tracking errors
δi (i = 1, . . . , n) are cooperative uniformly ultimately bounded and the tracking error
δi converges to the small neighborhoods of the origin.

Proof Define the Lyapunov function

V0 = sTPs/2 + tr{θ̃Tθ̃}/2η1 + ˜̄MT

εh f
˜̄Mεh f /2η2 + ω̃Tω̃/2η3

Differentiating V0 with respect to time t , we have

V̇0 = sTPγ − sTP(L + B)u − sTP(D + B)θ∗Tξ

+ sTPAθ∗Tξ + sTP(D + B)ξ f − sTPAξ f

− sTP(D + B)(ε + h − f
0
) + sTPA(ε + h − f

0
)

− tr{θ̃T ˙̂
θ}/η1 − ˜̄MT

εh f
˙̄̂
Mεh f /η2 − ω̃T ˙̂ω/η3

(33)

Substituting control law (22) and adaptive law (30)–(32) in (33), one has

V̇0 ≤ − msTP(L + B)s + ((5r + 2rm + λ̄2/4rλ2)σ̄ (A) + r)σ̄ (P)sTs

− ηθ

η1
tr{θ̃Tθ̂} − ηM

η2

˜̄MT

εh f
ˆ̄Mεh f − ηω

η3
ω̃Tω̂ + μs

(34)

Since
−ηθ

η1
tr{θ̃Tθ̂} ≤ − ηθ

2η1
tr{θ̃Tθ̃} + ηθ

2η1
tr{θ∗Tθ∗}

−ηM

η2

˜̄MT

εh f
ˆ̄Mεh f ≤ − ηM

2η2
˜̄MT

εh f
˜̄Mεh f + ηM

2η2
M̄T

εh f M̄εh f

−ηω

η3
ω̃Tω̂ ≤ − ηω

2η3
ω̃Tω̃ + ηω

2η3
ωTω

one has

V̇0 ≤ − 1

2
msTQs + ((5r + 2rm + λ̄2/4rλ2)σ̄ (A) + r)σ̄ (P)sTs

− ηθ

2η1
tr{θ̃Tθ̃} − ηM

2η2
˜̄MT

εh f
˜̄Mεh f − ηω

2η3
ω̃Tω̃

+ ηθ

2η1
tr{θ∗Tθ∗} + ηM

2η2
M̄T

εh f M̄εh f + ηω

2η3
ωTω + μs

(35)
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From the previous analysis, we know θ∗, M̄εh f , ω are bounded. If ηθ , ηM , ηω and
η1, η2, η3 are chosen appropriately, then

ηθ

2η1
tr{θ∗Tθ∗} + ηM

2η2
M̄T

εh f M̄εh f + ηω

2η3
ωTω ≤ μθM

where μθM > 0 ∈ R is a design parameter.
Let μ0 = μs + μθM , then

V̇0 ≤ −λ0V0 + μ0

Further, one has

0 ≤ V0(t) ≤ μ0

λ0
+

(

V0(t0) − μ0

λ0

)

e−λ0(t−t0)

where λ0 = min
{
1/2mσ(Q)

σ̄ (P)
− (5r + 2rm+λ̄2/4rλ2)σ̄ (A) − r , ηθ

2η1
,

ηM
2η2

,
ηω

2η3

}
.

Let V0 = 1
2σ(P)M2, M > 0 ∈ R is a design parameter. Since σ(P)||s(t)||2 ≤

2Vs(t) ≤ 2V0(t), then ||s(t)|| ≤ √
2V0(t)/σ (P), ||s(t)|| ≤ M . Similarly ||θ̃ (t)|| ≤

√
η1M, || ˜̄Mεh f (t)|| ≤ √

η2M, ||ω̃|| ≤ √
η3M . According to the previous analysis,

we know s and ω are bounded, because s f = s + ω, so s f also is bounded. Since

|ek,i | ≤ 2i−1λi−n
k M , one has ||ei || ≤

√

N (2i−1λi−n
k M)

2
. According to (16), we can

know ||ea,i || ≤
√

N (2i−1λi−n
k M)

2+βω i = 1, . . . , n k = 1, . . . , N . FromLemma 2,
we can get the following result: from the previous analysis, s f (t) is cooperative uni-
form ultimate boundedness. Further, s f ,k(t) also are cooperative uniform ultimate
boundedness. Because ea,i (t) is bounded, from Lemma 2, one has δk,i are bounded.
And since the state of the leader is bounded, the state x f ,k are bounded as well.

5 Simulation Results

Consider a 5-node digraph G and a leader node described in Fig. 4. The dynamics of
the leader node is described as follows:

⎧
⎪⎨

⎪⎩

ẋ0,1(t) = x0,2(t)

ẋ0,2(t) = x0,3(t)

ẋ0,3(t) = −x0,1(t) − 1.5x0,2(t) − 2x0,3(t) + 2 sin(2t) + 4 cos(2t)
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Fig. 4 Topology of the
communication

The follower nodes are described by third-order nonlinear systems in the form of
(1) with

ẋ1,3(t) = −x1,1x1,2 + sin(x1,3) + u1 + h1
ẋ2,3(t) = x2,1 cos(x2,2) + 2x2,3 + u2 + h2
ẋ3,3(t) = −x3,1 + sin(x3,2) + u3 + h3

ẋ4,3(t) = (x4,1 + x4,2)
2 + 3x4,3 + cos(2t) + u4 + h4

ẋ5,3(t) = −2x5,1 + x5,2 + u5 + h5

In this paper, the disturbance hk is random constant and bounded by |hk | ≤
1. Choose the following initial states: x0 = [0, 1, 1]T, x1 = [1,−1, 0]T, x2 =
[0,−1,−2]T, x3 = [0, 1, 0]T, x4 = [1.5, 0, 0]T, x5 = [0, 1,−1]T.

From Fig. 1 and Lemma 1, we can know

A =

⎡

⎢
⎢
⎢
⎢
⎣

0 0 2 0 0
1 0 0 0 0
0 4 0 1 0
3 0 0 0 0
0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎦
B =

⎡

⎢
⎢
⎢
⎢
⎣

5 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎦
D =

⎡

⎢
⎢
⎢
⎢
⎣

2 0 0 0 0
0 1 0 0 0
0 0 5 0 0
0 0 0 3 0
0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎦

L =

⎡

⎢
⎢
⎢
⎢
⎣

2 0 −2 0 0
−1 1 0 0 0
0 −4 5 −1 0

−3 0 0 3 0
0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎦
L + B =

⎡

⎢
⎢
⎢
⎢
⎣

7 0 −2 0 0
−1 1 0 0 0
0 −4 5 −1 0

−3 0 0 3 0
0 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎦

q =

⎡

⎢
⎢
⎢
⎢
⎣

0.62
1.62
1.69
0.96
1.00

⎤

⎥
⎥
⎥
⎥
⎦
P =

⎡

⎢
⎢
⎢
⎢
⎣

1.59 0 0 0 0
0 0.61 0 0 0
0 0 0.59 0 0
0 0 0 1.04 0
0 0 0 0 1.00

⎤

⎥
⎥
⎥
⎥
⎦

Q =

⎡

⎢
⎢
⎢
⎢
⎣

11.16 0 −1.18 0 0
−1.59 0.61 0 0 0

0 −2.45 2.95 −1.04 0
−4.78 0 0 3.12 0

0 0 0 0 1.00

⎤

⎥
⎥
⎥
⎥
⎦
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Fig. 5 The state of the leader 0
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Fig. 6 Tracking error δ1

Further, we have the singular values of: 11.01, 4.03, 0.42, 2.36, 1.00. σ̄ (A) =
2.41, σ̄ (P) = 1.59, σ̄ (Q) = 11.01, σ̄ (D + B) = 1.00. In this simulation, we choose
m = 1, λ1 = 2, λ2 = 2, λ3 = 1, η1 = η2 = η3 = 100, ηθ = ηM = ηω = 0.01, μs =
μθM = 0.1, r = 100.
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Fig. 7 Tracking error δ2
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Fig. 8 Tracking error δ3

The simulation results are presented in Figs. 5, 6, 7 and 8. From Fig. 5, we can find
that the state of the leader is bound. From Figs. 6, 7 and 8, at the beginning, under
the normal controller, the tracking errors converge to the neighborhood of the origin.
When signal transmission faults occurred, we can find the tracking errors deviate
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from the neighborhood of the origin. However, if the signal transmission faults are
compensated for proposed fault tolerant controllers (22), we can obtain better tracking
control performance again. The simulation results have illustrated the effectiveness of
the proposed scheme.

6 Conclusions

In this paper, the cooperative adaptive fault-tolerant tracking control problem of high-
order nonlinear multi-agent systems with signal transmission faults is studied. Based
on the approximation capability of neural networks, an adaptive fault-tolerant control
scheme is proposed, which guarantees that all followers asymptotically synchronize
to a leader with tracking errors converging to a small adjustable neighborhood of
the origin. However, the topology among nodes considered in this paper is fixed. In
practical applications, the topologymay be variable. For example, a new node is added
to or removed from communication network. In the case, how to handle the cooperative
control problem of nonlinear multi-agent systems is important and challenging, which
is studied in our further research.
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