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Abstract
In this paper, a hybrid control strategy using appropriate switching between a set
of linear controllers is presented for stabilization of a class of hybrid systems with
input constraints. The input constraints under consideration are novel reverse poly-
topic constraints avoiding a set of specified input values. The design procedure of the
switching controllers is performed by solving a set of linear matrix inequalities for
the full state feedback case and by solving a set of bilinear matrix inequalities for the
output feedback case. Under the designed controllers, the closed-loop system is shown
to be globally uniformly pre-asymptotically stable if a specific set of matrix inequal-
ities ensuring the existence of a common Lyapunov function are satisfied. To avoid
the Zeno behavior, a tunable parameter related to the controller gains is introduced
and assessed. It is shown that the proposed switching control is superior to continuous
state feedback control with input constraints. In addition, besides continuous linear
systems, the proposed control strategy is applicable to hybrid or impulsive systems.
Numerical examples are included to illustrate the proposed results.
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1 Introduction

1.1 Motivation

Hybrid systems are ubiquitous in realistic systems due to their ability to capturemodels
having state variables that can evolve continuously (flows) and/or discretely (jumps).
In recent years, the study of stabilization in hybrid systems has received substantial
attention. This is mainly due to the increasing application of digital devices for the
control of real systems, such as robotics [9], power systems [7] and chemical processes
[25], and also for their flexibility, which allows us to overcome some fundamental
limitations of classical control. Particular motivation for the study of switching control
with input constraints comes from the fact that switching thrusters with constraints
are always employed as actuators, such as hydrazine, cold gas and pulsed plasma
thrusters.

1.2 RelatedWork

Numerous of dynamic systems have the characteristics of continuous-time systems
and discrete-time systems, generally referred to as hybrid dynamic systems or simply
hybrid systems. During the last years, the research on the analysis and control design
of such systems has received the attention of many academics. Recent progress in
the development of stability and control theory for hybrid dynamical systems has led
to a new framework [8]. In [6], a hybrid feedback control was proposed to trajectory
tracking of quadrotor-like vehicles. In addition, the fault detection problem of discrete-
time hybrid systems was addressed in [30]. Li et al. [16] studied the set stability of
switched Boolean networks with state-based switching. Impulsive system as one of
hybrid systems, its stability and controller design have attracted much attention. The
controller designs of hybrid impulsive systems were considered in [13,21,22,27]. The
authors in [15] derived some sufficient conditions ensuring stability and stabilization of
the impulsive systemswith unbounded time-varying delay. In [14,28], synchronization
of impulsive networks was addressed. For hybrid systems with input constraints, [1]
gave a constructive switching algorithm for finite state machines subject to state and
input constraints. By solving two specific linear matrix inequalities, [20] explored
stabilization of a class of time-delay hybrid systems with input constraint. The authors
in [29] proposed an impulse-based filtering scheme of a class of nonlinear systems
over sensor networks based on impulsive control theory and a comparison theorem. In
addition, the design of a switched Boolean networks with state and input constraints
using the semi-tensor product method was proposed in [17].

Input constraints exist in many actual control systems and pose significant chal-
lenges to controller design issues. In recent years, the problem of designing a controller
in the presence of input constraints has attracted more and more attention. To guar-
antee a globally stabilizing control law for arbitrarily small bounds on the input, the
system should have no eigenvalues with positive real part [12,26]. In general, one
can describe linear input constraints as a finite number of linear inequalities, which is
equivalent to a polyhedron as described in [3]. In Casau et al. [5] proposed a reverse
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polytopic input constraint model avoiding a specified set of input values where the
system states evolve continuously. Such constraints are likely to be applied to quad-
rotors that want to avoid free-fall conditions as mentioned in [10]. However, due
to limitations in these control methods, it is not appropriate to deal with the above
reverse polytopic input constraints. The common input control does not make full use
of the input values meeting the constraints, so the control performance is not good.
In [18], a switching method among multiple controllers to stabilize a linear system
with actuator constraints is proposed. Cai and Mijanovic in [4] provided a switching
control methodology to stabilize linear hybrid systems. Such a switching method can
jump between various input values that satisfy the constraint, and can improve the
control performance. This motivates us to consider switching controllers with input
constraints. Inspired by this, we consider the problem of stabilizing a class of hybrid
impulsive systems with reverse polytopic input constraints within the hybrid systems
framework in [8] and combining the matrix inequality techniques in [2,11].

1.3 Contributions

Tools for the analysis of stabilization of hybrid systems under switching control with
reverse polytopic input constraints are not yet available in the literature. In this paper,
we propose such an approach for the stabilization problem of hybrid systems, which
are ubiquitous in many cases such as impulsive systems, through switching feedback
control while avoiding a prescribed set of input values. The main idea in our con-
trol strategy is to ensure that the input constraints are always obeyed through proper
switching of a set of controllers. By [19], if each of the designed controllers for sub-
systems has a common Lyapunov function, then the stability of the closed-loop system
is independent of the switching sequence, which is the crux to design the controllers.
Then, the control problem can be tackled by solving a set of matrix inequalities. The
contributions of this paper include the following:

– We propose switching controllers with input constraints to stabilize a class of
hybrid impulsive systems.

– The design procedure of the switching controllers with reverse polytopic con-
straints is performed by solving a set of linear matrix inequalities for the full state
feedback case and by solving a set of bilinear matrix inequalities for the output
feedback case.

– We establish conditions for the global uniform pre-asymptotic stability of the
closed-loop system and design a parameter β related to the controller gains to
avoid the Zeno behavior.

1.4 Organization and Notation

The organization of the paper is as follows. We give some preliminaries on hybrid
systems in Sect. 2 and present the reverse polytopic constraints in Sect. 3. In Sect. 4,
we propose a switching control strategy with input constraints for stabilization of a
class of hybrid systems and numerical simulations are also given to verify the results.
Finally, Sect. 5 concludes the paper.
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Notation In this work, Rn denotes the Euclidean space of dimension n, with the
inner product 〈u, v〉 = u�v and for each v ∈ R

n , the induced norm | v |= √〈v, v〉.
R
m×n denotes m × n matrices with real entries. R denotes the set of real number and

R≥0 := [0,∞). The interior of a set S ⊂ R
n is denoted by int(S) and its closure is

denoted by cl(S). N denotes the set of natural numbers and N
+ represents the set of

numbers in N that are removed by 0. ei is the unit vector of the i th entry equal to
1 for each i ∈ {1, 2, . . . , n} and 1n denotes a vector where each entry is equal to 1.
Succinctly, we say u < v if e�

i u < e�
i v for each i ∈ {1, 2, . . . , n}. Similarly, there are

u > v, u ≤ v, u ≥ v. A set of n×n real symmetric matrices with positive eigenvalues
is expressed as Sn>0. For the sake of convenience, we use (u, v) in place of [u�v�]�,
where (u, v) ∈ R

n × R
m . For M : Rm ⇒ R

n , domM = {x ∈ R
m : M(x) �= ∅} and

the graph of M is the set gphM = {(x, y) ∈ R
m × R

n : y ∈ M(x)}. Let {Mi }∞i=1 be
a sequence of set-valued mappings Mi : Rm ⇒ R

n that is graphically convergent and
set M = gph-limi→∞Mi . Given a closed set A ⊂ R

n and | x |A:= inf y∈A | x − y |.
A function α : R≥0 → R≥0 is of class K if it is zero at zero, strictly increasing and
continuous. If α is unbounded, we say α ∈ K∞. A function ρ : R≥0 → R≥0 is
positive definite (PD), written ρ ∈ PD, if it is continuous, ρ(s) > 0 for every s > 0
and ρ(0) = 0. ∇V (x) denotes the gradient of a function V : Rn → R at x .

2 Hybrid Systems

The model of a hybrid system with state space Rn can be represented in the following
form {

ξ̇ ∈ F(ξ), ξ ∈ C,

ξ+ ∈ G(ξ), ξ ∈ D,
(1)

where ξ denotes the state of the system, C ⊂ R
n is the flow set, F : Rn ⇒ R

n is
the flow map, D ⊂ R

n is the jump set and G : Rn ⇒ R
n is the jump map. A hybrid

system with the data as above will be represented by the notationH := (C, F,D,G).
Solutions of continuous-time systems are parameterized by t ∈ R≥0, in other

words, by times, and solutions of discrete-time systems are parameterized by j ∈ N,
that is, by the number of jumps or discrete steps. For hybrid systems, it is natural to
suggest that solutions be parameterized by (t, j), where t denotes flow time and j
denotes the jump time, and its domain dom ξ ⊂ R≥0 × N is a hybrid time domain
[8]: For all (T , J ) ∈ dom ξ , dom ξ ∩ ([0, T ] × {0, 1, . . . , J }) can be written in the
form

⋃J−1
j=0

([t j , t j+1], j
)
for some finite sequence of times 0 = t0 ≤ t1 ≤ t2 ≤

· · · ≤ tJ . Given a hybrid time domain E , we have supt E = sup{t ∈ R≥0 : ∃ j ∈
N such that (t, j) ∈ E}, sup j E = sup{ j ∈ N : ∃ t ∈ R≥0 such that (t, j) ∈ E}
and length(E) = supt E + sup j E . Solution to H that cannot be extended is said to
be maximal and it is said to be complete if its domain is unbounded [8, Chapter 2].
Clearly, complete solutions are maximal. A hybrid systemH is said to be well posed
if it satisfies the following hybrid basic conditions.

Assumption 1 [8] (Hybrid basic conditions)
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(A1) C and D are closed subsets of Rn ;
(A2) F : R

n ⇒ R
n is outer-semicontinuous and locally bounded relative to C,

C ⊂ dom F , and F(ξ) is convex for every ξ ∈ C;
(A3) G : R

n ⇒ R
n is outer-semicontinuous and locally bounded relative to D,

D ⊂ domG.

Definition 1 [8] (Well-posed hybrid system) A hybrid system H is called well posed
if the following property holds: Given an arbitrary continuous function ζ : Rn →
R≥0, a decreasing sequence {δi }∞i=1 of numbers in (0, 1) with limi→∞δi = 0, and a
graphically convergent sequence {φi }∞i=1 of solutions toHδi ζ with limi→∞φi (0, 0) =
ε ∈ R

n ,

(B1) if the sequence {φi }∞i=1 is locally eventually bounded, then the sequence
{length(φi )}∞i=1 either converges or properly diverges to ∞ and φ =
gph-limi→∞φi is a solution to H with φ(0, 0) = ε and length(φ) = limi→∞
length(φi );

(B2) if the sequence {φi }∞i=1 is not locally eventually bounded, then there exist the
smallest j
 ∈ N, t
 ∈ R>0 for which there exist (ti , j
) ∈ dom φi for all
large enough i such that limi→∞ti = t
 and limi→∞|φi (ti , j
)| = ∞, and
the mapping φ = (

gph-limi→∞φi
) |t+ j<t
+ j
 is a maximal solution to H and

limt→t
 |φ(t, j
)| = ∞.

Lemma 1 [8] If a hybrid system H satisfies Hybrid basic conditions, then it is well
posed.

The sufficient Lyapunov conditions ensuring the hybrid system H be uniformly
globally pre-asymptotically stable are proposed in [8, Theorem 1].

Lemma 2 [8] Consider the hybrid system H in (1) and a closed set A ⊂ R
n. If V

is Lyapunov function candidate for H and there exist α1, α2 ∈ K∞ and a function
ρ ∈ PD such that

α1(|ξ |A) ≤ V (ξ) ≤ α2(|ξ |A), ∀ξ ∈ C ∪ D ∪ G(D), (2)

〈∇V (ξ), f 〉 ≤ −ρ(|ξ |A), ∀ξ ∈ C, f ∈ F(ξ), (3)

V (g) ≤ V (ξ), ∀ξ ∈ D, g ∈ G(ξ). (4)

If for each r > 0, there exists λr ∈ K∞, Nr ≥ 0 such that for every solution ξ

to the hybrid system H, | ξ(0, 0) |A∈ (0, r ], (t, j) ∈ dom ξ , t + j ≥ T ′ imply
t ≥ λr (T ′) − Nr , then A is uniformly globally pre-asymptotically stable.

Note that (3) and (4) ensure that the Lyapunov function candidate does not increase
in both the flows and the jumps, respectively. More specific details can be found in [8,
Chapter 3] and [23].

In this paper, we consider a class of hybrid impulsive systems given by(
ẋ
τ̇

)
= F(x, τ ) :=

(
Ax + Bu

1

)
, (x, τ ) ∈ C,(

x+
τ+

)
∈ G(x, τ ) :=

(
Adx
0

)
, (x, τ ) ∈ D,

y = Cx,

(5)
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with

C := {(x, τ ) ∈ R
n × R : τ ∈ [0, T ]},

D := {(x, τ ) ∈ R
n × R : τ = T },

where x ∈ R
n and τ ∈ [0, T ] are the system states, T is a positive number, u ∈ R

p

denotes the input, y ∈ R
m denotes the output, A ∈ R

n×n , B ∈ R
n×p, C ∈ R

m×n and
Ad ∈ R

n×n denotes the parameters of the system.

3 Input Constraints

Denote a polyhedron

P(H ,h) := {u ∈ R
p : Hu ≤ h}, (6)

where (H , h) ∈ R
s×p × R

s , p, s ∈ N
+. See [3,5] for more information.

Lemma 3 [5] For all (H , h) ∈ R
s×p × R

s with s, p ∈ N
+, and for all θ > 0, then

P(H ,h) ∩ cl
(
R

p \ P(H ,h+1sθ)

) = ∅.

Lemma 4 [5] Given (H , h) ∈ R
s×p × R

s with s, p ∈ N
+, if P(H ,h) is bounded, then

there exists a ∈ R
s satisfying a > 0, H�a = 0, 1�

s a = 1.

Lemma 5 Given finite sets W ⊂ N
+, (Hi , hi ) ∈ R

si×p × R
si with si , p ∈ N

+ and
i ∈ W , for all 0 < θ− < θ+, then

⋃
i∈W

P(Hi ,hi+1si θ
−) ∩ cl

( ⋂
i∈W

(
R

p \ P(Hi ,hi+1si θ
+)

))
= ∅. (7)

Proof Following from the definition in (6), we have that P(H ,h+1sθ−) ⊂ P(H ,h+1sθ+),
then P(H ,h+1sθ−) ∩ cl

(
R

p \ P(H ,h+1sθ+)

) = ∅. Consequently, (7) holds.
In this paper, we consider the reverse polytopic input constraints mentioned in [5]

u /∈
⋃
i∈W

P(Hi ,hi ), (8)

where u ∈ R
p is the input of the hybrid system (5) and the index i ∈ W indicates the

i th constraint.
Next, consider an example to illustrate the input constraints mentioned above. ��

Example 1 Consider the input of the hybrid system (5) with p = 1 satisfies the
constraint | u |/∈ [0.2, 0.7]. This constraint can be written in the form of (8) with
H1 = −H2 = [1 − 1]�, h1 = h2 = [0.7 − 0.2]�,W = {1, 2}.
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4 Controller Design

In this section, for the hybrid system (5) with constraint (8), we aim to design
switching controllers Hc ensuring the closed-loop system to be globally uniformly
pre-asymptotically stable.

4.1 State Feedback

First, we consider the case of full state feedback controllers with the form

u = K x
q x, (9)

where u ∈ R
p is the input of (5) that obeys constraint (8) and is also the output of

the controllers, x ∈ R
n is the state of (5) and is also the input of the controllers and

controller gain K x
q ∈ R

p×n is real for all q ∈ Q := {1, 2, . . . , qmax} with qmax ∈ N
+

representing the total number of the controllers. One can switch these controllers
suitably by q to guarantee that constraint (8) is satisfied. It is worth noting that the
superscript x of K x

q is the identity of the state feedback rather than the exponential
operation.

Given a finite setW ⊂ N
+, (Hi , hi ) ∈ R

si×p ×R
si with si , p ∈ N

+ for all i ∈ W ,
θ+ > 0 and a set of controllers mentioned in (9), define a multi-valued map

�(x) := {q ∈ Q : K x
q x ∈ C+, x ∈ R

n},

where C+ := cl
(⋂

i∈W
(
R

p \ P(Hi ,hi+1si θ
+)

))
. It follows from Lemma 3 that the

function of this map is to pick out the sequence number q of the controller gains that
do not violate the given input constraint.

Next, let us revisit (8). To guarantee K x
q x /∈ ⋃

i∈W P(Hi ,hi ), we design supervisory
control among the qmax controllers related to the logic state q. Given θ+ > θ− > 0,
we design the logic state abiding by the following dynamics

q̇ = 0, q ∈ Cc,
q+ ∈ �(x), q ∈ Dc,

(10)

where Cc :=
{
q ∈ Q : K x

q x ∈ C−
}

, Dc :=
{
q ∈ Q : K x

q x ∈ D−
}

,

C− := cl

( ⋂
i∈W

(
R

p \ P(Hi ,hi+1si θ
−)

))
, (11)

D− :=
⋃
i∈W

P(Hi ,hi+1si θ
−). (12)
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Note that Cc andDc denote the flow set and the jump set, respectively. q keeps constant
during flows. The function � : Rn ⇒ Q determines the value of the logic state after
jumps.

The closed-loop system consisting of (5) and (10) with state spaceΩ := R
n ×Q×

[0, T ] can be written as the flow dynamics

⎛
⎝ ẋ
q̇
τ̇

⎞
⎠ = f (x, q, τ ) :=

⎛
⎝ (A + BK x

q )x
0
1

⎞
⎠ , (13)

with

(x, q, τ ) ∈ C := {
(x, q, τ ) ∈ Ω : x ∈ R

n, q ∈ Cc, τ ∈ [0, T ]} ,

and the jump dynamics

⎛
⎝ x+
q+
τ+

⎞
⎠ ∈ G1(x, q, τ ) :=

⎛
⎝ x

�(x)
τ

⎞
⎠ (x, q, τ ) ∈ D1,

⎛
⎝ x+
q+
τ+

⎞
⎠ ∈ G2(x, q, τ ) :=

⎛
⎝ Adx

�(x)
0

⎞
⎠ (x, q, τ ) ∈ D2,

⎛
⎝ x+
q+
τ+

⎞
⎠ = G3(x, q, τ ) :=

⎛
⎝ Adx

q
0

⎞
⎠ (x, q, τ ) ∈ D3,

(14)

with

D1 := {(x, q, τ ) ∈ Ω : x ∈ R
n, q ∈ Dc, τ �= T },

D2 := {(x, q, τ ) ∈ Ω : x ∈ R
n, q ∈ Dc, τ = T },

D3 := {(x, q, τ ) ∈ Ω : x ∈ R
n, q /∈ Dc, τ = T }.

DenoteD := D1 ∪D2 ∪D3 and G := G1 ∪G2 ∪G3. Then, we call the hybrid system
as H
 := (C, f ,D,G).

4.2 Output Feedback

Next, we consider the case of output feedback controllers with the form

u = K y
q y.

The switching control gain K y
q ∈ R

p×m will be determined to ensure that the input
u ∈ R

p satisfies constraint (8). Note that although the output feedback is similar to
the state feedback in form, the degree of freedom of K y

q is much smaller than that of
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K x
q . Hence, the output feedback is only equivalent to part of the state feedback, which

results in difficulties to the calculation of gain K y
q . Next, define a multi-valued map

�(x) = {q ∈ Q : K y
q Cx ∈ C+, x ∈ R

n}.

Then, we can obtain a logic controller similar to (10), where Cc andDc are now given
by

Cc = {
q ∈ Q : K y

q Cx ∈ C−}
,

Dc = {
q ∈ Q : K y

q Cx ∈ D−}
,

where C− andD− are defined in (11) and (12), respectively. The flow dynamics of the
closed-loop system under the output feedback control is given by

⎛
⎝ ẋ
q̇
τ̇

⎞
⎠ = f (x, q, τ ) :=

⎛
⎝ (A + BK y

q C)x
0
1

⎞
⎠ , (15)

where (x, q, τ ) ∈ C. Note that the jump dynamics of the closed-loop system is the
same as (14). Also, we denote the closed-loop system as H
.

4.3 Stability Analysis

To properly switch among the controllers with the input constraints, one needs to
guarantee that �(x) �= ∅, which is equivalent to D ⊂ domG.

Lemma 6 Given a finite set W ⊂ N
+, (Hi , hi ) ∈ R

si×p × R
si for all i ∈ W ,

K x
q ∈ R

p×n (respectively, K y
q ∈ R

p×m) for all q ∈ Q and θ+ > θ− > 0, if there
exists q ′ ∈ Q for all (i, q) ∈ W × Q such that, for all k ∈ W , there is a solution
ϑ ≥ 0 to

ϑ�
[
hi + 1si θ

−
hk + 1sk θ

+
]

< 0, ϑ�
[
Hq
i

Hq ′
k

]
= 0, (16)

where Hq
i := Hi K x

q (respectively, Hq
i := Hi K

y
q C), then �(x) �= ∅.

Proof The proof follows from that of Lemma 5 in [5].
It is worth mentioning that if Lemma 6 holds, constraint (8) will be satisfied. ��

Lemma 7 Given a finite set W ⊂ N
+, (Hi , hi ) ∈ R

si×p × R
si for all i ∈ W ,

K x
q ∈ R

p×n (respectively, K y
q ∈ R

p×m) for all q ∈ Q and θ+ > θ− > 0, if the
following conditions

ϑ�
[
hi + 1si θ

−
hk + 1sk θ

+
]

< 0, ϑ�
[
Hq
i

Hq ′
k

]
= 0
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hold, where Hq
i := Hi K x

q (respectively, Hq
i := Hi K

y
q C), then hybrid system H
 is

well posed. ��
Proof By Lemma 1, to prove that the hybrid system H
 is well posed, we need to
verify the three conditions in Assumption 1. It is easy to prove that C and D are
closed sets since C− and D− are closed sets. Considering that the flow dynamics of
H
 are determined by the function f , condition (A2) in Assumption 1 degenerates
to require that f be continuous. Note that the function f in (13) and f in (15) is
obviously continuous. It remains to verify the condition (A3) in Assumption 1. Con-
sider a sequence {(xk, qk, τk)}k∈N ∈ D converging to (x, q, τ ) and sequence {q ′

k}k∈N
converging to q ′ where q ′

k ∈ �(xk) for all k ∈ N. Suppose that q ′ /∈ �(x), then there

exists ι ∈ W such that Hq ′
ι x < hι + 1sι θ

+. By continuity, Hq ′
k

ι xk < hι + 1sι θ
+ holds

for sufficiently large k, where Hq
ι is defined in Lemma 6. However, this contradicts

with q ′
k ∈ �(xk). Therefore, G is outer-semicontinuous. The property D ⊂ dom G

follows from Lemma 6 and locally bounded follows from the fact that q takes values
on a compact set. Therefore, the hybrid system H
 is well posed if the conditions in
Lemma 7 hold. The proof is completed. ��

Next, we establish stability conditions of the set A under the controllers above,
where the set is given by

A := {(x, q, τ ) ∈ Ω : x = 0} . (17)

The following theorem establishes a sufficient condition for global pre-asymptotic
stability.

Theorem 1 Given a finite setW ⊂ N
+, (Hi , hi ) ∈ R

si×p ×R
si for all i ∈ W , if there

exist K x
q ∈ R

p×n, P ∈ S
n
>0 and θ−, θ+ ∈ R with 0 < θ− < θ+ such that (16) holds

and for all q ∈ Q

Ax
q
�P + PAx

q ∈ S
n
<0, (18)

A�
d P Ad − P ∈ S

n≤0, (19)

where Ax
q := A + BK x

q , then constraint (8) holds and the set A in (17) is globally
uniformly pre-asymptotically stable for H
.

Proof Since P ∈ S
n
>0, the function V (x, q) := x�Px is positive definite and satisfies

(2) with α1(s) = λmin(P)s2 and α2(s) = λmax(P)s2, where λ(P) is the eigenvalue of
P . By (18), the derivative of V is negative definite relative to (17), and the condition
(3) holds, where ρ(s) = ηs2 with small enough number η > 0. By (19), it is easy
to get (Adx)�P(Adx) ≤ x�Px . Then, (4) is satisfied for all jumps. In addition, it
follows from Lemma 6 that constraint (8) is satisfied and G always maps the jump
set to the flow set using the structure of H
. Therefore, except for solutions starting
at the origin, all jumps are followed by flow dynamics for at least T f > 0 units of
time similar to [8, Example 3.28]. Then, (t, j) ∈ dom x implies j ≤ 1 + t/T f . With
the addition of t + j ≥ T ′, obtain t ≥ (T f T ′)/(T f + 1) − T f /(T f + 1). Therefore,
Lemma 2 applies. ��
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Remark 1 Theorem 1 shows that for all q ∈ Q, the subsystems of the closed-system
have a common Lyapunov function. Then, the stability of the hybrid system H
 is
independent of the switching sequence.

For the case of output feedback, we have a corollary as follows.

Corollary 1 Given a finite setW ⊂ N
+, (Hi , hi ) ∈ R

si×p ×R
si for all i ∈ W , if there

exist K y
q ∈ R

p×m, P ∈ S
n
>0 and θ−, θ+ ∈ R with 0 < θ− < θ+ such that (16) holds

and for all q ∈ Q

Ay
q
�
P + PAy

q ∈ S
n
<0, (20)

A�
d P Ad − P ∈ S

n≤0, (21)

where Ay
q := A + BK y

q C, then constraint (8) is satisfied and the set A in (17) is
globally uniformly pre-asymptotically stable for H
.

Proof The proof is similar to the proof of Theorem 1. We omit it here.
Note that by Lemma 5 it is indicated that C+ ∩ D− = ∅, and thus, we have

G(D) ∩ D = ∅. Consequently, the Zeno behavior that is prone to occur in the design
of hybrid system control laws is avoided. See [8, Chapter 2] and [24, Lemma 2.7]. ��

4.4 Calculation of Controller Gains

In this section,wedesign controllerswithQ = {1, 2} to solve the stabilizationproblem.
By Lemma 4, there exists a vector v ∈ R

s such that H�v = 0 and v > 0. In order to
simplify the calculation of the controller gains, we introduce the following lemma.

Lemma 8 Let Q = {1, 2} and find a vector v ∈ R
s satisfying H�v = 0, v > 0, for

all θ−, θ+ ∈ R with 0 < θ− < θ+ < − v1
�h

v1�1s , there exist β1, β2 ∈ R with β1 < β2,
for β ∈ (0, β1) ∪ (β2,+∞), if there exists P satisfies Theorem 1 (or Corollary 1,
respectively) with K x

2 = βK x
1 (or K y

2 = βK y
1 , respectively), then the set (17) is

uniformly pre-asymptotically stable for H
; in addition, constraint (8) is satisfied,
where two maps v1 and v2 are defined as

e�
i v1(v, θ+) =

{
e�
i v if e�

i (h + 1sθ+) < 0

0 otherwise

e�
i v2(v, θ+) =

{
e�
i v if e�

i (h + 1sθ+) > 0

0 otherwise

for all i ∈ {1, 2, . . . , s}, and

β1 = min

{
−v�

1 (h + 1sθ+)

v�
2 (h + 1sθ−)

, −v�
1 (h + 1sθ−)

v�
2 (h + 1sθ+)

}
,

β2 = max

{
−v�

2 (h + 1sθ+)

v�
1 (h + 1sθ−)

, −v�
2 (h + 1sθ−)

v�
1 (h + 1sθ+)

}
.

(22)
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Fig. 1 State responses of x1 and x2 without control

Proof This proof follows from an application of [5, Corollary 1]. ��
It is worthy noting that β1 and β2 in (22) do not depend on the controller gains.

Thus, we are able to select β prior to the design of the controller gains.

Theorem 2 Given H1 = −H2 = [1 − 1]�, h1 = h2 = [h h]�. Let Q = {1, 2} and
find v ∈ R

s satisfying H�
1 v = 0, v > 0, for all θ−, θ+ ∈ Rwith 0 < θ− < θ+ < −h,

there exist β1, β2 ∈ R given in (22) with β1 < β2, for β ∈ (0, β1) ∪ (β2,+∞). For
state feedback case with K x

2 = βK x
1 , if there exists L ∈ S

n
>0, Y ∈ R

p×n satisfies

AL + L A� + BY + Y�B� < 0, (23)

AL + L A� + βBY + βY�B� < 0, (24)[
−L L A�

d

Ad L −L

]
≤ 0, (25)

then constraint (8) is satisfied and the set A in (17) is globally uniformly pre-
asymptotically stable forH
; besides, K x

1 = Y L−1.
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Fig. 2 Trajectories of x1, x2 and control input |u| under continuous feedback control with bounded input
constraint

Proof It follows from Lemma 8 that constraint (8) is satisfied since 0 < θ− < θ+ <

−h is equivalent to 0 < θ− < θ+ < − v1
�h

v1�1s with v = 1s . By [18, Section 7.2.1],

we have that (18) is equivalent to (23) with L = P−1 and Y = K x
1 L in the case of

q = 1. Furthermore, we have (24) holds with q = 2. According to the property of
Schur complement, (25) is equivalent to (19). ��
Remark 2 We have a standard linear matrix inequality in Theorem 2, so the controller
can be designed in two steps, first picking β and then solving three linear matrix
inequalities. However, for the output feedback case, (20) can only be converted into
bilinear matrix inequality, which brings difficulties to the calculation of the controller
gains.

The following example is given to illustrate the controller design results for the
hybrid systems.

Example 2 Consider the hybrid impulsive system (5) with data

A =
[
0 1
0 0

]
, B =

[
0
1

]
, Ad =

[
1.2 0
0 1.2

]
, T = 5, C = [1 1].
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Fig. 3 Trajectories of x1, x2 and control input |u| under switching control with input constraint

Here, we impose the reverse polytopic input constraint with |u| /∈ [0.2, 0.7] as in
Example 1. It is straightforward to verify that H�v = 0 with v = 1�

2 , and then, we
have

v1 =
{ [0, 1]�, θ+ ∈ [0, 0.2)

[0, 0]�, θ+ ∈ [0.2,+∞),

v2 =
{ [1, 0]�, θ+ ∈ [0, 0.2]

[1, 1]�, θ+ ∈ (0.2,+∞).

Take θ+ = 0.1 and θ− = 0.01. It follows from Lemma 8 that β ∈ (0, 0.1408) ∪
(7.1,+∞). Taking β = 7.2, we find the controller gains K x

1 = [−0.6917 −1.5264]
and K x

2 = [−4.9802 −10.9901] by solving a set of linear matrix inequalities (23),
(24) and (25).Moreover, we perform simulation experiments using the above data with
the initial condition (x1(0, 0), x2(0, 0), q(0, 0), τ (0, 0)) = (−2.17, 1.139, 2, 0). For
comparison, we control the hybrid impulsive system (5) under continuous feedback
control with input constraint such that |u| < 0.2 as in [2] and obtain the control gain
K = [−0.0774 − 0.2801].

Figure 1 shows the response curves of the system states x1 and x2 without control.
Obviously, the system is unstable. Figure 2 shows the response of the system under
continuous feedback control in the presence of input constraint. It is observed that the
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system is stabilized but it spends long time tomeet the input constraints. The pink color
in the figure denotes the area of [0.2, 0.7], which is the set of input values to avoid.
Figure 3 depicts the response of the system under the switching controllers proposed
in this paper. It can be seen that the input constraint |u| /∈ [0.2, 0.7] is satisfied and the
quality of control is much better than the continuous feedback control with bounded
input constraint.

5 Conclusions

In this paper, we have presented a hybrid switching control strategy for a class of hybrid
systems with reverse polytopic input constraints. The controller designs for both the
full state feedback case and the output feedback case have been proposed. Sufficient
conditions have been established for stability of a closed set of the closed-loop system.
The calculation of controller gains has been discussed and numerical examples have
been provided to illustrate the proposed results. Future work includes applying the
results to general linear/nonlinear hybrid systems with more intricate dynamics, and
switching control design for such systems as well as their robust implementation.
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