
Circuits, Systems, and Signal Processing (2020) 39:1688–1698
https://doi.org/10.1007/s00034-019-01211-0

SHORT PAPER

A Novel Approach for the Design of Optimum IIR
Differentiators Using Fractional Interpolation

Om Prakash Goswami1 · Tarun K. Rawat1 · Dharmendra K. Upadhyay1

Received: 30 January 2019 / Revised: 8 July 2019 / Accepted: 10 July 2019 / Published online: 18 July 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
In this paper, a novelmethod for designing anoptimum infinite impulse response digital
differentiator of the first and second orders is presented. The proposed method inter-
polates bilinear transform and rectangular transform fractionally, and then, unknown
variables of the generalized equation are optimized using the genetic algorithm. The
results obtained by the proposed designs are superior to all state-of-the-art designs in
terms of magnitude responses. The first-order and second-order differentiator attains
mean relative magnitude error as low as − 27.702 (dB) and − 35.04 (dB), respec-
tively, in the complete Nyquist range. Besides, suggested low-order, differentiator
design equations can also be optimized of any desired Nyquist frequency range, which
makes it suitable for real-time applications.

Keywords s-to-z transform · Al-Alaoui operator · Fractional interpolation ·
Optimized digital differentiators

1 Introduction

Digital differentiators are considered as a fundamental building block in the diverse
area of engineering related to biomedical, applied control, instrumentation, digital
signal, and image processing. It derives the time derivatives of any measured and
applied excitation to get useful responses according to their application needs [3,19,
29]. The digital differentiator can be classified as the finite impulse response (FIR)
systems and infinite impulse response (IIR) systems. For the same specifications, IIR
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systems intently provide low-order mathematical modeling as compared to the FIR
systems. The frequency response of an ideal digital differentiator is given by

H(ω) = jω

where j = √−1 and ω is the angular frequency in radians.
The bilinear transform is a first-order approximation of the natural logarithm func-

tion, which approximates the magnitude response up to 0.3 of the normalized Nyquist
frequency range [13,22]. Another method for designing of a first-order digital differ-
entiator is fractional bilinear transformation (FBT), proposed by Pie and Hsu using
the concept of fractional delay [24]. Fractional bilinear transform increases the linear
range, which yields low distortions in high-frequency range. Furthermore, Al-Alaoui
proposed a novel approach to design a first-order digital differentiator by interpolat-
ing standard trapezoidal rule and rectangular rule linearly [4,5]. This transform shows
linearity up to 0.7 of the full normalized Nyquist frequency range. All the above-
mentioned first-order differentiator designs approximate the magnitude response up
to a fraction of the full band of Nyquist range.

In the literature, the approach for the design of IIR differentiators is based on the
traditional aspect of approximation, optimization and interpolation techniques [1,6–
8,15,16,23,25–27]. In 2014, Al-Alaoui proposed the design of four-segment second-
order differentiator,which is derived fromnumerical integration rules and optimization
using simulated annealing (SA) with absolute relative magnitude error (ARME) of
13.032 over 0 ≤ ω ≤ π [9]. Nam Ngo has used the Newton–Cotes integrations
method to design third-order differentiator [21]. Jain et al. proposed a second-order
digital differentiator by using genetic algorithm in 2012 [17]. It provides an absolute
relative magnitude error of 0.8777 over 0 ≤ ω ≤ 0.95π . Upadhyay suggests a class
of wideband integrator and differentiator by optimizing the pole-zero locations of the
existing differentiators in 2012, with an absolute relative magnitude error of 1.1959
over 0 ≤ ω ≤ 0.93π [28]. Likewise, Hsu et al. proposed the second-order digital
differentiator in 2008, by employing the concept of fractional bilinear transformation
[24]. Furthermore, an optimal design of L1-norm-based IIR digital differentiators are
presented by Apoorva et al. in 2017, to provide absolute relative magnitude error
of 1.6054 over 0 ≤ ω ≤ π [2]. The methods mentioned above are used to design
full-band digital differentiators. These methods have no flexibility to design digital
differentiators in the specified frequency range of interest.

In this paper, a generalized N th-order digital differentiator is designed by fractional
interpolation of rectangular and trapezoidal transform. The basic idea originates from
observing that the ideal differentiator response lies between rectangular rule and trape-
zoidal rule [5]. Therefore, the differentiator is obtained by interpolating the rectangular
and trapezoidal rule fractionally, followed by optimization of weighting variable a
and fractional delay variable d. Proposed designs show mean relative magnitude error
− 27.702 dB and − 35.04 dB for the first order and second order, respectively, over
0 ≤ ω ≤ π . These low-order, two-variable design equations are flexible enough to
give an optimum magnitude response for any desired digital frequency ranges. There-
fore, the proposed results for digital differentiators indicate that fractional interpolation
technique constitutes an attractive alternative for digital differentiator designs.
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The rest of the paper is organized as follows: Section 2 deals with a brief descrip-
tion of the ideal mathematical model and corresponding fractional bilinear transform.
Section 3 describes fractional interpolation technique for the first-order and second-
order differentiators, and all the comparisons of the proposed design with the existing
designs of their corresponding order. It also includes the proposed first-order and
second-order designs for different frequency ranges. Section 4 concludes the paper.

2 Motivation

IIR filters are designed by mapping an analog system H(s) into a digital system
transfer function H(z). The bilinear transform fulfills all the requirements of mapping
from s-plane to z-plane and preserves stability. Though it belongs to nonlinear tangent
curve transformation, which produces substantial magnitude distortions in the high-
frequency range, it perfectly matches the magnitude response up to 0.3π of the full
Nyquist frequency range [13,22]. The bilinear transform is given by

s = 2

T

1 − z−1

1 + z−1

where T is the sampling time.

H(e jωT ) = 2

T

1 − e jωT

1 + e jωT
= 2

T
j tan

ωT

2

Fractional bilinear transform is given by [24]

Ffrac(z) = 2

dT

1 − z−d

1 + z−d
= 2

dT
j tan

ωdT

2
(1)

where d is the fractional delay variable, 0 ≤ d ≤ 1 and T is taken as 1, if there is no
other assignment. This transfer function tends to jω if d advent to zero, that is

lim
d→0

Ffrac(e
jωT ) = jω (2)

It is quite similar to the bilinear transform inwhich z−1 is replaced by z−d , due towhich
period of 2π becomes 2π/d. Though it is not an integer delay, it can be approximated
for practical realization.

3 Fractional Interpolation Technique for Digital Differentiator

Al-Alaoui introduced interpolation of trapezoidal and rectangular integration rules
[4,5], which results in the following

H(z) = aHRect(z) + (1 − a)HTrap(z) (3)
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where a is the weighting variable, 0 ≤ a ≤ 1. It yields the following transformation.

s = 2(1 − z−1)

T (1 + a) + (1 − a)z−1 = 2

T (1 + a)

[
1 − z−1

1 + (1−a)
(1+a)

z−1

]
(4)

Replacing z−1 by z−d , its fractional equivalent is given by

F(z) = 2

dT (1 + a)

[
1 − z−d

1 + (1−a)
(1+a)

z−d

]
(5)

where d and a vary from 0 to 1. The transfer function F(z) also approaches to jω if
d and a approach zero.

lim
d→0,a→0

Ffrac(e
jωT ) = jω (6)

In practice, fractional delay needs an approximation to its integer delay [18,24].

z−(I+d) ∼=
N∑

n=0

h(n)z−n (7)

where

h(n) =
N∏

m=0,m �=n

I + d − m

n − m
(8)

Here, I is the integer delay and N is the order of the generalized transfer function for
0 ≤ d ≤ 1, 0 ≤ a ≤ 1, Equation (5) can be rewritten as

F(z) = 2

dT (1 + a)

[
z−I − z−(I+d)

z−I + (1−a)
(1+a)

z−(I+d)

]

Substitution of z−(I+d), h(n), from Eqs. (7) and (8), respectively, yields

F(z) = 2

dT (1 + a)

⎡
⎢⎢⎢⎣

z−I − ∑N
n=0

( ∏N
m=0
m �=n

I+d−m
n−m

)
z−n

z−I + 1−a
1+a

∑N
n=0

(∏N
m=0
m �=n

I+d−m
n−m

)
z−n

⎤
⎥⎥⎥⎦ (9)

The above equation represents the transfer function of an N th-order digital differen-
tiator. The generalized equation has four parameters I , N , d and a, to tune frequency
response of differentiator.
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Fig. 1 Magnitude response comparison of the first-order digital differentiator

For I = 0, N = 1, generalized transfer function of the first-order digital differen-
tiator is given by

F1(z) = 2

T (1 + a)

[
1 − z−1

1 + 1−a
1+a (1 − d) + 1−a

1+a dz
−1

]
(10)

For I = 1, N = 2, generalized transfer function of the second-order digital differen-
tiator is given by

F2(z) = 2

dT (1 + a)

⎡
⎢⎢⎢⎣

z−1 − ∑2
n=0

( ∏2
m=0
m �=n

1+d−m
n−m

)
z−n

z−1 + 1−a
1+a

∑2
n=0

( ∏2
m=0
m �=n

1+d−m
n−m

)
z−n

⎤
⎥⎥⎥⎦

[
2(1 − d) + 4dz−1 + 2(1 + d)z−2

d(1 − a)(d − 1) + (4 − 2d2(1 − a))z−1 + d(1 + d)(1 + a)z−2

]

(11)

The two variables a and d can be optimized by using an optimization algorithm to
minimize the error functions [26], defined in Eqs. (12) and (13) for the first-order and
second-order differentiators, respectively.

E1 =
∫ π

0
(|F1(z)z=e jω | − ω)2dω (12)

E2 =
∫ π

0
(|F2(z)z=e jω | − ω)2dω (13)
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Fig. 2 Absolute magnitude error comparison of the first-order digital differentiator

Genetic algorithm is used to find the optimum values of the variables a and d by
minimizing the error objective functions. Genetic algorithm is a highly flexible,
population-based, bio-inspired global optimization technique. It uses probabilistic
transition rules, which makes it an efficient and effective optimization technique
stochastically. So, it can be befitted to get the minimum absolute magnitude error
[20].

3.1 Proposed Design for the First-Order Differentiator

Using the exercised approach explained in the previous section, a first-order differen-
tiator is proposed by taking the optimum value of a and d. It is essential to mention
here that, for a = 0.5 and d = 0.5, Eq. (10) reduces to Al-Alaoui transform.

In design-1, for full-band digital differentiator, the optimum values of a and d are
0.61, 0.816, respectively, with constant multiplier 0.9686. These values lead to the
following transfer function.

F1(z) =
[

1.18z − 1.18

1.04z + 0.17910

]
(14)

Figures 1 and 2, respectively, compare the magnitude responses and absolute magni-
tude error of the proposed designs and existing designs with ideal differentiator. It is
shown in Fig. 1 that the magnitude response of the full-band differentiator (design-1)
overlapped with ideal magnitude response up to 0 ≤ ω ≤ 0.8π . The magnitude error
obtained is less than 0.03 for 0 ≤ ω ≤ 0.8π as observed in Fig. 2. Statistical compar-
ison shown in Table 1 shows the superiority of design-1 as compared to the existing
designs in terms of ARME, MRME and SD.
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Table 1 Statistical comparison of the proposed first-order digital differentiator with the existing designs

Method ARME MRME (dB) Standard deviation (SD)

Bilinear Transform [8] 4.2731e+03 22.6485 143.1477

Al-Alaoui Transform [23] 18.8826 − 24.45 0.1044

FBT d = 0.1 [15] 49.5041 − 16.0709 0.2148

FBT d = 0.2 [15] 31.7308 − 19.9394 0.1626

Proposed (design-1) 14.3192 − 26.8397 0.0814

Proposed (design-2) 12.9665 − 27.702 0.0548
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Fig. 3 Magnitude response comparison of the second-order digital differentiator

In design-2, for full-band digital differentiator, the optimum values of a and d are
0.898 and 0.95, respectively, with constant multiplier 0.951. These values lead to the
following transfer function.

F1(z) =
[
1.163z − 1.163

1.023z + 0.2005

]
(15)

In order to show the efficiency of the proposed design-2, Fig. 1 depicts the sub-
stantial linearity for the full Nyquist range. The absolute magnitude error (Fig. 2)
remains less than 0.31 for the entire Nyquist range. Table 1 indicates that the abso-
lute and mean relative errors are observed to be lowest (12.9665 and − 27.702 dB,
respectively), which shows significant improvement of 31.33 % as compared to the
Al-Alaoui transform [4,5] in terms of ARME. On the basis of the above discussion, it
can be concluded that the design-2 is superior to the other differentiators tabulated in
Table 1, for 0 ≤ ω ≤ π .
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Fig. 4 Magnitude response comparison of the second-order digital differentiator

Table 2 Statistical comparison of the proposed second-order digital differentiator with the existing second-
order designs

Method ARME MRME (dB) SD

Al-Alaoui four-segment, (SA) [9] 13.0329 − 27.6599 0.0305

Jain et al., (GA) [17] 1.7213 − 45.1927 0.0131

Upadhyay, (PZ) [28] 2.9264 − 40.63 0.0218

Hsu et al., (FBT) [24] 7.6093 − 32.32 0.0310

Apoorva et al., (L1 − BA) [2] 1.6054 − 45.8547 0.0114

Proposed 5.4927 − 35.04 0.0294

3.2 Proposed Design for the Second-Order Differentiator

From Eq. (11), a second-order differentiator can be designed by using the optimum
values a and d as a = 0.75, d = 0.165, respectively, with a constant multiplier
− 1.026, which leads to the following transfer function.

F2(z) =
[
0.5048z2 + 3.094z − 3.599

0.1549z2 − 3.051z − 1.104

]
(16)

The poles of this transfer function are at − 0.3554 and 20.0520. The pole reflection
approach is used to make the system stable without affecting its magnitude response
and corresponding minimal relative errors [22]. The transfer function of the proposed
second-order differentiator is given by:
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Table 3 Proposed first-order design parameter values for various frequency ranges

Frequency ranges Optimized
value of (a)

Optimized
value of (d)

Optimized constant
multiplier (k)

ARME

0–0.4π (Low freq.
range)

0.019 0.198 −1 0.04

0.3π–0.7π
(Medium freq.
range)

0.246 0.34 −0.981 0.591

0.6π–π (High
freq. range)

0.221 0.545 0.844 5.492

Table 4 Proposed second-order design parameter values for various frequency ranges

Frequency ranges Optimized
value of (a)

Optimized
value of (d)

Optimized constant
multiplier (k)

ARME

0–0.4π (Low freq.
range)

0.908 0.621 1 0.0012

0.3π–0.7π
(Medium freq.
range)

0.826 0.411 −1.011 0.1167

0.6π–π (High
freq. range)

0.747 0.137 1.025 3.758

F2(z) =
[

0.5048z2 + 3.094z − 3.599

(0.1549)(z + 0.3554)(z − 20.052)

]

=
[

0.5048z2 + 3.094z − 3.599

(0.1549)(z + 0.3554)(z − 20.052)

]
×

[
z − 20.052

−20.052z + 1

]

F2(z) =
[

0.5048z2 + 3.094z − 3.599

−3.106z2 − 0.94899z + 0.054276

]
(17)

Figures 3 and 4 show absolute magnitude responses and absolute magnitude error,
respectively. Table 2 enlists some analytical results for all the mentioned designs.

The absolute magnitude error, for the proposed differentiator, is less than 0.028 for
0 ≤ ω ≤ 0.92π and 0.21 for 0 ≤ ω ≤ π , as shown in Fig. 4. In terms of ARME
and MRME (dB), the proposed design outranges the existing Al-Alaoui four-segment
[9] and Hsu et al. [24] for 0 ≤ ω ≤ π . However, the absolute magnitude error is
slightly higher than the differentiators proposed by Jain et al. [17], Apoorva et al. [2]
and Upadhyay [28] over 0 ≤ ω ≤ π .

3.3 Proposed Designs for Different Frequency Ranges

The design Eq. (10) for the first order and Eq. (11) for the second order provide
the flexibility for designing the best approximation of the ideal differentiator for the
required frequency range, especially the first order, because less order means less
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computation and design complexity. For any required frequency range, the design
equations for the first order and second order are utilized to optimize the values of a
and d. Tables 3 and 4 show some set of values a and d for various frequency ranges
with their absolute magnitude error for the first-order and second-order designs.

4 Conclusion

In this paper, a novel approach to design an N th-order IIR digital differentiator is pre-
sented. The proposed approach involves optimization of two parameters, fractional
delay (d) and weighting variable (a). The two variables are optimized to approx-
imate the frequency response of the proposed differentiators in the entire Nyquist
range or, for the frequency range of interest. In the proposed design, the first-order
transfer function shows improvement of 31.33 % in terms of ARME over the first-
order Al-Alaoui differentiator. Absolute relative magnitude error and mean relative
magnitude errors (dB) obtained are 12.9665 and − 27.702, respectively, for the full
normalized frequency band. Moreover, the second-order design also shows an abso-
lute relative magnitude error and mean relative magnitude errors (dB) as 5.5647 and
− 35.04, respectively, which are significantly comparable to the existing designs of
the second-order differentiators. In future, the proposed approach can be used for
designing low-order optimized IIR integrators. Furthermore, the development of new
operators related to the fractional differentiators establishes new insight interest in the
various fields of engineering. Therefore, this concept may be used to design fractional
order differentiator to set up substantial accuracy in the modeling of different systems
[10–12,14].
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