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Abstract
In this paper, the H∞ reliable control problem is investigated for a class of nonlinear
singular systems subject to external disturbance and actuator faults and saturations.
Bymeans of the Takagi–Sugeno fuzzymodel to describe the nonlinear plant, a reliable
sliding-mode control scheme is built to compensate for the impact of aforementioned
factors on system stability and performance. First, a fuzzy integral sliding function is
designed and sufficient conditions are derived such that the sliding-mode dynamics is
robustly admissible and satisfies the pre-specified H∞ disturbance attenuation require-
ment. Then, by considering the saturation as nonlinear input, an adaptive sliding-mode
control law is synthesized to ensure reachability of the specified sliding surface.
Finally, the lower-limb rehabilitation system is exploited to validate the effectiveness
of the presented controller design methodology.

Keywords Nonlinear singular system · Actuator faults · Saturation · Reliable
sliding-mode control

1 Introduction

Due to its clear ability to describe simultaneously the interrelationship between differ-
ent components of physical plants, singular systemhas attracted a great deal of research
attention in both theoretical research and application fields related to power systems,
mechanical/robotic systems, biological systems, industrial/chemical engineering pro-
cesses, etc. In studying this class of systems, it turns out that the system regularity and
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absence of impulses need to be verified [7,9]. Accordingly, a great deal of work has
been devoted to the analysis and synthesis of singular systems [5,10,14,30].

It is worth mentioning that these references are mainly confined to linear singu-
lar systems. However, nonlinearities exist commonly in real world and the systems
are practically nonlinear. Recognized as an effective tool to approximate smoothly
nonlinear systems, Takagi–Sugeno T–S fuzzy model [36] has been recently used to
deal with nonlinear complex systems and a rich body of literature has appeared in this
field (see [21,22,51] and references therein). In this context, the sector nonlinearity
approach [37] has been extensively utilized as a systematic way to derive an equivalent
T–S fuzzy model of the original nonlinear system. A shortcoming of this approach is
that the fuzzy rules number increases exponentially with the number of nonlineari-
ties arising from the original system leading to an increased computational costs. As a
tighter nonlinear system representation, T–S fuzzy singular systems have been recently
introduced to reduce the number of fuzzy rules and overcome the computational prob-
lems [26]. In spite of their complexities, some representative results regarding fuzzy
singular systems have been published in the literature (see, for example, [9,17,48] and
references therein).

On another research front, the implicit assumption that the control systems are fully
reliable is not always true since failuresmay always occur. The failures, generally orig-
inating fromageing of sensors and actuators, the abrupt changes ofworking conditions,
the corrosion of the internal components, may result in substantial damage and can
even affect dramatically the stability and the performances of the controlled systems.
Recently, much attention has been devoted to the fault-tolerant control for many prac-
tical engineering systems, such as aircraft, chemical and nuclear power plants. Hence,
the fault-tolerant control or the reliable control for dynamic systems has become an
important subject in control engineering in order to maintain the overall system stabil-
ity and an acceptable performance in the face of faults and failures within the system.
In fact, substantial progress has been made on this subject and related control schemes
ranging from active to passive have been published in the literature. To mention a few,
the authors in [50] provide an excellent literature review on fault-tolerant control. The
problems of reliable passivity and passification for a singular Markovian system with
actuator failure have also been investigated in [43]. In [49], the reliable observer-based
control problem of nonlinear systems represented by the switched fuzzy systems with
time-varying delay has been developed. The problem of direct adaptive compensation
for infinite number of time-varying actuator failures/faults is investigated for fuzzy sys-
tems in [19]. Accordingly, the reliable control technique has been applied for many
practical systems subject to actuator faults such as an electronic circuit in [41] and a
near-space hypersonic vehicle in [42].

Another important problem encountered in practical control systems is the actuator
saturation. In fact, actuators cannot provide unlimited amplitude signal due primarily
to the physical, safety or technological constraints. However, if this phenomenon is not
properly handled, it will inevitably affect the implementation of the designed controller
and may even degrade the system performances. Consequently, and in order to handle
the actuator saturation, additional constraints on the analysis and design of singular
systems are to be taken into account. It is worthwhile pointing out that the saturation
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control design has increasingly received much attention as one of the most interesting
practical problems (see, for example, [2,31,46], and the references therein).

Due to its inherent robustness and effectiveness to deal with nonlinear and incom-
pletelymodeled systems, sliding-mode control (SMC) schemehas beenwidely applied
to various practical engineering systems. One can refer to [4,8,18,20,35,40] and the
references therein, as representative work on this topic. The advantages of this control
strategy exhibit some results for the class of singular systems. In [11,44], the SMCwith
passivity is investigated for singular systems with time-varying delay and nonlinear
perturbations. The authors in [13,16] studied the SMC for uncertain discrete-time sin-
gular systems with delay. The problem of SMC design was also suggested in [15,25]
for fuzzy singular systems. It is worthwhile to mention that SMC has been recently
used to cope with actuator faults [1,32,45]. In particular, the integral sliding-mode
approach has been widely proposed to achieve robustness of the considered system
even if the matched conditions are not satisfied. In [26], the observer-based fuzzy inte-
gral (SMC) for nonlinear descriptor systems is addressed. For switched systems with
partial actuator faults, a sliding-mode control scheme was proposed in [29]. The study
of an output feedback control algorithm based on unit vector sliding mode for a class
of multivariable systems was presented in [6]. The problem of SMC with passivity
for uncertain singular systems with semi-Markov switching and actuator failures is
discussed in [12].

It should be noted that there are only a few results concerned with reliable control
for systems with simultaneous presence of actuator saturations and faults although
such a phenomenon is quite typical in engineering practice. To name just a few, the
stochastic reliable control problem for networked control systems (NCSs) subject to
actuator failure and input saturation is investigated in [23]. Bustan et al. proposed
in [3] a continuous globally stable tracking control algorithm for a spacecraft in the
presence of unknown actuator failure, control input saturation. In [39], a reliable robust
discrete gain scheduling controller is designed for the systems with input saturation,
external disturbance and actuator failures. For a class of singular systems subject to
both nonlinear perturbation and actuator saturation, a robust fault-tolerant controller
is designed in [53]. To the best of our knowledge, up to now the problem of reliable
control for nonlinear singular systems with external disturbance, actuator failures
and saturation is still open issue, see unsolved despite its engineering importance in
practice.

Motivated by the above discussion, the main purpose of this paper is to pave the
way for dealing with the problem of reliable SMC design for real plants with afore-
mentioned environmental constraints. Two difficulties are required to be considered
in this study: (1) The switching term of the designed controller has to be synthesized
by considering the actuator fault parameters and the saturation as input nonlinearity
and (2) to cope with the difficulty of practically knowing the slope parameters of the
input nonlinearity and the bounds of the lumped perturbations, the adaptive control
should be further addressed. Hence, an adaptive sliding-mode control scheme is to be
developed to solve this design problem. The main questions to be addressed in this
paper are as follows:
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– How to design a suitable sliding surface such that the developed criterion ensures
the admissibility of the resulting sliding-modedynamics and allowsus to determine
all the sliding function parameters?

– How to synthesize a reliable SMC law to adaptively ensure the sliding-mode phase
so as to reject the effect of the external disturbance, actuator failures and saturation
on the desired dynamic performance of the system under consideration?

The rest of this paper is outlined as follows: The description of the system and pre-
liminaries are introduced in Sect. 2. Section 3 presents the design procedure of SMC
for nonlinear singular systems under consideration. Section 4 is devoted to validate
the effectiveness of the proposed control strategy via a simulation study carried out
for the lower-limb rehabilitation system. Conclusion remarks are given in Sect. 5.

Notations The notations in this paper are quite standard except where otherwise
stated. The superscript ‘T ’ stands for matrix transposition and X ∈ R

n denotes the
n-dimensional Euclidean space, while X ∈ R

n×m refers to the set of all n × m real
matrices; X > 0 (respectively, X ≥ 0) means that matrix X is real symmetric positive
definite (respectively, positive semi-definite); I and 0 represent the identity matrix and
a zero matrix with appropriate dimension, respectively; diag{. . .} stands for a block-
diagonal matrix; sym(X) stands for X + XT ; the notation ‖A‖ refers to the norm of
a matrix A; and ‖ · ‖ denotes the Euclidean norm of a vector and its induced norm
of a matrix. Xμ represents the convex combination

∑r
i=1 μi Xi ; Xμμ will denote a

convex combination of the form
∑r

i=1
∑r

j=1 μiμ j Xi j . In symmetric block matrices
or long matrix expressions, we use an asterisk ∗ to represent a term that is induced by
symmetry. Matrices, if their dimensions are not explicitly stated, are assumed to be
compatible for algebraic operations.

2 SystemDescription and Preliminaries

In this paper, we focus on the T–S fuzzy descriptor system described by the following
rule:

Ri : If θ1(t) is F
i
1 and If θ2(t) is F

i
2 . . . If θs(t) is F

i
s , Then

{
Eẋ(t) = (Ai + �Ai )x(t) + Bi

(
uF(t) + fi (x(t)) + fa(t)

)+ Bwiw(t)

z(t) = Ci x(t) i = 1, 2, . . . , r
(1)

where x(t) ∈ R
n represents the system state; uF(t) ∈ R

m is the control input subject
to actuator faults; w(t) refers to the exogenous input subject to L2[0,∞); fi (x(t))
represents the system nonlinearities; fa(t) ∈ R

m denotes the unknown additive actua-
tor fault; z(t) ∈ R

s denotes the controlled output; Fi
j ( j = 1 . . . s) are fuzzy sets; and

θ(t) = [θ1(t), . . . , θs(t)] is the vector of premise variables. Matrix E ∈ R
n×n may

be singular with rank(E) = q < n. (Ai , Bi , Bwi ) describes the i th local model of the
system, and �Ai represents the time-varying uncertainty term satisfying:

�Ai (t) = Mi�(t)Ni (2)
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where Mi and Ni are known matrices and �(t) is unknown time-varying matrix
function satisfying �T (t)�(t) ≤ I .

Denote μi (θ(t)) as the standardized fuzzy basis function defined by

μi (θ(t)) =
∏s

j=1 F
i
j (θ j (t))

∑r
i=1

∏s
j=1 F

i
j (θ j (t))

, i = 1, 2, . . . , r

where Fi
j (θ j (t)) is the grade of membership of θ j (t) in fuzzy set Fi

j . Then, for all t ,
it can be seen that

μi (θ(t)) ≥ 0, i = 1, 2, . . . , r
r∑

i=1

μi (θ(t)) = 1. (3)

Let ψi (t, x(t)) = fi (x(t)) + fa(t). Based on the properties of fuzzy basis functions,
the overall T–S dynamical model can be obtained:

{
Eẋ(t) = (Aμ + �Aμ)x(t) + Bμ

(
uF(t) + ψμ(t, x(t))

)+ Bwμw(t)

z(t) = Cμx(t)
(4)

Without loss of generality, we introduce the following assumptions for technical con-
venience.

1. Matched nonlinearities ψμ(t, x) satisfy the inequality

‖ψμ(t, x)‖ ≤ ρ0 + ρ1‖x‖ (5)

where ρ0 and ρ1 are positive unknown scalars.
2. Exogenous signal w(t) is bounded and satisfies

‖w(t)‖ ≤ ρ2 (6)

where ρ2 is an unknown positive real constant.

Remark 1 In [15], it is assumed that the exogenous disturbance is bounded by a known
positive function. That is, ‖ψμ(t, x)‖ ≤ η(t, x). In practical cases, this assumption is
quite restrictive. To relax this restriction, an adaptive SMC scheme will be addressed
in this study.

We assume that the actuators suffer from failures. Let uFl (t) denote the signal from the
actuator that has failed for the control input ul(t), l = 1, . . . ,m. By taking the effects
of actuator fault and saturation, the following model is adopted in this paper:

uF(t) = R(t)σ (u(t)) (7)
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where σ(u(t)) represents the standard saturation function and R(t) is the actuator fault
matrix defined as

R(t) = diag
(
r1(t), r2(t), . . . , rm(t)

)
(8)

where rl(t), (l = 1, . . . ,m) model the degradation level of the ‘l’th actuator. For
every fault mode, rl and r̄l represent the lower and upper bounds of rl(t), respectively,
that is, rl(t) satisfying rl ≤ rl(t) ≤ r̄l , l = 1, 2 . . . ,m.

The actuator fault matrix R(t) can be described as

R(t) = R0(I + G(t)), ‖G(t)‖ ≤ ‖Q‖ ≤ I (9)

where the matrices R0, G(t) and Q are defined as follows:

Q = diag
(
q1, q2, . . . , qm

)
, R0 = diag

(
r01, r02, . . . , r0m

)
,

G(t) = diag
(
g1(t), g2(t), . . . , gm(t)

)

ql = r̄l − rl
r̄l + rl

, r0l = r̄l + rl
2

,

gl(t) = rl(t) − r0l
r0l

, (l = 1, 2 . . . ,m).

(10)

Remark 2 The above model of actuator failure in (7) covers the normal operation case
(as rl = r̄l = 1) and the partial degradation case (as 0 < rl ≤ 1 and r̄l ≥ 1). To
design well the sliding-mode control law, this study does not include the complete
failure case (rl = r̄l = 0).

The saturation function under consideration can be regarded as a nonlinearity input
where each component can be described by the following mathematical model:

σ(ul(t)) = χ(ul(t)) · ul(t) (11)

where

χ(ul(t)) =

⎧
⎪⎪⎨

⎪⎪⎩

ul,max

ul(t)
, ul(t) > ul,max

1, |ul(t)| ≤ ul,max,

− ul,max

ul(t)
, ul(t) < −ul,max

l = 1, 2 . . . ,m (12)

ul,max is the known bound of ul(t), and χ(ul(t)) satisfies 0 < α ≤ χ(ul(t)) ≤ 1.
Substituting (7) in (4), we can get the following system:

⎧
⎨

⎩

Eẋ(t) = (Aμ + �Aμ)x(t) + Bμ

(
R(t))σ (u(t)) + ψμ(t, x(t))

)
+ Bwμw(t)

z(t) = Cμx(t)

(13)
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Now, we shall recall the following definitions and lemmas to be used for stating our
main results. Consider the following unforced descriptor system:

Eẋ(t) = Ax(t). (14)

Definition 1 [7]

1. System (14) is said to be regular if det
(
sE − A

)
is not identically zero.

2. System (14) is said to be impulse free if deg
(
det

(
sE − A

))
= rank(E).

3. System (14) is said to be admissible if it is regular, impulse free and stable.

We end this section by recalling the following lemmas which will be essential to the
following development.

Lemma 1 [52] Let T0(x), T1(x), . . ., Tp(x) be quadratic function of x ∈ R
n.

Ti = xTΨi x, i = 1, . . . p (15)

Then, the implication

T1(x) ≤ 0, . . . , Tp(x) ≤ 0 �⇒ T0(x) < 0 (16)

holds if there exist positive scalars τi , i = 1 . . . p such that

Ψ0 −
p∑

i=1

τiΨi < 0. (17)

Lemma 2 [33] Let M and N be real matrices with appropriate dimensions. Then, for
any matrix � satisfying �T� ≤ I and a scalar ε > 0,

sym(M�N ) ≤ εMMT + ε−1NT N . (18)

Lemma 3 [38] If the following inequalities hold:

Ξi i < 0

1

r − 1
Ξi i + 1

2

(
Ξi j + Ξ j i

)
< 0, i, j = 1, 2, . . . , r , i 
= j

(19)

then the following matrix inequality holds:

r∑

i=1

r∑

j=1

μi (θ(t))μ j (θ(t))Ξi j < 0. (20)
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3 Design and Analysis of SMC

For singular system (13), the main purpose of this work is to synthesize a sliding-mode
control law so that the resultant closed-loop system is robustly admissible despite the
effect of actuator degradation. This section is devoted to designing the switching
manifold and the sliding-mode controller such that the task of this paper is fulfilled.
To this end, we choose the following integral sliding-mode surface function:

s(t) = S0(Ex(t) − Ex(0)) − S0

∫ t

0
(Aμ + BμKμ)x(τ )dτ (21)

where Kμ ∈ R
m×n is a real matrix to be designed and S0 ∈ R

m×n is a constant matrix
satisfying S0Bμ is nonsingular.

According to the SMC theory, when the system trajectories reach the switching
surface, it follows that s(0) = 0 and ṡ(t) = 0. Thus, by ṡ(t) = 0, we get the equivalent
control as

σ(u(t))eq = Kμx(t) − ψμ(t, x(t)) − (S0Bμ)−1S0
(
B1μw(t) + �Aμx(t)

)
(22)

Substituting (22) into (13), we obtain the sliding mode dynamics

Eẋ(t) = Āμμ(k)x(t) + B̄1μw(t) (23)

where Āμμ(k) = Āμμ + S0�Aμ, Āμμ = Aμ + BμKμ, B̄1μ = S0B1μ and S0 =
I − Bμ(S0Bμ)−1S0.

3.1 H∞ Sliding-Mode Dynamics Analysis

In this subsection, we will pay attention for developing a sufficient condition that
ensures sliding-mode dynamics (23) is robustly admissible with H∞ performance.

Theorem 1 Given a scalar γ > 0. The system in (23) is robustly H∞ admissible if
there exist matrices Pi > 0, Si and Gl , (l = 1, 2) and positive scalars τi jk and εi such
that the following inequalities hold for i, j, k = 1, . . . , r:

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

Φ
j
ik Pk + Sk RT + ĀT

ikG
T
2 − G1 G1 B̄1i CT

i εi G1M̄i NT
i∗ − sym (G2) G2 B̄1i 0 εi G2M̄i 0

∗ ∗ −γ 2 I 0 0 0
∗ ∗ ∗ −I 0 0
∗ ∗ ∗ ∗ −εi I 0
∗ ∗ ∗ ∗ ∗ −εi I

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0 (24)

where Φ
j
ik = sym(G1 Āik)+∑r

j=1 τi jk ET [Pk − Pj ]E, Āik = Ai + Bi Kk and matrix

R ∈ R
n×(n−q) is of full rank such that RT E = 0
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Proof The proof of this theorem is divided into two parts. The first one is concerned
with the regularity and the impulse-free characterizations, and the second one treats
the stability property of system (23). First, we consider the nominal case of (23) (that
is, �Aμ = 0).

Since rank(E) = q < n, there always exist two nonsingular matrices M and
N ∈ R

n×n such that

E = MEN =
[
Iq 0
0 0

]

(25)

Then, R can be characterized as R = M
T
[
0
Φ̂

]

, where Φ̂ ∈ R
(n−q)×(n−q) is any

nonsingular matrix.
We also define

Âik = M ĀikN =
[
Â11ik Â12ik

Â21ik Â22ik

]

, P̂i = M
−T PiN =

[
P̂11i P̂12i
P̂21i P̂22i

]

,

Ŝk = N
T Sk =

[
Ŝ11k
Ŝ21k

]

,

(26)

It follows from (24) that

[
Φ

j
ik Pk + Sk RT + ĀT

ikG
T
2 − G1

∗ − sym (G2)

]

< 0 (27)

Pre- and post-multiplying (27) by
[
I ĀT

ik

]
and its transpose, respectively, we obtain

sym
(
Si R

T Āik + Pk Āik

)
+

r∑

j=1

τi jk E
T [Pk − Pj ]E < 0 (28)

Pre- and post-multiplying (28) by N
T and N, respectively, the following inequality

holds using expressions (25)–(26):

sym(Ŝ21μΦ̂T Â22μμ
) < 0 (29)

Accordingly, Â22μμ is nonsingular and then singular system is regular and impulse
free using Definition 1.

To prove the stability of system (23), we choose the following Lyapunov function:

V(x(t)) = max
{
V1(x(t)), V2(x(t)), . . . , Vr (x(t))

}
(30)

where Vk(x(t)) = xT (t)PT
k Ex(t), ET Pk = PT

k E > 0, k = 1, 2, . . . , r .
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Evaluating the derivative of V(x(t)) along the solutions of system (23), it yields

V̇(x(t)) = V̇k(x(t)), if ET Pk ≥ ET Pj j, k = 1, 2, . . . , r

= 2xT (t)PT
k E ẋ(t).

(31)

Define ξ(t) = [
xT (t) ẋ T (t)ET

]T
. From (23), the following equations hold for

any matrices Gl , (l = 1, 2) and Sk with the appropriate dimensions

2ξ T (t)[GT
1 GT

2 ]T [−Eẋ(t) + Āμμx(t)] = 0, 2xT (t)Sk R
T E ẋ(t) = 0 (32)

Considering (31)–(32), we obtain

V̇(x(t)) ≤ξ T (t)
r∑

i=1

μi

([
sym

(
G1 Āik

)
Pk + Sk RT + ĀT

ikG
T
2 − G1

∗ − sym (G2)

])

ξ(t)

(33)

Using the fact that ET Pk ≥ ET Pj , it is easy to verify that

ξ T (t)

[
ET Pj − ET Pk 0

∗ 0

]

ξ(t) < 0 (34)

From (24), we get

[
Φ

j
ik Pk + Sk RT + ĀT

ikG
T
2 − G1

∗ − sym (G2)

]

< 0 (35)

From (34) and using Lemma 1, we verify that V̇(x(t)) < 0 when ξ(t) 
= 0 , which
implies that system (23) is stable.

Let us now analyze the H∞ performance of system (23). Consider the following
performance index:

Jzw =
∫ ∞

0

(
zT (t)z(t) − γ 2wT (t)w(t)

)
dt (36)

Noting that

Jzw =
∫ ∞

0

(
zT (t)z(t) − γ 2wT (t)w(t) + V̇(x(t))

)
dt −

∫ ∞

0
V̇(x(t))dt

=
∫ ∞

0

(
zT (t)z(t) − γ 2wT (t)w(t) + V̇(x(t))

)
dt − lim

t→∞V(x(t)) + V(x(0))

(37)
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Define ζ(t) = [
ξ T (t) wT (t)

]T
. The following null equation holds

2ξ T (t)[GT
1 GT

2 0]T [−Eẋ(t) + Āμμx(t) + B̄1μw(t)
] = 0 (38)

By following the same procedure as used above and performing the Schur complement
equivalence of (24), we can verify that

zT (t)z(t) − γ 2wT (t)w(t) + V̇(x(t)) < 0 (39)

For any zero initial condition, we can deduce from (37) that

Jzw < 0 (40)

Therefore, for any 0 
= w(t)), we have ||z(t)|| < γ ||w(t)||.
Consider now the uncertain case. According to Schur complement and Lemma 2,

it is to verify form (24) that

⎡

⎢
⎢
⎣

Φ̄
j
ik Pk + Sk RT + ĀT

ik(k)G
T
2 − G1 G1 B̄1i CT

i∗ − sym (G2) G2 B̄1i 0
∗ ∗ −γ 2 I 0
∗ ∗ ∗ −I

⎤

⎥
⎥
⎦ < 0 (41)

where Φ̄
j
ik = sym(G1 Āik(k)) + ∑r

j=1 τi jk ET [Pk − Pj ]E . Thus, system (23) is
robustly stable. This completes the proof. �
Now, we are ready to design the gains Ki in (21) such that sliding-mode dynamics
(23) is robustly admissible with H∞ performance.

Theorem 2 Let γ > 0 and λl , (l = 1, 2) be given scalars. Sliding-mode dynamics
of (23) is robustly admissible with H∞ performance γ , if there exist matrices G, Si ,
Pi > 0, Yi and positive scalars τi jk and εi , i, j, k = 1, . . . , r such that the following
LMIs hold:

Ω
j
i i < 0 (42)

1

r − 1
Ω

j
i i + 1

2
(Ω

j
ik + Ωki )

j < 0, i 
= k (43)

where

Ω
j
ik =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

Φ
j
ik Pk + Sk RT + λ2(AiG + BiYk) − λ1GT λ1GTCT

i B̄1i εiλ1GM̄i NT
i∗ −λ2 sym (G) λ2GTCT

i 0 εiλ2GM̄i 0
∗ ∗ −γ 2 I 0 0 0
∗ ∗ ∗ −I 0 0
∗ ∗ ∗ ∗ −εi I 0
∗ ∗ ∗ ∗ ∗ −εi I

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

Φ
j
ik = λ1 sym(AiG + BiYk) +

r∑

j=1

τi jk E
T [Pk − Pj ]E (44)
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Furthermore, Ki = YiG−1.

Proof Under the conditions of the theorem, we can easily verify that matrix G is
nonsingular, since sym (G) < 0. Now consider the following singular delay system:

{
ET ζ̇ (t)t = ĀT

μζ(t) + CT
μw(t)

z(t) = B̄w
T
μζ(t)

(45)

Note that det
(
sE − Āμ

) = det
(
sET − ĀT

μ

)
, and then the pair

(
E, Āμ

)
is regular,

impulse free and stable if and only if the pair
(
ET , ĀT

μ

)
is regular, impulse free and

stable. Moreover, since det
(
sE − Āμ

) = 0 and det
(
sET − ĀT

μ

) = 0 have the same
solution, and

||G(s)||∞ = sup
w(t)∈L2[0,∞)

σmax

{
C
(
jωE − Āμ

)−1
B̄wμ

}

is equal to

||H(s)||∞ = sup
w(t)∈L2[0,∞)

σmax

{
B̄w

T
μ

(
jωET − ĀT

μ

)−1
CT
}

as long as the regularity, free of impulse and stability with H∞ performance are
concerned, we can consider system (45) instead of (23). Then, applying Theorem 1 to
system (45) and setting GT

1 = λ1G and GT
2 = λ2G, conditions (42)–(43) hold. �

Remark 3 – It is noted that the conditions in Theorem 2 are LMIs if the tuning
parameters λ1 and λ2 are well chosen. Thus, as in [47], the following algorithm is
suggested in order to find the optimal values of the tuning parameters λ1 and λ2.

Step 1 Specify the ranges λi ∈ [mi , Mi ], i = 1, 2 and increments �λi for λi so that
each �λi < Mi − mi . Also set λ1 = m1 and λ2 = m2.

Step 2 Carry out Theorem 2 with specified λi ’s.
Step 3 If we get a solution in Theorem 2, obtain control gains Ki . Otherwise, go to

Step 4.
Step 4 Change λ1 = λ1 + �λ1. If λ1 > M1, change λ1 = m1, λ2 = λ2 + �λ2. If

λ2 > M2, then we have no solution. Otherwise, go to Step 2.

Remark 4 – In order to reduce the effect of the disturbance input, the H∞ concept is
addressed to guarantee the closed-loop system to be admissible within a prescribed
disturbance attenuation level γ .

– To obtain theminimum-allowed γ satisfying the LMIs in Theorem 2, the following
optimization problem can be solved:

min ν = γ 2 subject to LMIs (42)–(43) (46)

The optimal H∞ performance is γ = √
ν.
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For comparison purposes, consider the following system where the saturation and the
nonlinear disturbance are ignored.

{
Eẋ(t) = (Aμ + �Aμ)x(t) + BμR(t)u(t) + Bwμw(t)

z(t) = Cμx(t)
(47)

Based on the reliable approach, developed by Wu [43], the following lemma shows
how to design a H∞ reliable controller for (47).

Lemma 4 Given a scalar γ > 0. Then, system (47) is admissible and reliable with
H∞ performance if there exist matrices P > 0 and W > 0, a nonsingular matrix S,
such that the following set of LMIs hold for i = 1, . . . , r

Ξi i < 0 (48)

1

r − 1
Ξi i + 1

2
(Ξi j + Ξi j ) < 0, i > j (49)

where

Ξi j =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

sym(AiΠ + Bi R0Y j ) ΠT CT
i B1i εiΠMi NT

i BiW (Q0R0Y j )
T

∗ −γ 2 I 0 0 0 0 0
∗ ∗ −I 0 0 0 0
∗ ∗ ∗ −εi I 0 0 0
∗ ∗ ∗ ∗ −εi I 0 0
∗ ∗ ∗ ∗ 0 −W 0
∗ ∗ ∗ ∗ 0 0 −W

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

(50)

where Π = PET + SRT and R ∈ R
n×(n−q) is of full rank such that RT E = 0.

Furthermore, Ki = YiΠ−1.

3.2 Adaptive SMC Law Synthesis

After establishing the appropriate switching surface (21), an adaptive SMC law will
be designed to guarantee the reachability of the specified sliding surface s(t) = 0 even
though uncertainties and input nonlinearity are present.

The adaptive SMC that achieves the control objective can be designed as:

ul(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

− α̂(t)Ψ (t)
s̃l(t)

‖s̃(t)‖ , s̃l(t) > 0

0, s̃l(t) = 0,

− α̂(t)Ψ (t)
s̃l(t)

‖s̃(t)‖ , s̃l(t) < 0

l = 1, 2 . . . ,m (51)
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where s̃(t) = (S0BμR0)
T s(t), Ψ (t) = 1

1 − ‖Q‖ (Ψ0(t) + ε), and

Ψ0(t) = ‖R−1
0 ‖

(

‖(S0Bμ)−1‖‖S0‖‖Mμ‖‖Nμ‖‖x(t)‖ + ‖Kμx(t)‖ + ρ̂0(t)

+ ρ̂1(t)‖x(t)‖ + ‖(S0Bμ)−1‖‖S0‖‖B1μ‖ρ̂2(t)
)

(52)

Note that α̂(t), ρ̂0(t), ρ̂1(t) and ρ̂2(t) represent the estimate of α(t), ρ0(t). ρ1(t) and
ρ2(t), respectively. α̂(t), ρ̂0(t), ρ̂1(t) and ρ̂2(t) are generated as the solution of the
following differential equations:

˙̂α(t) = κα̂3(t)Ψ0(t)‖s̃(t)‖, ˙̂ρ0(t) = q0‖R−1
0 ‖‖s̃(t)‖,

˙̂ρ1(t) = q1‖R−1
0 ‖‖x(t)‖‖s̃(t)‖

˙̂ρ2(t) = q2‖R−1
0 ‖‖‖(S0Bμ)−1‖‖S0‖‖B1μ‖‖s̃(t)‖ (53)

where α̂(0), ρ̂0(0), ρ̂1(0) and ρ̂2(0) are bounded positive initial values of α̂(t), ρ̂0(t),
ρ̂1(t) and ρ̂2(t), respectively, and κ , q0, q1, q2 and ε are positive constants.

Theorem 3 If the adaptive control input u(t) is designed as (51) with adaptive law
(53), then the trajectory of system (13) converges to the sliding surface s(t) = 0.

Proof Consider the following Lyapunov function:

Vs(t) = 1

2
sT (t)s(t) + 1

2κ
α̃2(t) + 1

2q0
ρ̃2
0 (t) + 1

2q1
ρ̃2
1 (t) + 1

2q2
ρ̃2
2 (t) (54)

where α̃(t) = α̂−1(t) − α, ρ̃0(t) = ρ̂0(t) − ρ0, ρ̃1(t) = ρ̂1(t) − ρ1 and ρ̃2(t) =
ρ̂2(t) − ρ2.

According to Eq. (21), we get

ṡ(t) = S0
{(

�Aμ(t) − BμKμ

)
x(t)) + B1μw(t)(t)w(t)

+ Bμ

(
R(t)σ (u(t)) + ψμ(t, x(t))

)} (55)

By taking the derivative of Vs(t), we get

V̇s(t) = sT (t)ṡ(t) − 1

κ
α̃(t)

˙̂α(t)

α̂2(t)
+ 1

q0
ρ̃0(t) ˙̂ρ0(t) + 1

q1
ρ̃1(t) ˙̂ρ1(t) + 1

q2
ρ̃2(t) ˙̂ρ2(t)

= s̃T (t)

(

σ(u(t)) + G(t)σ (u(t)) + R−1
0

(
ψ(t, x(t)) − Kμx(t)

+ R−1
0 (S0Bμ)−1S0(B1μw(t) + �Aμ(t)x(t))

))

− α̂(t)α̃(t)Ψ0‖s̃(t)‖

+ ρ̃0(t)‖R−1
0 ‖‖s̃(t)‖ + ρ̃1(t)‖R−1

0 ‖‖x(t)‖‖s̃(t)‖
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+ ρ̃2(t)‖R−1
0 ‖‖‖(S0Bμ)−1‖‖S0‖‖B1μ‖s̃(t)‖

≤ s̃T (t)
(
(1 − ‖G(t)‖)σ (u(t))

)

+
(

Ψ0(t) − ρ̂0(t)‖R−1
0 ‖ + ρ0‖R−1

0 ‖ − ρ̂1(t)‖R−1
0 ‖‖x(t)‖

+ ρ1‖R−1
0 ‖‖x(t)‖ + ρ̂2(t)‖R−1

0 ‖‖‖(S0Bμ)−1‖‖S0‖‖B1μ‖
− ρ2‖R−1

0 ‖‖‖(S0Bμ)−1‖‖S0‖‖B1μ‖
)

‖s̃(t)‖

− α̂(t)α̃(t)Ψ0‖s̃(t)‖ + ρ̃0(t)‖R−1
0 ‖‖s̃(t)‖

+ ρ̃1(t)‖R−1
0 ‖‖x(t)‖‖s̃(t)‖

+ ρ̃2(t)‖R−1
0 ‖‖‖(S0Bμ)−1‖‖S0‖‖B1μ‖‖s̃(t)‖

≤
(
1 − ‖Q(t)‖

)
s̃T (t)σ (u(t)) + (1 − α̂(t)α̃(t))Ψ0‖s̃(t)‖ (56)

From Eqs. (12) and (51), ul(t) > 0 implies that, for s̃l(t) > 0,

σ(ul(t))ul(t) = −α̂(t)Ψ0(t)
s̃l(t)

‖s̃(t)‖σl(t)

= χ(ul(t))u
2
l (t)

≥ αα̂2(t)Ψ 2(t)
s̃2l (t)

‖s̃(t)‖2 (57)

and for s̃l(t) < 0,

σ(ul(t))ul(t) = −α̂(t)Ψ (t)
s̃l(t)

‖s̃(t)‖σl(t) ≥ αα̂2(t)Ψ 2(t)
s̃2l (t)

‖s̃(t)‖2 (58)

From (57) and (58), we can obtain

s̃l(t)σl(t) ≤ −αα̂(t)Ψ (t)
s̃2l (t)

‖s̃(t)‖ (59)

Hence, we have

(
1 − ‖Q(t)‖

)
s̃T (t)σ (u) = −

(
1 − ‖Q(t)‖

) m∑

l=1

αα̂(t)Ψ (t)
s̃2l (t)

‖s̃(t)‖
= −αα̂(t)Ψ0(t)‖s̃(t)‖

(60)

Substituting (60) into (56), we obtain

V̇s(t) =
(
Ψ0 − α̂(t)α̃(t)Ψ0 − αα̂(t)(Ψ0 + ε)

)
‖s̃(t)‖ < 0, ∀‖s(t)‖ 
= 0 (61)
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Noting that αα̂(t) + α̂(t)α̃(t) = 1 and α̂(t) > 0, it is easy to verify that

V̇s(t) < 0, ∀t > 0 (62)

Which means that the system trajectories converge to the predefined sliding surface
and are restricted to the surface for all subsequent times, thereby completing the proof.

�

Remark 5 Due to term ‖R−1
0 ‖ in (52), the complete failure case cannot be considered

as mentioned in Remark 2.

Remark 6 It is noted that the sliding-mode controller given in (51) contains the term
s̃(t)

‖s̃(t)‖ which is ill-defined when s(t) = 0. In order to avoid this problem and reduce

the effect of chattering caused by the discontinuous controller, a sigmoid-like function
s̃(t)

ς + ‖s̃(t)‖ can be introduced to replace
s̃(t)

‖s̃(t)‖ , where ς is a small positive scalar

value.

Remark 7 For singular systems, the existence of the algebraic equation may cause an
impulsive behavior of the states unless each control input is continuously differen-
tiable. Besides, the chattering phenomenon produced by the SMC law may destroy
the system performances and even damage the actuators. To circumvent this difficulty,
the high-order sliding-mode control can be a good issue, which needs to be further
investigated, which may be a future direction in our investigation [24,27].

4 Application to the Lower-Limb Rehabilitation System

In this section, the proposed control scheme is applied to the lower-limb rehabilitation
system shown in Fig. 1. The system is governed by the following dynamic model
extracted from reference [34]:

M(q)q̈(t) + C(q, q̇)q̇(t) + G(q)q(t) = Ru(t) + Sw(t) (63)

where q(t) = [qT1 (t) qT2 (t)]T denotes the generalized coordinates, u(t) =
[CM1(t) CM2(t)]T is the input vector and w(t) = [ f px (t) Cpz(t)]T is the distur-
bance vector.

The model matrices are defined as.

M(q) =
[

M + m −mlsin(α)sin(q2(t))
−msin(α)sin(q2(t)) ml2 + J + �J

]

,

C(q, q̇) =
[
0 −mlsin(α)q̇2(t)cos(q2(t))
0 0

]

,
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Motor Belt Mobile support

Fig. 1 Mechanical scheme of the lower-limb rehabilitation system

G(q) =
⎡

⎣
0 0

0 −mlcos(α)
sin(q2(t))

q2(t)

⎤

⎦ ,

R =
[1

a
0

0 1

]

, S =
[
1 0
0 1

]

(64)

with M = 14 kg, m = 4 kg, J = 0.26 kgm2, a = 0.025, l = 0.05m, α = 20◦,
β = 0.01m and h = 0.6m.

Let x1(t) = q1(t), x2(t) = q2(t), x3(t) = q̇1(t), x4(t) = q̇2(t), x5(t) = q̈1(t) and
x6(t) = q̈2(t). Model (63) can be also written as

Eẋ(t) =
⎡

⎣
0 I 0
0 0 I

−G(q) 0 −M(q)

⎤

⎦ x(t) +
⎡

⎣
0
0
R

⎤

⎦
(
σ(u(t)) + f (x)

)
+
⎡

⎣
0
0
S

⎤

⎦w(t)

(65)

where E = diag
(
1, 1, 1, 1, 0, 0

)
, x(t) = [x1(t) x2(t) x3(t) x4(t) x5(t) x6(t)]T and

f (x) = −R−1C(q, q̇)q̇(t) =
[
f0x24cos(x2)

0

]

.

Assume that θ1(t) = sin(x2(t)) ∈ [−1 , 1
]
and θ2(t) = sin(x2(t))

x2(t)
∈

[ sin(π/4)
π/4 , 1

]
.
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Using the sector nonlinearity approach, the above nonlinear functions can be rewrit-
ten as

⎧
⎨

⎩

θ1(t) = −w11(θ(t)) + w12(θ(t))

θ2(t) = sin(π/4)

π/4
w21(θ(t)) + w22(θ(t))

(66)

The membership functions are calculated as

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

w11(θ(t)) = 1 − θ1(t)

2
, w12(θ(t)) = 1 − w11(θ(t))

w21(θ(t)) = 1 − θ2(t)

1 − sin(π/4)
π/4

, w22(θ(t)) = 1 − w21(θ(t))
(67)

According to (67), nonlinear systems (65) can be exactly represented by the following
T–S fuzzy system with 4 = 22 rules.

⎧
⎨

⎩

Eẋ(t) = ∑4
i=1 μi (θ(t))(Ai + �Ai )x(t) + B

(
uF(t) + ψ(t, x(t))

)+ Bww(t)

z(t) = ∑4
i=1 μi (θ(t))Ci x(t)

(68)

where
{

μ1(θ(t)) = w11(θ(t))w21(θ(t)), μ2(θ(t)) = w11(θ(t))w22(θ(t)),

μ3(θ(t)) = w12(θ(t))w21(θ(t)), μ4(θ(t)) = w12(θ(t))w22(θ(t))
(69)

and the numerical values of matrices are as follows:

A1 =
⎡

⎣
0 I 0
0 0 I

−G1 0 − M1

⎤

⎦ , A2 =
⎡

⎣
0 I 0
0 0 I

−G2 0 − M1

⎤

⎦ , A3 =
⎡

⎣
0 I 0
0 0 I

−G1 0 − M2

⎤

⎦ ,

A4 =
⎡

⎣
0 I 0
0 0 I

−G2 0 − M2

⎤

⎦

where

G1 =
[
0 0
0 − 1.84

]

, M1 =
[

18 − 0.0684
− 0.0684 0.29

]

, G2 =
[
0 0
0 − 0.104

]

,

M2 =
[

18 0.0684
0.0684 0.29

]

.

In this example, it is assumed that the uncertain parameter matrix function �(t) =
0.7 + 0.3sin(0.2t) and the constant matrices:

Mi = [
0 0 0 1

]T
, Ni = [

0 0 0 0.1
]
, i = 1, 2 . . . , 4



Circuits, Systems, and Signal Processing (2020) 39:1307–1334 1325

Set S0 = B+
0 . For given scalars of λ1 = 1 and λ2 = 0.35, the corresponding convex

optimization problem (46) (solved using the Yalmip toolbox and the Sdpt3 solver),
produces a feasible solution with minimum-allowed γ ∗ = 0.911 and the following
feedback gain matrices:

K1 =
[− 10.584 − 1.0518 − 2.0261 − 0.18358 0.015715 − 0.015255
− 132.34 − 15.801 − 17.552 − 4.7413 0.27426 − 2.327

]

,

K2=
[− 10.748 − 1.0702 − 2.0379 − 0.18818 0.020137 − 0.019633
− 133.94 − 14.179 − 20.948 − 4.0343 − 0.94344 − 1.4583

]

,

K3=
[− 9.8035 − 0.97517 − 1.8541 − 0.16953 0.044707 − 0.013411
− 137.38 − 16.215 − 18.714 − 4.6986 0.10553 − 2.184

]

,

K4 =
[− 10.196 − 1.0157 − 1.9235 − 0.17836 0.036194 − 0.017035

− 130.7 − 13.845 − 20.326 − 3.9507 − 0.83096 − 1.4364

]

(70)

The existence of a feasible solution shows that there exists a sliding surface in (21)
such that the resulting sliding mode dynamics in (23) is admissible.

It is assumed that f0 = 0.0017. The actuator faults fa(t) = [
f Ta2(t) f Ta2(t)

]T
and

the external disturbance input are, respectively, selected as

fa1(t) =

⎧
⎪⎨

⎪⎩

0.1t, 0 ≤ t ≤ 2,

0.2, 2 < t < 3,

0.1sin(10t) + 0.1cos(10t) 3 ≤ t ≤ 5

fa2(t) =
{
0.1cos(t), 0 ≤ t ≤ 1,

0.1sin(10t) + 0.1 1 ≤ t ≤ 5
(71)

and w(t) = [
0.1sin(3t)e−0.01t ,

0.1sin(5t)

5t + 1

]
.

The saturation levels are u1,max = 1 and u2,max = 5, and the actuators can have
failures with parameters, namely r1 = 0.2, r2 = 0.1, r̄1 = 1.5, r̄2 = 1, so R0 =
diag{0.85, 0.55} and Q0 = diag{0.7647, 0.8182}.

For the sake of verifying the effectiveness of the proposed controller, the following
parameters and initial conditions are selected in the simulation: κ = 0.01, q0 = 0.1,
q1 = 0.2, q2 = 0.2, ε = 35 and x(t) = [

0.15 π
4 0 0 0

]T . To prevent the

control signal from chattering, we replace
s̃(t)

‖s̃(t)‖ with
s̃(t)

0.1 + ‖s̃(t)‖ .
To study the effect of actuator failures, we consider a scenario defined by a fault

matrix R(t) as

R(t) = diag{ξ1(t) + 0.7, ξ2(t) + 0.2} (72)
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Fig. 2 State trajectories
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Fig. 3 State trajectories

where 1 ≤ t ≤ 20 and

ξ1(t) =

⎧
⎪⎨

⎪⎩

0.6, if 0 ≤ mod(t, 3) ≤ 1

−0.4, if 1 < mod(t, 3) ≤ 2

0.8, if 2 < mod(t, 3) ≤ 3

ξ2(t) =

⎧
⎪⎨

⎪⎩

0.1, if 0 ≤ mod(t, 3) ≤ 1

0.2, if 1 < mod(t, 3) ≤ 2

0.3, if 2 < mod(t, 3) ≤ 3
(73)
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Fig. 4 Input trajectories
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Fig. 5 Surface trajectories

The numerical simulations are performed for the reliable control mode, where the
reliable SMC controller is implemented under the previous failure scenario. The cor-
responding simulation results are plotted in Figs. 2, 3, 4, 5, 6, 7, 8, 9 and 10.

– Figures 2, 3, 4 and 5 depict, respectively, the system state trajectories, the control
input and the resulting sliding surfacewhen the designed control strategy is applied.
We observe that the system under consideration is stabilized by using the sliding-
mode fault-tolerant controller (51). More precisely, the closed-loop system still
maintains some good performance despite the presence of actuator faults and
saturation, parameter uncertainties and external disturbances.
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Fig. 6 Adaptive law α̂(t)
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Fig. 7 Adaptive law ρ̂0(t)

– Figures 6, 7, 8 and 9 show that the adaptive laws converge to somevalues depending
on initial condition values α̂(0), ρ̂1(0) and ρ̂0(0) and the adaptation gains κ , q0,
q1 and q2. However, we can note that α̂(t), ρ̂0(t) and ρ̂1(t) do not necessarily
converge to nominal values α, ρ0, ρ1 and ρ2, respectively.

– From Fig. 10, it can be clearly observed that the ratio of ||z(t)||2||w(t)||2 under zero initial
condition is less than γ = 0.911.

– It is clear from Fig. 4 that the control signal is chattering free.
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In order to highlight the effectiveness of the proposed control scheme, we will
perform a comparison with the method applied in [43]. According to Lemma 4, the
minimum allowed γ ∗ = 0.541 and the reliable control gains can be computed as
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K1 =
[

74.989 − 6.6756 − 27.243 − 1.6557 0.035945 − 0.020326
− 4257.5 − 593.77 − 679.87 − 211.11 − 0.17689 − 7.176

]

,

K2 =
[− 74.232 − 6.5933 − 27.035 − 1.6323 0.039699 − 0.019473
− 4243.4 − 590.55 − 669.93 − 210.87 − 0.14559 − 7.1768

]

,

K3 =
[− 75.494 − 6.7569 − 27.269 − 1.6865 0.036911 − 0.018333
− 4221.1 − 590.6 − 666.33 − 210.34 0.26424 − 7.1648

]

,

K4 =
[− 74.927 − 6.6994 − 27.1 − 1.6717 0.04065 − 0.017746
− 4205.3 − 587.23 − 655.81 − 210.06 0.3122 − 7.1645

]

(74)
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Fig. 12 State trajectories using reliable SMC controller (51)

Assume that f0 = 0.4. Figures 11 and 12 exhibit a comparison of state variable
trajectories using the reliable controller designed in (74) and the proposed reliable
SMC controller (51). It is observed from the plotted figures that the developed control
law leads to avoid divergence of the states and maintain the dynamic stability of the
system.

In conclusion, although the method in [43] proposes an effective reliable control
design for linear singular systems with external disturbances, it may not be able to
copewith a complex case with nonlinear disturbance and actuator saturation. Thus, the
impact of the synthesized control law is evidently quite effective and it can stabilize
the underlying system with satisfactory performance.

5 Conclusion

In this paper, we have studied the reliable sliding-mode control problem for a class of
nonlinear singular systems described by T–S fuzzy model with external disturbance,
actuator failures and saturation. The key features of the proposed approach lie in
the design of integral-type sliding surface and the associated adaptive SMC law for
the system under consideration. An admissibility criterion with H∞ performance has
been established to ensure the stability of the sliding-mode dynamics enforced on
the sliding surface. In addition, the design method can be applied to a wide range of
practical systems. Motivated by research developed in [28], the proposed approach
will be extended to multi-agent systems in future. Furthermore, the high-order sliding-
mode control for nonlinear singular systems will be a challenging issue for our future
investigation. Finally, experimental results will be a challenge for solidly convincing
the developed results.
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