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Abstract
The electrocardiogram (ECG) is a widely disseminatedmethod for detecting heart dis-
eases due to its lower cost than other tests. But, some steps are important for detecting
cardiac arrhythmias in ECG signals, which are: preprocessing, segmentation, feature
extraction and classification. In this work, we assess how four non-morphological fea-
ture extraction methods provide useful ECG classification. Moreover, we propose an
innovation in the configuration of the structural co-occurrence matrix (SCM), by com-
bining it with the Fourier transform to extract the main frequencies of the signal. We
tested theses methods on four well-known classifiers used in the literature and com-
pare the results with six classical feature extraction methods. Moreover, we followed
high standard protocols for developing expert systems for clinical usage. The database
chosen for evaluation is the MIT-BIH arrhythmia database. We increased the identifi-
cation of heart dysrhythmia by 2%, representing an advance on reports on the literature.
The developed system is 1.3% more reliable than the current best approach reported,
being 106 times faster, as well. The HOS with naive Bayes classified pathologies in 22
patients with 94.3% of accuracy. We perceived that SCM–Fourier is 1.5% more accu-
rate than the SCM or Fourier standalone. The feature extractor proposed in this paper
compress 97% of the useful information to provide a reliable arrhythmia classification.

Keywords Heart arrhythmia · ECG ·MIT-BIH · Feature extraction · Classification ·
Machine learning

1 Introduction

Heart diseases accounted up to 17.5million deaths in 2012 [29]. The electrocardiogram
(ECG) is the first choice for heart diagnosis, because it is noninvasive, easy to apply and
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Fig. 1 The shape of a QRS signal, from a heartbeat

low cost [19]. However, it is extremely necessary that amedical specialist diagnose this
examination properly, even so, its imprecise characteristics might lead to wrong diag-
nosis. So, medical area could benefit from computing tools for ECG processing [41].

The electrocardiogram maps the electrical activity associated with contractions
of the heart muscle. Such contractions emanating polarization and depolarization of
cardiac tissue are called events or waves, which are the main P, Q, R, S and T are also
considered intervals of these events such as QT and TS, which have the Q and T, S
and T, respectively, or also QRS, known as the QRS complex [17]. Figure 1 shows the
characteristic ECG waves in a standard cardiac cycle.

Heart rhythm arrhythmia is caused by changes how the electrical impulse passes
through the myocardial tissue [16]. Therefore, from a clinical perspective, it is impor-
tant to the identify hearth arrhythmia with confidence.

Researches have been studying tools for ECG analysis throughout the years, such as
preprocessing, segmentation, feature extraction and automatic classification [24]. For
such analyses, parameters such as time, frequency and morphology are important and
consider standards, i.e., classical techniques. For example, Acharya et al. [1] used these
measures, on an RR interval, to separate different kinds of heart disorders. However,
not all relevant information might be available by only using timing and shaping
standards; therefore, feature extraction tolls might aid clinical diagnosis of and ECG.

Among the various extraction techniques for ECG found on the literature, themajor-
ity use discrete wavelet transform [5,14,44,48–50], independent components analysis
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[48], analysis of linear discriminants [44], RR interval features [21,48–50]. This main
focus of this papers is the analysis of nonstandards feature extractors, which were
demonstrated to be suitable in others signal processing applications [34,39].

The Fourier transform is mainly used to identify different frequency components in
a signal [31]. It can also be used to highlight the most relevant sine and cosine waves
in the signal, such as exhibited in Pławiak [36], who proposed an way to identify
heart health based on ECG signals. The algorithm of Goertzel [12] is a numerical
way to compute the Fourier coefficients. Another important technique for feature
extraction is the higher-order statistics (HOS) [28]. Thus, HOS may be a suitable
method to extract features of the ECG signal, especially because Marques et al. [26]
have used this kind of features to describe nonlinear relationships in heart’s signals.
The structural co-occurrence matrix (SCM) is a feature extraction technique based
on frequency occurrences in a know structure. Souza et al. [45] used the SCM to
diagnose Parkinson’s disease. Moreover, Peixoto and Filho [34] proposed in a way
that combines SCM and Fourier to identify strokes in tomography brain images.

This work aims to assess how Goertzel, HOS, SCM and the fusion SCM–Fourier
would perform on heart arrhythmia identification, by evaluating their performance
on several classifiers. Besides that, we replicate in this work the approach proposed
by Peixoto and Filho [34], and it has never been applied in signals to the best of
our knowledge. Four well-known classifiers are used to access the performance of
theses methods: The naive Bayes, the optimum-path forest (OPF), the multilayer
perceptron (MLP) and the support vector machine (SVM). Moreover, the standard
ANSI/AAMI/ISO EC57, 1998-R2008, i.e., the subject-oriented paradigm, is used on
the MIT-BIH arrhythmia database in order to provide a reliable to clinical analysis.
Our results are also compared to six other feature extraction methods [8,14,44,48–50].

In short, our contributions are:

– Report a contrast between the most reliable and feasible approaches for heart
arrhythmia identification with ECG;

– Evaluate how the combination of SCM and Fourier will behave in ECG signals,
since it has only been applied in tomography brain images;

– Highlight how one could benefit by using such system in real clinical case scenario.

This paper is organized as follows: In Sect. 2, it is presented an overview of related
work, which concerns to feature extraction and heart arrhythmia identification; in
Sect. 3, the proposed tools are detailed; in Sect. 4 are explained the statistical proce-
dures followed to produce reliable results; then, in Sect. 5 our findings are explained
and compared to recent reports on the literature.

2 Background on ECG and Arrhythmia Detection

2.1 Classical Methods for ECG Feature Extraction

Chazal et al. [8] exhibited a method based on the time gaps of RR set of an QRS. This
is often called as morphological features. The authors proposed to use 155 features
entirely based on time measures of the QRS complex. Güler and Übeylı [14] used
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the discrete wavelet transform (DWT). Their methods are focused on the coefficients
related to details of the first and fourth levels to generate a feature vector of length 19.

The DWT also has been used to generate features for ECG in Song et al. [44]. The
authors used the coefficients of different levels to generate 144 features based on DWT
and RR morphology. Still in frequency analyses, Yu and Chen [49] provided a set of
21 features, based on morphology and frequency domain.

Yu andChou [50] usedmorphological features and independent component analysis
(ICA) to generate a feature vector. The 31 most significant features of the RR interval
are selected to be used. In the same direction, Ye et al. [48] combine DWT, ICA and PC
a set of 96 values plus 4 morphological measures composes the feature vector, years
ahead. Afkhami et al. [2] combined similar features with Gaussian mixture models.

It is worth noting that all feature extraction proposed in this work relies on algo-
rithms that automatically identify the QRS complex, i.e. ,signal segmentation. This is
not the focus of our work, since other researches have dedicated their efforts to develop
algorithms for such purposes. Researches are pushing toward a major breakthrough in
heat diagnosis systems. For this reason, it is important to follow standardized proce-
dures. Further explanations are about experimental setting and that shall be taken into
consideration to design a proper clinical and reliable system that could be compared
to other methods of the literature.

2.2 Related Approaches for Arrhythmia Classification

Morphological features are created by point-to-point measures in the signal. They can
be the simplest way to generate features from the QRS complex, but the main disad-
vantage is that these types of algorithms strongly rely on proper QRS segmentation,
whichmeans slightly displacement of R points might lead to a unrealistic morphology.
In addition, if the sampling frequency ( fs) of the acquisition system is not properly
calibrated, this method could not perform as expected. This is the same disadvantage
of the feature extractor proposed in Song et al. [44].

ICA methods have been used in time domain and frequency domain [48,50]. Luz
et al. [24] emphasized that ECG signal is composed by a group of smaller signals,
which can be separated by ICA. These signals are correlated with dysrhythmia, but
the drawback is that it is not easy to set the order of the ICA. Ye et al. [48] proposed an
feasible way to achieve this at the cost of a higher-dimensional feature vector, leading
this problem into “the curse of dimensionality theorem.”

Afkhami et al. [2] proposed to combine a set of features extraction methods, such
as morphological and Gaussian mixture models (GMM), reaching over 90% of accu-
racy. Therefore, the authors lack to explain their methodology, making their work
inappropriate for a fair evaluation.

Still in the context of feature extraction, deep learning (DL) might be used to
describe a ECG signal (Rahhal et al. [37]). But, a DL approach is extremely susceptible
to overfitting if not proper designed or if not enough data are given.



Circuits, Systems, and Signal Processing (2020) 39:631–650 635

3 The Proposed Tools

3.1 Proposed Feature ExtractionMethods for ECG

The Fourier transform is a widely used tool in practical and academic applications,
feasible to be computationally used through the FFT algorithm. Through this trans-
form, any function that can be expressed is a composition of sine-based functions [10].
Among a variety of applications for FFT, there is a highlight for the extraction of char-
acteristics for pattern recognition [13]. The Goertzel [12] algorithm is a another way
to compute the amplitude of Fourier transform’s harmonics, in a numerically more
efficient way. This might be more suitable for embedded applications, overcoming
sampling frequency problems reported in the approaches of Chazal et al. [8] and Song
et al. [44].

The Kurtosis is used to measure how a distribution differs from a Gaussian one [9],
which is the foundation of higher-order statistics (HOS) [7]. Antoni [4] emphasized
this method ability to characterize non-stationary signals. In addition, skewness can be
used to describe transition on the signal [27]. Due to its characteristics, this method has
been applied successfully on signals with high variability [42]. It has demonstrated to
be robust to Gaussian-type noise [20,28]. This makes this method advantages over all
classical methods presented before, since it combines non-stationary analyses, noise
invariance with only much lower dimension (four features), compared to Ye et al. [48].

The kurtosis is related to high-frequency transition in the QRS. The skewness
indicates a non-Gaussian patterns in the probability density function of a signal, rep-
resenting a feature to describe smooth transitions during the QRS onset and offset.

The structural co-occurrence matrix (SCM) was recently proposed by Ramalho et
al. [38] to analyze how two signals are interconnected. In thismethod, these two signals
generate a 2-D histogram, i.e., a co-occurrencematrix. Report of SCM ismainly found
for image classification [34,43]. Most of applications of SCM are medical diagnosis;
for example, Rebouças Filho et al. [40] used a slightly variation of the SCM for
automatic detection of skin lesions on images, proposed in Peixoto and Filho [34]. It
works the same as the SCM aforementioned; however, one of the input signals is the
raw signal reconstructed by using the Fourier harmonics that have an intensity of 1%
of the main DC [40]. This configuration has only been applied in images before, never
in signals. It could be an improvement in feature extraction robustness, since it would
combine statistical features from time and frequency domain filtering.

3.2 The ChosenMachine LearningMethods

The Bayesian classifier is a supervised technique, based on statistics and Fisher‘s
rule [11] to classify samples. It uses estimations of co-variance matrices to generate
discriminate functions and probability density functions of each class. A commonly
found report of this method is the naive Bayes classifiers, which is based on the
assumption that the features are uncorrelated, generating a diagonal co-variancematrix
[32].
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Support vector machines (SVMs) are based on the statistical learning theory pro-
posed by Vapnik [46]. This is considered a large margin classifiers, and its goal is to
place a hyperplan that maximizes distances between two classes. It was first proposed
to solve binary problem, but one-versus-all structures are adopted for multiclasses. It
also uses kernels to map the input features to a higher-dimensional output space, such
as the radian basis function (RBF) [47].

The multilayer perceptron (MLP) is a nonlinear classifiers, designed to model how
a signal flows through a human brain [15]. Its basic units are the perceptrons, which
are connected with each other, layer by layer, through a weights matrix. This is often
referred as the “vanilla neural network,” since it is the classical approach in front to
deep learning.

The optimal path forest (OPF) is a classifier that mixes features from computational
graphs and distance-based classifiers [33]. Its improvement is based on a optimization
strategy to order the graph, making the faster to train and to predict than other distance-
based classifiers. This classifier has been used for heart arrhythmia classification [23].

4 Methodology

We assess how HOS, SCM, Goertzel and Fourier perform, focusing on ECG signal
feature extraction for arrhythmia detection task. We follow the recommendations of
ANSI/AAMI [3] to attend to clinical standards and used the dataset division (DS1 and
DS2) suggested by Chazal et al. [8]. In this way, we compare with the aforementioned
classifiers, as the same adopted by Luz et al. [23] who follow the same medical
recommendation.

According to Chazal et al. [8], using the heartbeats from a patient for both the
training and the testing adds bias toward the system. So, the authors proposed to split
the MIT-BIH dataset into two sets, DS1 and DS2, balancing among the samples.

In Sect. 4.1,we explain the database and theAAMI standards. FollowedbySect. 4.2,
the segmentation and feature extraction steps are explained and the classifiers settings
in Sect. 4.3. At last, we present the metrics adopted in Sect. 4.4.

A general overview of our entire process is exhibited in Fig. 2. In (1), the raw data
are read using the library provided by in MIT-BIH, which is filtered to reduce noised
(2). Then, the QRS complex segmentation is made by using a gold standard algorithm,
in which the feature extraction (3) and (4) classification are performed, respectively.

4.1 The Heart Arrhythmia Database and Clinical Standards

The database adopted in our experiments is the MIT-BIH arrhythmia,1 which contains
a 48 half-hour ECG signal and records sampled at 360 Hz, of 44 patients. [30,35]. This
is the most used database that researches use to study heart arrhythmia. The Associ-
ation for the Advancement of Medical Instrumentation (AAMI) published a standard
ANSI/AAMIEC57:1998/(R)2008 [3] that recommends to group the heartbeatmedical
annotations into five classes, as shown in Table 1.

1 https://physionet.org/physiobank/database/mitdb/.

https://physionet.org/physiobank/database/mitdb/
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Fig. 2 Steps used to identify heart disorders. In (1), a filtering is used under the raw ECG signal for noise
removal (2). Then, it is passed to the QRSwaves segmentation algorithm (3). The feature vectors are created
for each QRS complex in (4). Finally, in (5), the feature vectors are fed into the classifiers to train an detect
heart arrhythmia

Table 1 Classes, i.e., pathologies, description of MIT-BIH database‘s annotation and the suggested AAMI
clinical standard

AAMI class MIT-BIH class MIT-BIH heartbeat

Normal (N) N Normal beat

L Left bundle branch block beat

R Right bundle branch block beat

e Atrial escape beat

j Nodal escape

Supraventricular
ectopic beat (SVEB)

A Atrial premature beat

a Aberrated atrial premature beat

J Nodal (junctional) premature beat

S Supraventricular premature beat

Ventricular ectopic
beat (VEB)

V Premature ventricular contraction

E Ventricular escape beat

Fusion beat (F) F Fusion of ventricular and normal beat

Unknown beat (Q) P Paced beat

f Fusion of paced and normal beat

U Unclassified beat

The column AAMI classes, in Table 1, are the suggestion of ANSI/AAMI [3]
for grouping the heat diseases found in the MIT-BIH database. The description of
each disease is presented in the last column of this table. Llamedo and Martínez [22]
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Table 2 Suggestion of Chazal et
al. [8] to split patients into
training and test sets

Dataset Records

DS1—training 101, 106, 108, 109, 112, 114, 115, 116,
118, 119, 122, 124, 201, 203, 205, 207,
208, 209, 215, 220, 223 and 230

DS2—test 100, 103, 105, 11, 113, 117, 121, 123,
200, 202, 210, 212, 213, 214, 219, 221,
222, 228, 231, 232, 233 and 234

proposed to turn this 5-class problem into a 3-class problem by grouping F and Q
together and add them to the VEB class, due to the unbalancing number of samples.

The AAMI standards also recommend to split records, i.e., patients, into two
database of patients. One should be used for training (DS1) and other for testing
the system (DS2). This is exhibited in Table 2. Thus, the system will be developed
using data that represents real clinical cases, which means, patients that are used to
design the system are different than the ones used to evaluate it. In addition, Chazal
et al. [8] went one step further and proposed to balance both sets, by grouping the
patients exhibited in Table 2.

As emphasized by Luz et al. [23], the heartbeats of a patient will never be in both
DS1 and DS2, which means a patient should be only used for training or testing the
system. This procedure might increase the reliability of the methods to arrhythmia
detection.

Luz et al. [24] reported the main works published in the literature are grouped
following the intra-patient scheme, where heartbeats of the same patients can be seen
in both training and testing sets. Luz et al. [24] are strict to say these results do not
contribute to the develop a system, from a clinical point of view, since the values are
not similar in a real-life scenario regarding the accuracy rates reported.

4.2 Segmentation and Feature Extraction Steps

The R point the ECG signal is found using the algorithm proposed by Madeiro et al.
[25]. And, the algorithm outputs the Q and S point as well, which is the entire QRS
complex. But, we adjusted the algorithm to return 64 samples, as proposed in Yu and
Chen [49], in order to center the R peak at each signal. Therefore, the segmented QRS
corresponds to 2.8ms. There have been already efforts to develop algorithms for QRS
segmentation, so this is not the main goal of our work.

We used the QRS segmented to extract features, with the methods presented in
the previous section, and we compare them against the classical feature excitation
exhibited in Luz et al. [23]. Tables 3 and 4 summarize all features extractors used in
this work, showing the number of samples and features of each one.

4.3 Classifiers Settings

It is worth noting that the main purpose of our work is not to identify which is the
most suitable classifier, but rather is to access how different feature extractors would
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Table 3 Dataset description with 5 classes considering the ANSI/AAMI EC57:1998/(R)2008 standard [3]

Dataset Feature extractor nf N SVEB VEB F Q Total

Training Fourier 33 45,844 943 3788 415 8 50,998

Goertzel 33 45,844 943 3788 415 8 50,998

HOS 4 45,844 943 3788 415 8 50,998

SCM 8 45,844 943 3788 415 8 50,998

SCM–Fourier 8 45,844 943 3788 415 8 50,998

Chazal et al. [8] 155 45,747 940 3777 415 8 50,887

Güler and Übeylı [14] 19 45,845 943 3788 415 8 50,999

Song et al. [44] 21 45,825 943 3788 414 8 50,978

Yu and Chen [49] 13 45,844 943 3788 415 8 50,998

Yu and Chou [50] 31 45,511 929 3770 412 8 50,630

Ye et al. [48] 100 45,844 943 3788 415 8 50,998

Test Fourier 33 44,238 1836 3221 388 7 49,690

Goertzel 33 44,238 1836 3221 388 7 49,690

HOS 4 44,238 1836 3221 388 7 49,690

SCM 8 44,238 1836 3221 388 7 49,690

SCM–Fourier 8 44,238 1836 3221 388 7 49,690

Chazal et al. [8] 155 44,181 1786 3218 388 7 49,580

Güler and Übeylı [14] 19 44,238 1836 3221 388 7 49,690

Song et al. [44] 21 44,218 1836 3219 388 7 49,668

Yu and Chen [49] 13 44,238 1836 3221 388 7 49,690

Yu and Chou [50] 31 43,905 1823 3197 388 7 49,320

Ye et al. [48] 100 44,238 1836 3221 388 7 49,690

perform on a set of classifiers. Among the methods, we use the naive Bayes, SVM,
the MLP and OPF.

Eight datasets are generatedwith the fivemethods, combinedwith the recommenda-
tion of 5 and 3 classes.We equally preprocessed all sets. The DS1 set was standardized
with to zero mean and unit variance, and the DS2 was transformed using the weights
from the former process.

A tenfold cross-validation was employed for model selection and hyperparameter
tuning, with a random search with 50 candidates [6]. For the SVM, the settings are:
RBF kernel, γ ranging between [2−15, 233] and C [2−5, 215]. For the MLP: Adam
optimizer [18], one hidden layer and neurons range between 2 and 500. For the naive
Bayes, the Gaussian probability density function was used, and for OPF, the Euclidean
distance was used.

4.4 EvaluationMetrics

The metrics used to analyze the performance of all methods are accuracy, sensitivity,
specificity andharmonicmeans.These values are calculated from the confusionmatrix,
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Table 4 Dataset description with 3 classes considering the [22] recommendation

Dataset Feature extractor nf N SVEB VEB’ Total

Training Fourier 33 45,844 943 4211 50,998

Goertzel 33 45,844 943 4211 50,998

HOS 4 45,844 943 4211 50,998

SCM 8 45,844 943 4211 50,998

SCM–Fourier 8 45,844 943 4211 50,998

Chazal et al. [8] 155 45,747 940 4200 50,887

Güler and Übeylı [14] 19 45,845 943 4211 50,999

Song et al. [44] 21 45,825 943 4210 50,978

Yu and Chen [49] 13 45,844 943 4211 50,998

Yu and Chou [50] 31 45,511 929 4190 50,630

Ye et al. [48] 100 45,844 943 4211 50,998

Test Fourier 33 44,238 1836 3616 49,690

Goertzel 33 44,238 1836 3616 49,690

HOS 4 44,238 1836 3616 49,690

SCM 8 44,238 1836 3616 49,690

SCM–Fourier 8 44,238 1836 3616 49,690

Chazal et al. [8] 155 44,181 1786 3613 49,580

Güler and Übeylı [14] 19 44,238 1836 3616 49,690

Song et al. [44] 21 44,218 1836 3614 49,668

Yu and Chen [49] 13 44,238 1836 3616 49,690

Yu and Chou [50] 31 43,905 1823 3592 49,320

Ye et al. [48] 100 44,238 1836 3616 49,690

wherein true positives (TPs) are the number of samples which are correctly identified
as a heartbeat without arrhythmia, i.e. normal. False negatives (FNs) express normal
beats that are misclassified as arrhythmic, while false positives (FPs) indicate how
many arrhythmic samples are classified as normal. And, true negatives (TNs) are
disorder heartbeats that are correctly classified as arrhythmic. For more information
about how the metrics are calculated for the heart arrhythmia problem, refer to Luz et
al. [23].

Accuracy (Acc) is the rate of correct classifications without taking into account the
difference between the heartbeats analyzed of the others,

N AAMI class accounts up to 89.46% of samples in this database, and this will be
used as the baseline for our analyses, which means a system with accuracy below 90%
is considered ineffective.

Specificity (Sp) highlights true-negative samples. This is a metric to measure show-
ing how cardiac arrhythmia, or a single kind of disease, is being identified. Higher
values of Sp are desired since a low Sp means the system is labeling patients with a
disease as normal, and this means the patient might not receive the proper treatment
in time.
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The sensitivity (Se) highlights true-positive samples, which accounts for disease’s
samples labeled as normal, if the system is labeling normal patients with diseases and
this could potently lead to unnecessary medical costs that trigger mental stress over
the patients.

All experiments were run in a PC Intel i7 of 3.1 GHz, 8Gb of RAM, on a Linux
Ubuntu 18.04. The timing metrics for feature extraction, training and testing are
accounted. We coded the feature extractors in MATLAB and the classifiers in the
Python.

5 Results, Discussion and Comparisons

In this section, our results will be highlighted in front of works on the literature,
comparing and explaining advantages and disadvantages. Table 5 highlights how the
classifiers perform on the five feature extraction methods. The dataset used it the one
with 5-class version of [3]. The reports of Luz et al. [23] are shown as well.

Against the results of Luz et al. [23], we compare to HOS–naive Bayes, since it has
been reached over 94% of Acc, and in Luz et al. [23] best approach, SVM reached
92.2%, using the features set of Chazal et al. [8]. Taking care into detecting only the
negative classes, i.e., heart arrhythmia, our approach seems to be more effective, since
V-class reaches 87.8% of sensitivity, against 48% in Luz et al. [23]. The same goes for
the other classes. On the other hand, classes Q and F have too little samples, compared
to normal. This naturally adds a step into hardness to understand the hidden pattern
between infusion beats and unknown beats..

The SCM–Fourier extractor performed better with naive Bayes, achieving 92.4% of
accuracy. It performed lower than the baseline of 90%with OPF and SVM. According
to Peixoto and Filho [34], 1–5% would have most of the features important for the
structural space of SCM; therefore, the results still behind the simplistic features of
HOS.

For ECG description, the feature extractor HOS provided better results. Therefore,
HOSmight be understand as an way to calculate dissimilarities between a input signal
and a pure Gaussian reference. Among all classifiers, the average accuracy of HOS is
over 90%, higher than SCM, Goertzel and Fourier.

During our experiments, we realize that Chazal et al. [8] used features based on
time references, to measure morphology’s of an ECG signal. The authors were strict
in design and algorithm completely based on the ANSI/AAMI [3] dataset, which have
unique setting such as the sample frequency. Their parameters are based on this type
of signal, while our approach tends to be generalized to other types of ECG, specially
because HOS is intrinsic to a probability distribution of a signal. In addition, HOS
gives out 4 features, in contrast to [8] Chazal et al. who proposed 155.

In what concerns the feature sets created by SCM and SCM–Fourier, MLP and
Bayes performed over 90% of accuracy, and its sensitivity reached 99.2%. For a clini-
cal usage, this indicates this method tends to provide less false-positive predictions for
diseases. It is similar on SVM, which reached over 99% of sensitivity. But, abstract-
ing the filter design, the SCM–Fourier with the signal reconstructed with 1% of DC
components performed 1.5% higher than using the SCM standalone.
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Table 5 Results on the feature extractors proposed, compared to the classical methods

Classifier Acc N S V F Q
Se|Sp|HM Se|Sp|HM Se|Sp|HM Se|Sp|HM Se|Sp|HM

Fourier

Bayes 20.2 16.6| 80.0| 27.5 92.2| 19.7| 32.4 29.1| 90.6| 44.1 8.8| 74.9| 15.7 14.3| 93.6| 24.8

MLP 76.4 81.0| 49.5| 61.4 10.1| 94.0| 18.3 60.8| 85.1| 70.9 1.0| 98.0| 2.0 0.0|100.0| 0.0

OPF 83.0 92.5| 26.9| 41.7 5.3| 96.0| 10.1 38.7| 96.1| 55.2 0.1| 99.1| 0.3 0.0|100.0| 0.0

SVM 91.1 99.6| 22.2| 36.3 0.0|100.0| 0.0 36.9| 99.4| 53.8 0.0|100.0| 0.0 0.0|100.0| 0.0

HOS

Bayes 94.3 99.0| 57.6| 72.9 2.7| 99.8| 5.2 87.8| 99.4| 93.3 49.5| 99.6| 66.1 0.0|100.0| 0.0

MLP 91.3 96.0| 53.8| 68.9 0.0|100.0| 0.0 89.2| 96.8| 92.8 0.3| 99.0| 0.5 14.3|100.0| 25.0

OPF 87.7 93.4| 43.5| 59.4 2.1| 96.0| 4.1 71.6| 97.7| 82.6 0.2| 99.1| 0.4 0.0|100.0| 0.0

SVM 89.0 100.0| 0.0| 0.0 0.0|100.0| 0.0 0.0|100.0| 0.0 0.0|100.0| 0.0 0.0|100.0| 0.0

Goertzel

Bayes 65.9 68.4| 58.4| 63.0 85.2| 72.8| 78.5 17.5| 98.9| 29.8 83.0| 92.4| 87.5 14.3| 98.5| 25.0

MLP 77.8 83.5| 36.2| 50.5 3.7| 97.1| 7.0 51.1| 85.7| 64.1 0.0| 98.2| 0.0 0.0|100.0| 0.0

OPF 80.6 92.6| 24.4| 38.6 8.7| 96.1| 16.0 33.9| 96.4| 50.1 0.0| 99.0| 0.0 25.0|100.0| 40.0

SVM 90.5 99.8| 15.2| 26.4 0.0|100.0| 0.0 25.6| 99.7| 40.7 0.0|100.0| 0.0 0.0|100.0| 0.0

SCM

Bayes 85.0 88.9| 56.0| 68.7 8.9| 99.3| 16.3 85.8| 89.1| 87.4 0.0|100.0| 0.0 14.3| 99.9| 25.0

MLP 90.9 99.2| 23.3| 37.8 0.0| 99.9| 0.0 39.2| 99.2| 56.2 0.0|100.0| 0.0 0.0|100.0| 0.0

OPF 84.0 91.6| 26.2| 40.7 4.3| 95.9| 8.2 32.7| 95.5| 48.7 1.0| 99.1| 2.0 16.7|100.0| 28.6

SVM 90.9 99.9| 18.4| 31.0 0.0|100.0| 0.0 30.9| 99.8| 47.2 0.0|100.0| 0.0 0.0|100.0| 0.0

SCM–Fourier

Bayes 92.4 97.5| 52.5| 68.3 18.8| 98.8| 31.6 74.8| 99.2| 85.3 9.3| 99.3| 17.0 0.0|100.0| 0.0

MLP 91.7 99.0| 33.6| 50.2 0.6| 99.5| 1.2 56.0| 99.4| 71.7 0.0| 99.9| 0.0 0.0|100.0| 0.0

OPF 86.9 92.3| 38.2| 54.0 3.6| 96.0| 6.9 62.3| 96.4| 75.7 1.3| 99.1| 2.5 0.0|100.0| 0.0

SVM 89.7 100.0| 6.1| 11.6 0.0|100.0| 0.0 10.3| 99.9| 18.7 0.0|100.0| 0.0 0.0|100.0| 0.0

Classical features extraction methods used in [23]

Chazal et al. (2004)

SVM 92.2 99.6|34.5|512 0.0|100.0|0.0 48.0| 99.5|64.8 48.7| 99.8|65.5 0|100.0|0

Song et al. (2005)

SVM 89.3 100.0| 3.0|057 0.0|100.0|0.0 4.8|100.0| 9.2 00.0|100.0|00.0 0|100.0|0

Yu and Chou (2008)

MLP 92.0 97.1|55.2|70.3 3.8| 99.5|7.3 83.0| 98.2|89.9 4.9| 99.1| 9.3 0|100.0|0

Güler and Übeyli (2005)

SVM 89.4 99.9| 4.8|92.0 0.0|100.0|0.0 8.0| 99.9|14.8 0.0|100.0|00.0 0|100.0|0

Yu and Chen (2007)

MLP 89.0 95.3|41.2|57.5 0.0|100.0|0.0 64.3| 95.2|76.8 0.0|100.0|00.0 0|100.0|0

Ye et al. (2010)

SVM 91.9 99.8|33.6|50.3 0.0|100.0|0.0 47.6| 99.2|64.3 0.0|100.0|00.0 0|100.0|0

Bold values indicate the best results
This is in the 5-class dataset. For descriptions of classes N, S, V, F and Q refer to Table 1
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Fourier and Goertzel did not show to be suitable, because in any of the classifier
presented results compared to HOS or SCM. Both methods are based on frequency
domain, and a key parameter is to have a resolution good enough to proper identify
harmonics in a signal. The ECG signal of MIT-BIH database is sampled at a lower
frequency, which certainly decreases the resolution in the frequency spectrum. Meth-
ods such as decimation could tackle the problem of resolution for frequency domain
spectra in the ECG signal.

The results on all feature extractionmethods, for the 3-class version ofANSI/AAMI
[3] dataset, are presented in Table 6. The results are similar to the 5-class version of
the dataset, by combining the feature-set HOS and classifier Naive Bayes. The results
are 94% of Acc, 99% Se and 99% Sp. And it is also better than that of the approach
of [23] on the same set. It is another evidence that this method could be suitable for
clinical diagnosis of healthy conditions and arrhythmia diseases.

However, the feature extractor SCM and Goertzel performed worse in the 3-class
set, with 87% and 71% of Acc, respectively. The accuracy improvements are due to the
fact that F-class and Q-class represent less than 1% off all samples, and by grouping
them together, there were no misclassifications between these two. We believe the 3-
class dataset is more realistic formedical applications, since the patalogies represented
in classes F and Q tend to be rare in front of other.

In what concerns to time performance, the results are shown in Table 7. Luz et al.
[23] do not report measures of time for feature extraction, only for training and testing.
We considered this time, since a real system to aid decision ought to be composed by
all theses steps, so this time could not be unconsidered. In our findings, the system
delivery higher than Luz et al. [23] (+1.3%) is also 106 times more computationally
efficient, with the combination of HOS–naive Bayes. We measured the total time for
a full heartbeat prediction, which is about 1.74E−4 s (Fig. 3).

We aim to design a system that can be also conservative in providing a diagnosis,
which means no Acc below 90% would be considered. From a clinical perspective,
a system with as lower false-positive rate as possible is desired. On that matter, we
present in Figs. 4 and 5, which are bar graph of the results found by Luz et al. [23].
As aforementioned, the highlight goes to HOS, which achieved over 2% of Acc in the
best results of the literature.

HOS seems to be presenting better results than other feature extraction methods. In
Fig. 3, we exhibit an example of a patient’s histogram of heartbeats. The distribution
tends to be Gaussian, and these differences are measured in skewness and kurtosis.

5.1 Comparison to Other Approaches

We presented before improvements of the features extractors proposed in this paper
over the ones reported by over the classical ones reported by Luz et al. [23]. In Fig. 6,
the most recent works are compared to ours. We compiled here the works reported
between 2016 and 2018, which follows the ANSI/AAMI [3] medical standards and
the database split of Chazal et al. [8]

By taking a look at the graph, Rahhal et al. [37] accounted for the best results,
achieving over 97%. But, they exclude all classes, except SVEB andVEB diseases. By
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Table 6 Results on the feature extractors proposed, compared to the classical methods

Classifier Acc N S S’
Se|Sp|HM Se|Sp|HM Se|Sp|HM

Fourier

Bayes 40.6 37.8| 67.6| 48.5 78.7| 41.4| 54.3 55.5| 92.9| 69.5

MLP 76.7 80.4| 50.2| 61.8 8.1| 95.1| 15.0 65.5| 83.3| 73.4

OPF 83.8 92.5| 30.9| 46.3 5.3| 96.0| 10.0 40.1| 96.1| 56.6

SVM 91.8 99.5| 29.2| 45.2 0.0|100.0| 0.0 44.0| 99.5| 61.0

HOS

Bayes 94.0 99.6| 48.9| 65.6 0.2| 99.8| 0.4 73.6| 99.8| 84.7

MLP 93.0 99.8| 38.5| 55.6 0.2| 99.9| 0.4 58.0| 99.9| 73.3

OPF 88.1 93.4| 45.5| 61.2 2.1| 96.0| 4.1 59.9| 97.2| 74.1

SVM 89.1 99.9| 1.3| 2.6 0.0|100.0| 0.0 2.0| 99.9| 3.9

Goertzel

Bayes 39.3 36.5| 68.1| 47.5 77.4| 40.0| 52.7 54.0| 92.5| 68.2

MLP 76.4 80.3| 47.1| 59.3 3.8| 96.6| 7.3 65.5| 82.4| 73.0

OPF 81.3 92.6| 27.5| 42.4 8.7| 96.1| 16.0 34.4| 96.3| 50.7

SVM 90.7 99.8| 16.6| 28.5 0.0|100.0| 0.0 25.1| 99.8| 40.1

SCM

Bayes 82.6 86.1| 54.8| 67.0 2.5| 98.4| 4.9 80.9| 87.3| 84.0

MLP 91.1 99.3| 24.8| 39.6 0.0| 99.9| 0.0 37.3| 99.4| 54.3

OPF 84.4 91.6| 28.4| 43.3 4.3| 95.9| 8.2 32.2| 95.0| 48.1

SVM 91.1 99.9| 19.6| 32.8 0.0|100.0| 0.0 29.6| 99.9| 45.7

SCM–Fourier

Bayes 88.6 97.1| 19.4| 32.3 0.5| 99.1| 1.0 28.7| 97.9| 44.4

MLP 91.7 98.9| 33.4| 49.9 0.7| 99.5| 1.3 49.8| 99.3| 66.4

OPF 83.5 92.0| 29.0| 44.0 2.7| 96.0| 5.3 52.7| 95.6| 67.9

SVM 89.7 100.0| 6.5| 12.3 0.0|100.0| 0.0 9.8|100.0| 17.9

Classical features extraction methods used in [23]

Chazal et al. (2004)

SVM 91.0 97.9| 36.0| 52.6 0.0|100.0| 0.0 51.7| 97.8 | 67.7

Song et al. (2005)

SVM 89.4 100.0| 3.1| 6.0 0.0|100.0| 0.0 04.6|100.0| 8.7

Yu and Chou (2008)

MLP 92.7 97.2|58.5| 73.0 5.6| 99.3| 10.6 81.9| 97.7| 89.1

Güler and Übeyli (2005)

SVM 89.5 99.9|05.3|100.0 0.0|100.0| 0.0 08.0| 99.9| 14.7

Yu and Chen (2007)

SVM 89.0 100.0|00.0| 0.0 0.0|100.0| 0.0 0.0|100.0| 0.0

Ye et al. (2010)

SVM 92.1 99.8|32.9| 49.5 0.0|100.0| 0.0 44.7| 99.4| 61.7

Bold values indicate the best results
This is in the 3-class dataset. For descriptions of classes N, S, V, F and Q, refer to Table 1
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Table 7 Results of train time, test time, extraction time and accuracy, on the 3-class problems version of
the ECG dataset

Classifier Acc Train time (s) Test time (s) Extraction time (s)

Fourier

Bayes 40.6 3.4E−02 9.1E−07 4.42E−05

MLP 76.7 4.7E+01 9.9E−06

OPF 83.8 1.7E+02 8.3E−03

SVM 91.8 2.7E+01 3.2E−04

HOS

Bayes 94.0 9.7E−03 8.8E−08 1.74E−04

MLP 93.0 8.2E+01 9.3E−06

OPF 88.1 8.4E+01 3.7E−03

SVM 89.1 1.2E+01 1.7E−04

Goertzel

Bayes 39.3 2.7E-02 7.5E−07 1.83E-03

MLP 76.4 3.3E+01 2.8E−06

OPF 81.3 1.9E+02 8.2E−03

SVM 90.7 3.0E+01 3.6E−04

SCM

Bayes 82.6 1.16E-02 1.67E−07 1.55E−03

MLP 91.1 1.91E+01 1.25E−06

OPF 84.4 1.00E+02 4.00E−03

SVM 91.1 5.74E+01 2.44E−04

SCM–Fourier

Bayes 88.6 1.73E-02 1.68E−07 1.59E−03

MLP 91.7 1.71E+01 1.14E−06

OPF 83.5 8.27E+01 3.47E−03

SVM 89.7 5.62E+01 2.46E−04

Classical features extraction methods used in [23]

Chazal et al. (2004)

SVM 91.0 1.9E+02 1.8E+02 –

Song et al. (2005)

SVM 89.4 9.5E+01 5.8E+01 –

Yu and Chou (2008)

MLP 92.7 1.8E+03 1.3E-01 –

Güler and Übeyli (2005)

SVM 89.5 7.8E+01 6.0E+01 –

Yu and Chen (2007)

SVM 89.0 1.1E+02 7.0E+01 –

Ye et al. (2010)

SVM 92.1 1.6E+02 1.3E+02 –

Bold values indicate the best results
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Fig. 3 Example of how the HOS
features are distributed in patient
101

Fig. 4 In dark gray are the feature extraction methods proposed in this paper and in light gray the ones of
Luz et al. [23] on the 5-class ANSI/AAMI [3] dataset

Fig. 5 In dark gray are the feature extraction methods proposed in this paper and in light gray the ones of
Luz et al. [23] on the 3-class ANSI/AAMI [3] dataset

doing this, they are designing a system focused in recognizing two different patholo-
gies. From the clinical point of view, their system would not recognize normal heart
condition, which is the most common class in this type of problem. There are funda-
mental differences between our goals and the ones of Rahhal et al. [37]. Moreover,
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Fig. 6 Comparison to state-of-the-art reports, in contrast to our proposed method

the approach of Rahhal et al. [37] is based on deep learning, when ours is based on
Gaussian classifier combined with higher-order statistics. By estimating skewness and
kurtosis, our difference from Rahhal et al. [37] results is about −3%. To use a neural
network, a lot of concerns arises, such as number of neurons, parameters and hidden
layer.

Therefore in a embedded application, a naive Bayes classifyer with statistical mea-
sures would be more feasible than computational expensive deep neural networks.
This is the same reason that our system is more feasible to reproduce than the one
proposed by Afkhami et al. [2] that use an ensemble of 100 decision trees, with a
higher feature vector

We could not give a fair comparison for the system‘s metric, since none of the
works discussed here calculated this metric.

6 Conclusions

The feature extraction methods proposed in this paper are promising tools to help
heart arrhythmia detection on heartbeats, since by using non-classical approaches we
achieved 2%more accurately than state-of-the-art ones which is based onmorphology
and statistical measures, as exhibited in Luz et al. [23].

There are strong advantages of using HOS and SCM–Fourier over morphological
feature extraction methods for ECG, not only that leads to higher accuracy, but also
reducing false diseases diagnosis on patients.We perceived that a feature extractor that
is based only in a frequency domain is not suitable for this kind of task, but combining
Fourier with SCM the results are promising and should be more investigated in future
works, since it is more 1.5% than SCM and Fourier standalone.

Moreover, the system classified QRS complex of an ECG signal 106 times faster
than reports of Luz et al. [23]. Being also more simple and feasible for embedded
applications, it uses only four-dimensional feature vector, which is about 97% smaller
than the one proposed Chazal et al. [8].

To summarize our achievements, we designed a system that is:

– 2% more accurate than reports on the literature;
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– designed to embedded devices, being 106 times faster than others reports and also
compress 97% of the useful features.
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