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Abstract
The finite-time stability and stabilization of a class of fractional-order switched singu-
lar continuous-time systems with order 0 < α < 1 are investigated in this paper. First,
by employing the average dwell time switching technique, together with the intro-
duction of multiple Lyapunov functions, some sufficient conditions of the finite-time
stability and finite-time boundedness are derived for the considered system. Second,
based on the obtained conditions, suitable state feedback controllers can be designed
if a set of linear matrix inequalities are feasible. Finally, an illustrative example is
presented to show the effectiveness of the proposed results.

Keywords Switched singular system · Fractional-order system · Finite-time
stability · Average dwell time switching

1 Introduction

Recently, fractional differential equations and fractional calculus have been studied
due to their wide applications in different science and engineering fields, such as
electrochemistry [10], electrode–electrolyte polarization [20], viscous damping [8],
viscoelastic systems [2], electric fractal networks [4] and electromagnetic waves [7].
Moreover, it has been confirmed that compared with the frequently used integer-order
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calculus, the fractional-order differential state equations can be used to model certain
physical systems and many mathematical problems in a more appropriate and precise
fashion [21,23].

As an important kind of hybrid dynamical systems, switched systems consist of a
family of subsystems and a switching rule that regulates the switching among these
subsystems, which have many applications in traffic control, switching power con-
verters [7], networked control [33] and multi-agent consensus [9]. In [13], optimal
switching time control was studied to realize the best switching between different
modes. With the help of different event-triggered methods, the sufficient conditions
for an event-triggered fault detection filter for complex networked jump systems were
presented in [27]. On another research front, Markov jump systems (MJSs) are a class
of jump systems that are also very suitable for modeling systems with random varia-
tions in parameters or structures. A number of results on MJSs have been obtained in
the past several decades. For example, the problem of quantized feedback control of
nonlinear MJSs was addressed in [31]. The issue of network-based fuzzy control for
nonlinear MJSs with unreliable communication links was studied in [30].

It is well known that stability analysis is a primary and important problem for
control systems [34,35,39]. In general, it is sufficient to study classical Lyapunov
asymptotic stability; up to now, the study of asymptotic stability for fractional-order
systems and fractional-order switched systems has achieved fruitful results [12,14,16,
17,22]. However, in practical applications, large values of the system states are always
unacceptable in some specific cases, for example, a system with saturation elements.
In these special cases, the concept of finite-time stability (FTS) was proposed in the
1960s, mainly focusing on the transient behavior of the systems. A system is said to
be finite-time stable if, given a bound on the initial condition, the system states remain
within a certain threshold in a prescribed time interval [41], while FTS in the presence
of exogenous inputs becomes finite-time boundedness (FTB).

As a result, stability analysis of fractional-order systems and switched systems in
a finite-time interval has been given in recent literature. In [18], the FTS and FTB of
fractional-order linear systems with 0 < α < 1 were studied. The FTS of switched
positive linear systems was addressed in [3]. In [24], robust finite-time stabilization
of the positive semi-Markovian switching systems was discussed. At the same time,
an analysis of FTS for fractional-order positive switched systems was given in [29].

However, to the best of our knowledge, few results have been carried out for the FTS
of a fractional-order switched singular system, which means that the fractional-order
switched system contains at least one singular subsystem. In reality, these systems
are suitable for modeling many natural and man-made systems, such as electrical net-
works, robotics and dynamic economic systems. On the one hand, stability analysis of
fractional-order switched singular systems becomes more complicated and challeng-
ing than that for fractional-order switched regular systems, because regularity, impulse
elimination and stability should be considered simultaneously for fractional-order
switched singular systems. On the other hand, although remarkable contributions to
stability analysis of fractional-order singular systems have beenmade in [15,19,26,32],
for switching-type fractional-order singular systems, another problem that cannot be
ignored is that state inconsistency phenomena may occur at the switching instants;
that is, switching will result in the last reached state and may not be a consistent initial
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condition for the next active subsystem. Physically, some problems, such as impulse
voltage and currents, sparks and short circuits may occur.

Therefore, it is important and, in fact, necessary to study fractional-order switched
singular systems, which motivates this study. The main contributions of this paper are
as follows: (i) The concept of FTS is extended to a fractional-order switched singular
system for the first time; (ii) based on the average dwell time switching technique, an
improved Lyapunov function is constructed to derive the sufficient conditions of FTB;
(iii) LMI-based state feedback controllers are designed to guarantee the FTS and FTB
of the closed-loop systems.

The organization of this paper is as follows. Section 2 presents some preliminaries
and problem statements. The main results are developed in Sect. 3. In Sect. 4, a
numerical example is provided. Section 5 concludes this paper.

Notations: Rn is the set of n-dimensional real vectors. For a given vector x ∈ Rn ,

‖ x ‖ denotes the Euclidean norm, which is defined by ‖ x ‖= (
∑n

i=1 x
2
i )

1
2 . Rn×s

denotes the set of all n × s real matrices. For a given matrix X , the superscript T
stands for the matrix transpose. ‖ X ‖ denotes its spectral norm. λmin(X) stands for
the minimum eigenvalue of X , and λmax(X) stands for the maximum eigenvalue of
X . rank(X) stands for the matrix rank of X . For given symmetric matrices X and
Y , X > 0 (X < 0) signifies that X is a positive-definite (negative-definite) matrix.
X > Y (X < Y ) signifies that X − Y is a positive-definite (negative-definite) matrix.

2 Preliminaries

2.1 Fractional-Order Calculus

The Caputo fractional-order operator is adopted in this paper. Given the noninteger
order α > 0, the fractional integral of the integrable function f (t) is defined as

t0D
−α
t f (t) = 1

Γ (α)

∫ t

t0

f (τ )

(t − τ)1−α
dτ, (2.1)

where f (t) is an arbitrary integrable function, t0D
−α
t represents the fractional integral

of order α on [t0, t] and Γ (s) = ∫ ∞
0 t s−1e−tdt is the Gamma function.

The Caputo fractional derivative with order α of function f (t) is given by

C
t0D

α
t f (t) = 1

Γ (n − α)

∫ t

t0

f (n)(τ )

(t − τ)1+α−n dτ, (2.2)

where n is the first integer lager than α, that is, n − 1 < α ≤ n, n ∈ Z+. In particular,
when 0 < α < 1, the Caputo fractional derivative is defined as

C
t0D

α
t f (t) = 1

Γ (1 − α)

∫ t

t0

f ′(τ )

(t − τ)α
dτ, (2.3)
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where C
t0D

α
t represents the Caputo fractional derivative of order α on [t0, t].

Next, some properties of the Caputo fractional derivative and integral are given, which
will be used in the sequel.

Property 1 The Gamma function satisfies:

Γ (α + 1) = αΓ (α). (2.4)

Property 2 For any real numbers a and b, it holds that

C
t0D

α
t [ax(t) + by(t)] = aCt0 D

α
t x(t) + bCt0 D

α
t y(t). (2.5)

Property 3 For 0 < α < 1, if we take the fractional integral of order α to C
t0D

α
t x(t),

then

t0D
−α
t (Ct0D

α
t x(t)) = x(t) − x(t0). (2.6)

2.2 Some Inequalities

Toprove themain theorems in the following sections, someuseful lemmas and inequal-
ities should be given.

Lemma 1 [1] Suppose that 0 < α < 1, and let x(t) ∈ Rn be a continuous and
differentiable vector function defined over [0,∞). Then, the following inequality holds

1

2
C Dα

t [xT (t)x(t)] ≤ xT (t)C Dα
t x(t), ∀t ≥ 0.

Corollary 1 Suppose that 0 < α < 1, and let x(t) ∈ Rn be a continuous and differen-
tiable vector function, P ∈ Rn×n, P ≥ 0. Then, the following inequality holds

1

2
C Dα

t [xT (t)Px(t)] ≤ xT (t)P CDα
t x(t), ∀t ≥ 0.

Proof Since P ≥ 0, a matrix Q can be found such that P = QT Q, it can be obtained
from Lemma 1 that

1

2
C Dα

t [xT (t)Px(t)] = 1

2
C Dα

t [xT (t)QT Qx(t)]
≤ xT (t)QT C Dα

t [Qx(t)]
= xT (t)QT Q CDα

t x(t)

= xT (t)P C Dα
t x(t).

The proof is completed. 	
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Lemma 2 [5] Let a(t), b(t) and g(t) be real-valued piecewise-continuous functions.
If a(t) is nonnegative and g(t) satisfies

g(t) ≤ a(t) +
∫ t

t0
b(s)g(s)ds,

then

g(t) ≤ a(t) +
∫ t

t0
a(s)b(s)exp

(∫ t

s
b(r)dr

)

ds.

In particular, if a(t) is a constant, then it holds that

g(t) ≤ a(t) exp

(∫ t

t0
b(s)ds

)

.

Lemma 3 (Cp inequality) Let 0 < α < 1, x1, x2 , · · ·,xk be positive real numbers, it
holds that

n∑

k=1

xα
k ≤ n1−α

(
n∑

k=1

xk

)α

.

Lemma 4 (Young’s inequality) Let a and b be positive real numbers and x and y be
real numbers, then the following inequality holds

|x |a |y|b ≤ a

a + b
|x |a+b + b

a + b
|y|a+b.

Lemma 5 [22] Let A ∈ Rn×n, then A is nonsingular if and only if there exists a
nonsingular matrix X ∈ Rn×n such that

AX + XT AT < 0.

2.3 Fractional-Order Switched Singular Continuous-Time System

Consider the fractional-order switched singular continuous-time system:

Eσ(t)
C
t0D

α
t x(t) = Aσ(t)x(t) + Bσ(t)u(t) + Cσ(t)w(t), (2.7)

where 0 < α < 1, x(t) ∈ Rn is the state vector, u(t) ∈ Rm is the control input,
w(t) ∈ Rq is the exogenous disturbance signal and satisfies the constraint condition
w(t)Tw(t) ≤ d, d ≥ 0, the switching signal is σ(t) : [0,∞) −→ S = {1, 2, · · ·, N }
(N denotes the total number of subsystems), and for a switching sequence 0 ≤ t0 <

t1 < · · · , when t ∈ [tm, tm+1), we say that the σ(tm)th subsystem is active. For
∀i ∈ S, Ei , Ai ∈ Rn×n, Bi ∈ Rn×m,Ci ∈ Rn×q are known constant matrices, and
rank(Ei ) = ri ≤ n.
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Consider the following unforced fractional-order singular subsystem

Ei
C
t0D

α
t x(t) = Ai x(t), (2.8)

where Ei , Ai ∈ Rn×n, rank(Ei ) = r < n. For the sake of simplicity, (Ei , Ai ) is used
to denote the singular system in (2.8).

The continuous singular system (2.8) may have an impulsive solution. However,
only regularity and non-impulsiveness can guarantee the existence and uniqueness
of an impulsive-free solution of system (2.8). Therefore, parallel to the integer-order
singular system, the following definitions and useful lemmas for the fractional-order
singular system (2.8) are presented.

Definition 1 [32] The singular system (Ei , Ai ) is said to be regular if there exists a
scalar λ ∈ C such that det(λαEi − Ai ) �= 0 holds.

Definition 2 [32] The singular system (Ei , Ai ) is said to be impulse-free if
deg(det(λEi − Ai )) = rank(Ei ), where λ ∈ C.

Definition 3 The fractional-order switched singular continuous-time system (2.7) is
called regular and impulse-free if each subsystem (Ei , Ai ) is regular and impulse-free.

Lemma 6 [32] For the system (Ei , Ai ), it is always possible to find two nonsingular
matrices Mi , Ni ∈ Rn×n such that (Ei , Ai ) takes the following decomposition form

Mi Ei Ni =
[
Ir 0
0 0

]

, Mi Ai Ni =
[
Ai11 Ai12
Ai21 Ai22

]

.

In this form, the system (Ei , Ai ) is regular and impulse-free if and only if Ai22 is
nonsingular.

Definition 4 The switching of system (2.7) is called consistent switching if the state
of system (2.7) at every switching instant is the consistent initial value of the next
active subsystem.

To ensure the consistent switching of system (2.7), the following projector is given

Πi = Ni

[
I 0

−A−1
i22Ai21 0

]

N−1
i .

Lemma 7 [38] If the state of system (2.7) satisfies

x(tm) = Πi x(t
−
m ),

where tm is any switching instant, x(t−m ) signifies the state before tm, and then the state
jump behaviors can be evaluated via the above consistency projector Πi .
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Definition 5 For any time interval [t1, t2] and a switching signal σ(t), let Nσ (t1, t2)
denote the number of switchings of σ(t) over [t1, t2]. If there exist constants N0 ≥ 0
and τa > 0 such that

Nσ (t1, t2) ≤ N0 + t2 − t1
τa

, (2.9)

then the positive constant τa is called the average dwell time and N0 is called the
chatter bound.

Definition 6 The fractional-order switched singular continuous-time system

Eσ(t)
C
t0D

α
t x(t) = Aσ(t)x(t) (2.10)

is finite-time stable with respect to (c1, c2, R, T f , σ ), if the following conditions hold

xT (t0)E
T
σ(t0)REσ(t0)x(t0) ≤ c1 
⇒ xT (t)ET

σ(t)REσ(t)x(t) < c2,

for ∀t ∈ [t0, T f ], where R > 0, c2 > c1 > 0, T f > 0.

Definition 7 The fractional-order switched singular continuous-time system

Eσ(t)
C
t0D

α
t x(t) = Aσ(t)x(t) + Cσ(t)w(t), w(t)Tw(t) ≤ d, (2.11)

is finite-time bounded with respect to (c1, c2, d, R, T f , σ ), if the following conditions
hold

xT (t0)E
T
σ(t0)REσ(t0)x(t0) ≤ c1 
⇒ xT (t)ET

σ(t)REσ(t)x(t) < c2,

for ∀t ∈ [t0, T f ], where R > 0, c2 > c1 > 0, T f > 0, d ≥ 0.

3 Main Results

3.1 Finite-Time Stability

The sufficient condition for the FTS of the fractional-order switched singular
continuous-time system (2.10) is derived in this subsection.

Theorem 1 Given the constants μ > 0 and λ > 1, for any i, j ∈ S, i �= j , if there
exist nonsingular matrices Pi , Zi > 0 such that the following inequalities hold

Ei
T Pi = Pi

T Ei ≥ 0, (3.1a)

Pi
T Ai + Ai

T Pi − μEi
T Pi < 0, (3.1b)

Πi
T ET

i PiΠi ≤ λET
j Pj , (3.1c)
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and then system (2.10) is regular, impulse-free and finite-time stable with respect to
(c1, c2, R, T f , σ ) for an arbitrary switching signal satisfying the average dwell time

τa > τ ∗
a = β

lnc2λ2 − lnc1λ1 − γ
, (3.2)

where Ei
T Pi = Ei

T R
1
2 Zi R

1
2 Ei , λ1 = maxi∈S(λmax(Zi )), λ2 = mini∈S(λmin(Zi )),

β = T f lnλ + μ(1−α)T f
Γ (α+1) and γ = N0lnλ + μ(1−α)(N0+1)

Γ (α+1) + αμT f
Γ (α+1) .

Proof The proof of the theorem is divided into two steps. First, the regularity and
impulse-free properties are solved. Second, the finite-time stability is studied.
First, for ∀i ∈ S, let

M−T
i Pi Ni =

[
Pi11 Pi12
Pi21 Pi22

]

;

thus, combining with Lemma 6, it follows that

NT
i ET

i Pi Ni = NT
i ET

i MT
i M−T

i Pi Ni =
[
Pi11 Pi12
0 0

]

≥ 0,

and similarly,

NT
i PT

i Ei Ni = NT
i PT

i M−1
i Mi Ei Ni =

[
PT
i11 0

PT
i12 0

]

≥ 0.

As a result, it follows from (3.1a) that Pi12 = 0, Pi11 = PT
i11 ≥ 0; then, we have

M−T
i Pi Ni =

[
Pi11 0
Pi21 Pi22

]

.

Moreover, since Pi is nonsingular, Pi11 and Pi22 are nonsingular; thus, Pi11 > 0. In
addition, it can also be derived from (3.1b) that

NT
i Pi

T Ai Ni + NT
i Ai

T Pi Ni + μNT
i Ei

T Pi Ni

= NT
i Pi

T M−1
i Mi Ai Ni + NT

i Ai
T MT

i M−T
i Pi Ni + μNT

i PT
i M−1

i Mi Ei Ni

=
[∗ ∗

∗ AT
i22Pi22 + PT

i22Ai22

]

< 0,

where ∗ symbolizes the elements that do not need to be known, which leads to
AT
i22Pi22 + PT

i22Ai22 < 0. Then, it follows from Lemma 5 that Ai22 is nonsingular.
By Lemma 6, (Ei , Ai ) is regular and impulse-free for any i , and then by Definition 3,
the regularity and impulse-free properties of system (2.10) are derived.
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Next, we need to prove the FTS of system (2.10). Choose the multiple Lyapunov
functions as follows:

Vσ(t) = Vσ(t)(t, x(t)) = xT (t)ET
σ(t)Pσ(t)x(t).

It can be derived that Vσ(t) ≥ 0 according to (3.1a). Suppose a switching sequence
0 ≤ t0 < t1 < · · · ; when t ∈ [tm, tm+1), it follows from Corollary 1 and (3.1b) that

C
t0D

α
t Vσ(t)(t, x(t)) ≤ 2xT (t)ET

σ(t)Pσ(t)
C
t0D

α
t x(t)

= 2xT (t)PT
σ(t)Eσ(t)

C
t0D

α
t x(t)

= 2xT (t)PT
σ(t)Aσ(t)x(t)

= xT (t)(PT
σ(t)Aσ(t) + AT

σ(t)Pσ(t))x(t)

< μxT (t)ET
σ(t)Pσ(t)x(t)

= μVσ(t)(t, x(t)).

Taking the fractional integral tm D
−α
t and combining Property 3 and formula (2.1) of

a fractional integral with 0 < α < 1, we have

Vσ(t)(t, x(t)) − Vσ(tm )(tm, x(tm)) < μ tm D
−α
t Vσ(t)(t, x(t))

= μ

Γ (α)

∫ t

tm
(t − τ)α−1Vσ(tm )(τ, x(τ ))dτ.

Thus,

Vσ(t)(t, x(t)) < Vσ(tm )(tm, x(tm)) + μ

Γ (α)

∫ t

tm
(t − τ)α−1Vσ(tm )(τ, x(τ ))dτ,

for t ∈ [tm, tm+1). By Lemma 2, it follows that

Vσ(t)(t, x(t)) < Vσ(tm )(tm, x(tm)) exp

{
μ

Γ (α)

∫ t

tm
(t − τ)α−1dτ

}

= Vσ(tm )(tm, x(tm)) exp

{
μ

αΓ (α)
(t − tm)α

}

= Vσ(tm )(tm, x(tm)) exp

{
μ

Γ (α + 1)
(t − tm)α

}

,

for t ∈ [tm, tm+1). At the switching instant tm , combining Lemma 7 and (3.1c),

Vσ(tm )(tm, x(tm)) = xT (tm)ET
σ(tm )Pσ(tm )x(tm)

= xT (t−m )ΠT
σ(tm )E

T
σ(tm )Pσ(tm )Πσ(tm )x(t

−
m )

≤ λVσ(t−m )(t
−
m , x(t−m )).
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Since exp
{

μ
Γ (α+1) (t − tm)α

}
> 0, by a similar method, this implies

Vσ(t)(t, x(t)) < λVσ(t−m )(t
−
m , x(t−m )) exp

{
μ

Γ (α + 1)
(t − tm)α

}

< λVσ(tm−1)(tm−1, x(tm−1)) exp

{
μ

Γ (α + 1)
[(t − tm)α + (tm − tm−1)

α]
}

< · · ·
< λNσ (t0,t)Vσ(t0)(t0, x(t0)) exp

{
μ

Γ (α + 1)
[(t − tm)α + · · · + (t1 − t0)

α]
}

.

Using (2.9), Lemma 3 and Lemma 4, combined with λ > 1,

Vσ(t)(t, x(t))

< Vσ(t0)(t0, x(t0)) exp

{

lnλ
N0+ t−t0

τa + μ

Γ (α + 1)
[(Nσ (t0, t) + 1)1−α(t − t0)

α]
}

< Vσ(t0)(t0, x(t0)) exp

{
t − t0

τa
lnλ + N0lnλ

+ μ

Γ (α + 1)
[(1 − α)(Nσ (t0, t) + 1) + α(t − t0)]

}

< Vσ(t0)(t0, x(t0)) exp

{
t − t0

τa
lnλ + N0lnλ

+ μ

Γ (α + 1)

[

(1 − α)

(

N0 + 1 + t − t0
τa

)

+ α(t − t0)

]}

= Vσ(t0)(t0, x(t0)) exp

{
t − t0

τa
lnλ + μ(1 − α)

Γ (α + 1)

t − t0
τa

+ N0lnλ

+μ(1 − α)(N0 + 1)

Γ (α + 1)
+ αμ(t − t0)

Γ (α + 1)

}

< Vσ(t0)(t0, x(t0)) exp

{
1

τa

[

T f lnλ + μ(1 − α)T f

Γ (α + 1)

]

+ N0lnλ

+μ(1 − α)(N0 + 1)

Γ (α + 1)
+ αμT f

Γ (α + 1)

}

= Vσ(t0)(t0, x(t0)) exp

{
1

τa
β + γ

}

.

In addition, the following inequalities hold

Vσ(t)(t, x(t)) = xT (t)ET
σ(t)Pσ(t)x(t)

= xT (t)ET
σ(t)R

1
2 Zσ(t)R

1
2 Eσ(t)x(t)

≥ λ2x
T (t)ET

σ(t)REσ(t)x(t).

Vσ(t0)(t0, x(t0)) = xT (t0)E
T
σ(t0)Pσ(t0)x(t0)



5538 Circuits, Systems, and Signal Processing (2019) 38:5528–5548

= xT (t0)E
T
σ(t0)R

1
2 Zσ(t0)R

1
2 Eσ(t0)x(t0)

≤ λ1x
T (t0)E

T
σ(t0)REσ(t0)x(t0).

By utilizing xT (t0)ET
σ(t0)

REσ(t0)x(t0) ≤ c1 and condition (3.2), it follows that

xT (t)ET
σ(t)REσ(t)x(t) ≤ 1

λ2
Vσ(t)(t, x(t))

<
1

λ2
exp

{
1

τa
β + γ

}

Vσ(t0)(t0, x(t0))

≤ λ1

λ2
exp

{
1

τa
β + γ

}

xT (t0)E
T
σ(t0)REσ(t0)x(t0)

≤ c2.

Then, by Definition 6, system (2.10) is finite-time stable with respect to (c1, c2, R,

T f , σ ). 	

Remark 1 If α = 1, then (3.2) is consistent with the condition of a switched singu-
lar continuous-time system [36], which shows that Theorem 1 is a generalization of
integer-order switched singular continuous-time system.

Remark 2 In [28], the FTS of fractional-order impulsive switched nonlinear systems is
considered in Theorem 4. The derived sufficient conditions are based on a fractional-
order Lyapunov function and the average dwell time technique. However, there are
no specific Lyapunov functions for FTS analysis or operative test conditions for FTS.
Furthermore, the given conditions depend on the construction of the Lyapunov func-
tions, which definitely increase the difficulties and conservatism of the results. In this
paper, we find computationally appealing conditions that guarantee FTS by using LMI
theory and present the specific multiple Lyapunov functions.

3.2 Finite-Time Boundedness

The FTB of the fractional-order switched singular continuous-time system (2.11) is
investigated in this subsection.

Theorem 2 Given the constants μ > 0 and λ > 1, for any i, j ∈ S, i �= j , if there
exist nonsingular matrices Pi , Zi > 0, Qi > 0 such that the following inequalities
hold

Ei
T Pi = Pi

T Ei ≥ 0, (3.3a)
[
Pi T Ai + Ai

T Pi − μEi
T Pi PT

i Ci

CT
i Pi −Qi

]

< 0, (3.3b)

Πi
T ET

i PiΠi ≤ λET
j Pj , (3.3c)

then system (2.11) is regular, impulse-free and finite-time bounded with respect to
(c1, c2, d, R, T f , σ ) for an arbitrary switching signal satisfying the average dwell
time
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τa > τ ∗
a = β

′

lnc2λ2 − ln(c1λ1 + d) − γ
′ , (3.4)

where Ei
T Pi = Ei

T R
1
2 Zi R

1
2 Ei , λ1 = maxi∈S(λmax(Zi )), λ2 = mini∈S(λmin(Zi )),

β
′ = T f lnλ + κ(1−α)T f

Γ (α+1) and γ
′ = N0lnλ + κ(1−α)(N0+1)

Γ (α+1) + ακT f
Γ (α+1) , and κ =

max{μ, η}, η = maxi∈S(λmax(Qi )).

Proof By the Schur complement, it is easy to check that inequality (3.3b) holds if and
only if for ∀i ∈ S the following inequality holds

Pi
T Ai + Ai

T Pi − μEi
T Pi < 0,

then, together with (3.3a), according to the proof of Theorem 1, the regularity and
impulse-free properties of system (2.11) can be obtained. Next, let us consider the
FTB of system (2.11). Construct the multiple Lyapunov functions as follows

Vσ(t) = Vσ(t)(t, x(t)) = xT (t)ET
σ(t)Pσ(t)x(t) + d.

It can be obtained that Vσ(t) ≥ 0 according to (3.3a). Suppose a switching sequence
0 ≤ t0 < t1 < · · · , when t ∈ [tm, tm+1). Then, it follows from Corollary 1 and (3.3b)
that

C
t0D

α
t Vσ(t)(t, x(t))

≤ 2xT (t)ET
σ(t)Pσ(t)

C
t0D

α
t x(t)

= 2xT (t)PT
σ(t)Eσ(t)

C
t0D

α
t x(t)

= 2xT (t)PT
σ(t)(Aσ(t)x(t) + Cσ(t)w(t))

= xT (t)(PT
σ(t)Aσ(t) + AT

σ(t)Pσ(t))x(t)

+xT (t)PT
σ(t)Cσ(t)w(t) + wT (t)CT

σ(t)Pσ(t)x(t)

= [
xT (t) wT (t)

]
[
PT

σ(t)Aσ(t) + AT
σ(t)Pσ(t) PT

σ(t)Cσ(t)

CT
σ(t)Pσ(t) 0

] [
x(t)
w(t)

]

<
[
xT (t) wT (t)

]
[

μET
σ(t)Pσ(t) 0
0 Qσ(t)

] [
x(t)
w(t)

]

= μxT (t)ET
σ(t)Pσ(t)x(t) + w(t)T Qσ(t)w(t)

≤ μxT (t)ET
σ(t)Pσ(t)x(t) + ηw(t)Tw(t)

≤ μxT (t)ET
σ(t)Pσ(t)x(t) + ηd

≤ κVσ(t)(t, x(t)),
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where κ = max{μ, η}. By a similar method to the derivation of Theorem 1, it is easy
to obtain

Vσ(t)(t, x(t)) < Vσ(tm )(tm, x(tm)) exp

{
κ

Γ (α + 1)
(t − tm)α

}

,

for t ∈ [tm, tm+1). At the switching instant tm , combining Lemma 7 and (3.3c),

Vσ(tm )(tm, x(tm)) ≤ λVσ(t−m )(t
−
m , x(t−m )).

By a similar method in Theorem 1, this implies

Vσ(t)(t, x(t))

< λVσ(t−m )(t
−
m , x(t−m )) exp

{
κ

Γ (α + 1)
(t − tm)α

}

< λVσ(tm−1)(tm−1, x(tm−1)) exp

{
κ

Γ (α + 1)

[
(t − tm)α + (tm − tm−1)

α
]
}

< · · ·
< λNσ (t0,t)Vσ(t0)(t0, x(t0)) exp

{
κ

Γ (α + 1)

[
(t − tm)α + · · · + (t1 − t0)

α
]
}

< Vσ(t0)(t0, x(t0)) exp

{

lnλ
N0+ t−t0

τa + κ

Γ (α + 1)

[
(Nσ (t0, t) + 1)1−α(t − t0)

α
]}

< Vσ(t0)(t0, x(t0)) exp

{
t − t0

τa
lnλ + N0lnλ

+ κ

Γ (α + 1)
[(1 − α)(Nσ (t0, t) + 1) + α(t − t0)]

}

< · · ·
< Vσ(t0)(t0, x(t0)) exp

{
1

τa
β

′ + γ
′
}

,

where β
′ = T f lnλ + κ(1−α)T f

Γ (α+1) and γ
′ = N0lnλ + κ(1−α)(N0+1)

Γ (α+1) + ακT f
Γ (α+1) .

In addition, the following inequalities hold

Vσ(t)(t, x(t)) = xT (t)ET
σ(t)Pσ(t)x(t) + d

≥ xT (t)ET
σ(t)R

1
2 Zσ(t)R

1
2 Eσ(t)x(t)

≥ λ2x
T (t)ET

σ(t)REσ(t)x(t).

Vσ(t0)(t0, x(t0)) = xT (t0)E
T
σ(t0)Pσ(t0)x(t0) + d

= xT (t0)E
T
σ(t0)R

1
2 Zσ(t0)R

1
2 Eσ(t0)x(t0) + d

≤ λ1x
T (t0)E

T
σ(t0)REσ(t0)x(t0) + d.
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From xT (t0)ET
σ(t0)

REσ(t0)x(t0) ≤ c1 and condition (3.4), it follows that

xT (t)ET
σ(t)REσ(t)x(t) ≤ 1

λ2
Vσ(t)(t, x(t))

<
1

λ2
exp

{
1

τa
β

′ + γ
′
}

Vσ(t0)(t0, x(t0))

≤ 1

λ2
exp

{
1

τa
β

′ + γ
′
}{

λ1x
T (t0)E

T
σ(t0)REσ(t0)x(t0) + d

}

≤ c2.

Then, by Definition 7, system (2.11) is finite-time bounded with respect to
(c1, c2, d, R, T f , σ ). 	

Remark 3 In fact, one of the interesting problems in switched systems is how to find
less-conservative conditions to guarantee the stability of the systems for arbitrary
switching laws. A powerful tool for this issue is the multiple Lyapunov functions
approach, where an individual decrescent Lyapunov function is constructed for each
subsystem. The multiple Lyapunov functions developed in Theorem 1 can be con-
sidered to be a trade-off between these conservative methodologies (using a single
common Lyapunov function) and one that is less conservative but numerically diffi-
cult to check. In general, by choosing the same Lyapunov function in Theorem 1, the
FTB of integer-order switched singular continuous-time systems is also be considered;
meanwhile, the L-2 performance of the considered system can be derived.

Remark 4 However, if we directly choose the same Lyapunov function in Theorem 1
to study the FTB of the fractional-order switched singular continuous-time systems,
there exist some difficulties in the computation and derivation of the inequalities due
to the existence of the exogenous disturbance. Therefore, conservative multiple Lya-
punov functions are chosen for system (2.11), but the advantage of this new multiple
Lyapunov functions lies in the fact that it can be easily applied to solve the FTB of
fractional-order switched singular continuous-time systems directly.

3.3 Finite-Time Stabilization

The finite-time stabilization for system (2.7) with w(t) = 0 is studied in this section.
Here, we suppose that every state variable is available for state feedback. The main
purpose of the following theorem is to design a state feedback controller for the system
(2.7) with w(t) = 0 as

u(t) = Kσ(t)x(t) (3.5)

such that the corresponding closed-loop system

Eσ(t)
C
t0D

α
t x(t) = Āσ(t)x(t) (3.6)

is finite-time stable, where Āσ(t) = Aσ(t) + Bσ(t)Kσ(t).
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Theorem 3 Given the constants μ > 0 and λ > 1, for any i, j ∈ S, i �= j , if there
exist nonsingular matrices Li , Xi , Zi > 0 such that the following inequalities

Ei Xi = Xi
T ET

i ≥ 0, (3.7a)

Xi
T AT

i + Ai Xi + LT
i B

T
i + Bi Li − μXT

i E
T
i < 0, (3.7b)

and (3.1c) hold, where Pi = X−1
i , then the closed-loop system (3.6) is finite-time

stable with respect to (c1, c2, R, T f , σ ) for an arbitrary switching signal satisfying
the average dwell time

τa > τ ∗
a = β

lnc2λ2 − lnc1λ1 − γ
. (3.8)

In this case, the gain matrix is Ki = Li X
−1
i .

Proof Pre- and post-multiplying (3.7a) and (3.7b) by X−T
i and X−1

i , it can be obtained
that

Ei
T Pi = Pi

T Ei ≥ 0, (3.9)

AT
i Pi + PT

i Ai + KT
i BT

i Pi + PT
i Bi Ki − μET

i Pi < 0, (3.10)

and (3.10) is equivalent to

ĀT
i Pi + PT

i ĀT
i − μET

i Pi < 0, (3.11)

where Āi = Ai + Bi Ki . Combining (3.9), (3.11) and (3.1c), using Theorem 1, the
FTS of the corresponding closed-loop system (3.6)with the average dwell time scheme
(3.8) can be obtained.

Next, the finite-time stabilization of system (2.7) via the state feedback controller
defined by (3.5), such that the corresponding closed-loop system

Eσ(t)
C
t0D

α
t x(t) = Āσ(t)x(t) + Cσ(t)w(t) (3.12)

is finite-time bounded, will be investigated, where Āσ(t) = Aσ(t) + Bσ(t)Kσ(t).

Theorem 4 Given the constantsμ > 0 andλ > 1, for any i, j ∈ S, i �= j , if there exist
nonsingular matrices Li , Xi , Zi > 0, Qi > 0 such that the following inequalities

Ei Xi = Xi
T ET

i ≥ 0, (3.13a)
[
Xi

T AT
i + Ai Xi + LT

i B
T
i + Bi Li − μXT

i E
T
i Ci

CT
i −Qi

]

< 0, (3.13b)
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and (3.3c) hold, where Pi = X−1
i , then system (3.12) is finite-time bounded with

respect to (c1, c2, d, R, T f , σ ) for an arbitrary switching signal satisfying the average
dwell time

τa > τ ∗
a = β

′

lnc2λ2 − ln(c1λ1 + d) − γ
′ . (3.14)

In this case, the gain matrix is Ki = Li X
−1
i .

Proof By pre-multiplying (3.13a) by X−T
i and post-multiplying by X−1

i , it can be
obtained that

Ei
T Pi = Pi

T Ei ≥ 0, (3.15)

and by pre- and post-multiplying (3.13b) by

[
Xi

−T 0
0 I

]

,

[
X−1
i 0
0 I

]

,

it can be obtained that

[
AT
i Pi + PT

i Ai + KT
i BT

i Pi + PT
i Bi Ki − μET

i Pi PT
i Ci

CT
i Pi −Qi

]

< 0; (3.16)

(3.16) is equivalent to

[
ĀT
i Pi + PT

i ĀT
i − μET

i Pi PT
i Ci

CT
i Pi −Qi

]

< 0, (3.17)

where Āi = Ai + Bi Ki ; combining (3.15), (3.17) and (3.3c) and using Theorem 2,
the FTB of system (3.12) can be obtained. 	

Remark 5 In Theorem 3 and Theorem 4, we mainly study the state feedback control
law to guarantee the FTS and FTB of the closed-loop systems. This is a general and
more convenient way to design the control law compared to most of the existing
literature; however, it should be noted that not all states can be obtained in practical
applications. Therefore, we will develop the output feedback control design in our
future work.

Remark 6 From a computational point of view, the given conditions from Theorem 1
to Theorem 4 are all the standard linear matrix inequalities, which implies that these
conditions can be solved by employing the LMI control toolbox inMATLAB. In future
research, it will be interesting to employ the proposed method to discuss finite-time
stabilization for repetitive control systems [37,40].
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4 Numerical Example

It was analyzed in [11] that if an electrical circuit contains at least one mesh consisting
of branches with only an ideal super capacitor and voltage sources or contains at
least one node with branches with super coils, then its matrix E is singular since it
has at least one zero row. This follows from the fact that the equation written using
Kirchhoff’s voltage law or Kirchhoff’s current law is an algebraic equation. In this

Fig. 1 The switching signal σ(t)

Fig. 2 The trajectory of xT (t)Eσ(t)
T REσ(t)x(t)
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Fig. 3 The trajectory of xT (t)Eσ(t)
T REσ(t)x(t) under the state feedback controller

special case, the electrical circuit can be described as a singular fractional system
governed by (6a) and (6b) in [11]. Then, in this paper, we consider a switching-type
singular fractional-order circuit system with the following two subsystems, where
x1(t) and x2(t) represent the voltages of different capacitances and u(t) represents the
source voltage of the electrical circuit:

E1 =
[
1 0
0 0

]

, A1 =
[
1 0
0 −1

]

, B1 =
[
0 1
1 0

]

,

E2 =
[
1 0
0 0

]

, A2 =
[
1 0
0 1

]

, B2 =
[
1 0
0 1

]

,

and then, it can be obtained from Lemma 6 that two subsystems are regular and
impulse-free. The corresponding parameters are specified as follows: α = 0.5, c1 =
1, c2 = 100, T f = 2, R = I and N0 = 0,

Π1 = Π2 =
[
1 0
0 0

]

.

Applying Theorem 3 and setting μ = 0.1, λ = 1.1, a feasible solution can be
obtained

X1 =
[
50.7555 0

0 −0.4175

]

, X2 =
[
50.7555 0

0 1.0066

]

,

L1 =
[

0 −25.7953
−73.5954 0

]

, L2 =
[−73.5954 0

0 −26.3844

]

,
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and by a simple calculation, we have

P1 = X−1
1 =

[
0.0197 0

0 −2.3950

]

, P2 = X−1
2 =

[
0.0197 0

0 0.9934

]

,

Z1 =
[
0.0197 0

0 1

]

, Z2 =
[
0.0197 0

0 0.5

]

,

and thus, it can be obtained that the gain matrices are

K1 = L1P1 =
[

0 61.7786
−1.45 0

]

, K2 = L2P2 =
[−1.45 0

0 −26.2106

]

,

and then the closed-loop systems matrices are

A1 + B1K1 =
[−0.45 0

0 60.7786

]

, A2 + B2K2 =
[−0.45 0

0 −25.2106

]

.

From Theorem 1, we can compute that λ1 = 1 and λ2 = 0.0197, and from (3.8),
τ ∗
a = 0.5966. In fact, the value of τa only needs to satisfy τa > 0.5966, and without
loss of generality, we can choose τa = 0.6; then, Fig. 1 shows the switching signal
σ(t).

First, a simulation was carried out for the system with x(0) = (1 0)T and u(t) = 0.
Figure 2 shows the trajectory of xT (t)Eσ(t)

T REσ(t)x(t) under the average dwell time
switching. It can be seen from Fig. 2 that the value of xT (t)Eσ(t)

T REσ(t)x(t) exceeds
the given threshold c2 = 100, which means that the FTS of the system cannot be
guaranteed with respect to (1, 100, I , 2, σ ).

Second, let us consider the finite-time stabilization through the proposed state
feedback controller of the considered system. Figure 3 plots the trajectory of
xT (t)Eσ(t)

T REσ(t)x(t) of the corresponding closed-loop system over 0–2 s. From
Fig. 3, we can conclude that for any switching signal σ(t) with an average dwell
time τa > 0.5966, the value of xT (t)Eσ(t)

T REσ(t)x(t) does not exceed c2, which
implies that the resulting closed-loop system (3.6) is finite-time stable with respect to
(1, 100, I , 2, σ ).

As a result, with the help of a newly designed Caputo fractional-order differentiator
in [25], a Simulink model can be constructed to present the simulations of the open-
loop system and the corresponding closed-loop system under the given controller via
Theorem 3. Hence, from the above discussions and simulations, the designed state
feedback controller for a fractional-order switched singular system is effective.

5 Conclusion

The finite-time stability and stabilization of a class of fractional-order switched singu-
lar continuous-time systems with order 0 < α < 1 are investigated in this paper. First,
definitions of FTS, FTB and consistent switching are introduced, and a consistent
projector is given to guarantee the consistent switching of fractional-order switched
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singular systems. Second, by choosing suitable multiple Lyapunov functions, the suf-
ficient conditions of FTS and FTB via the average dwell time technique are derived.
Finally, LMI-based state feedback controllers are designed.
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