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Abstract
This paper utilizes the cognitive radio (CR) spectrum to the fullest extent for 
extended applications requiring discretion. The CR technology provides various 
supports for cognitive radio networks (CRNs). The latter has CR nodes that sense 
free channels. Then, the CRN allocates the unused channels to secondary users 
(SUs) or unlicensed users. This allocation is termed the spectrum handoff. In this 
paper, by considering the identical channels in CR networks, a novel machine learn-
ing algorithm (the support vector machine—SVM) is employed. In addition, the 
queuing model of the preemptive resume priority M/M/1 is used. The proposed 
spectrum handoff algorithm selects the best possible CR network channel. The spec-
trum handoff algorithm uses the stated SVM algorithm scheme, which covers the 
transmitted and received power, the minimum service time, the data rate and the 
maximum vacancy time for the SU, to attain the maximum throughput. However, 
in multi-user greedy channel selection (GCS), only two parameters are considered. 
The proposed spectrum handoff algorithm based on the SVM scheme enhances the 
performance, and the SU throughput is improved to 68.7%. This approach is better 
than the GCS channel selection scheme. Additionally, this approach decreases the 
number of spectrum handoffs. As a result, the training accuracy of the SVM method 
is 97.6%, and it outperforms conventional methods.
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1 Introduction

The available CR spectrum assets are currently not utilized to the maximum extent 
possible. Certainly, the CR system can meet this opportunity. The CR system ena-
bles unlicensed clients to utilize the channel when the channels are not occupied by 
licensed clients. The effective use of the CR system requires the assurance that those 
unlicensed clients do not pose a significant obstruction to licensed clients. There are 
four critical functional aspects in CR systems: sense the stated spectrum, manage 
the system, monitor the sharing period and finally hand off the spectrum [3]. The 
present work is about handing over a spectrum in the CR system. The stated hand-
ing over in the CR system occurs when licensed clients enter into a channel that is 
used by unlicensed clients [1]. The spectrum handoff enables an unlicensed client to 
abandon its present channel when a licensed client needs to start another transmis-
sion in that channel. Then, the SU accesses yet another channel for continuing the 
incomplete transmission.

In the CR system, two types of spectrum handoffs exist. The first type is the reac-
tive spectrum handoff. In this method, an SU searches for an objective channel that 
it desires. The spectrum sensing determines whether such a channel is available [7]. 
If such a channel is unavailable, the SU that is already in the channel is maintained 
to complete its transmission. Since there are detection and reconfiguration delays, 
this plan causes additional delays in the system, and it impacts both licensed and 
unlicensed client transmissions. The second type of spectrum handoff is a proactive 
spectrum handoff [17, 23]. In this plan, unlicensed clients anticipate the presence 
of licensed clients in the present channel that is allocated to them and settle on the 
choice for executing a proactive spectrum handoff. At that point, the unlicensed cli-
ent changes to another channel before a licensed client possesses the channel. In this 
manner, this plan’s impacts on the unlicensed and licensed clients diminish. This 
plan utilizes the past channel usage history data to anticipate future channel utiliza-
tion [6–8].

In [23], in the proactive spectrum handoff, the licensed clients use the greedy 
channel selection (GCS) strategy. In this plan, a channel is chosen based on the 
channel utilization data and the expected duration of the administration on each 
channel. The plan considers just a single match of unlicensed clients in the system, 
which causes exorbitant impacts between the licensed clients in multi-client arrange-
ments [12]. In [25], a particular conventional proactive spectrum handoff instant, 
considering the required handoff time, reduces the correspondence interruption, but 
it increases channel usage. In this system a single unlicensed client is considered. In 
[12], a proactive spectrum handoff utilizes the meet coordination conspire to con-
duct forecasting. Therefore, a common control channel is not required [3].

In the GCS, a proactive spectrum handoff strategy for multi-client CR systems 
is proposed. Performance of the spectrum handoff at a channel due to the greedy 
channel choice increases the normal throughput of the unlicensed clients, as this 
plan reduces the impact between the unlicensed and licensed clients. In addition, 
the channel choice causes the least administration time for the bundle transmis-
sion. The unlicensed clients who try to perform a spectrum handoff or begin the 
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correspondence must coordinate with each other to enter the channel. Hence, in 
multi-client systems, the crash among the unlicensed clients is maintained at a stra-
tegic distance [19].

2  Related Works

The spectrum handoff is divided into two strategies. The reactive spectrum handoff 
[23] searches to find a free channel based on demand. In this plan, an undesirable 
extra delay in the system can occur due to the detection and reconfiguration delays. 
Additionally, rare transmission crashes can occur among the licensed and unli-
censed clients. The proactive spectrum handoff that is mentioned in [11] requires 
a spectrum handoff by the unlicensed clients according to the expected utility of 
the licensed clients. Unlicensed clients change to another channel before a licensed 
client can enter the channel. The plan aims to reduce the impacts between the unli-
censed and licensed clients [23, 24].

In [24], which studies the responsive spectrum handoff, a proactive spectrum 
handoff is introduced. In [12, 24], unlicensed clients use a proactive spectrum hand-
off scheme in view of the GCS strategy to choose a channel. In this plan, the channel 
is chosen using the channel utilization data and the forecast of the administration 
by noting the start and end times of the sent bundle for every chosen channel. A 
noteworthy issue of this plan is that it considers it as a combination of the unli-
censed clients in the system. In a multi-client organization, this plan creates the larg-
est impacts on the unlicensed clients [12].

Lertsinsrubtavee et al. [12] propose estimating the time utilizing a conventional 
proactive spectrum handoff. This approach can decrease the correspondence inter-
ruption and increase the channel use. This proposal is for a system with a single 
match of unlicensed clients. This system is a disentangled case and is not helpful in 
genuine systems. In [12], in the transmission or spectrum handoff, a total likelihood 
is proposed that measures the channel availability. The past channel usage is also 
required. The aim is to choose to stay at a channel or to perform a spectrum handoff. 
Thus, the unwanted spectrum handoff is reduced. There is an increase in the unli-
censed client’s utility.

Mo et al. [14] explain the usage of the normal bouncing of a coordinating plot in 
a conventional proactive spectrum handoff. The parameters of a channel are used to 
perform a spectrum handoff. This approach reduces the clashes between licensed 
and unlicensed clients, which increases the throughput of the unlicensed clients. The 
authors in [5] consider the principle of the proactive spectrum handoff, as suggested 
by the authors of [14], and then present the scheme of the CRN’s basic multi-client 
coordinating plot for normal bouncing.

Additionally, by coordinating the basic bouncing, the execution is improved. 
Additionally, a proper channel determination plot is also provided. The proposed 
techniques in [5, 14] are further improved by the authors of [12]. Unlicensed clients 
in different sets may compete to access channels during various “meet coordinating 
cases,” and this is also presented by the authors.
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The CR basically senses or observes the details of the gaps in the entire spectrum 
to possibly support the SUs. After sensing the spectrum, the next step makes deci-
sions. Based on users’ needs, the optimal channel selection is performed [27]. Based 
on the spectrum mobility, vacant channel selection is performed, provided that PU 
is absent [2]. The spectrum handoff occurs when the SU vacates the channel when a 
PU arrives, and then the SU searches another channel [10].

A computation device is trained using machine learning algorithms to learn from 
its usage and become more efficient. In CR, machine learning is primarily used to 
help decision making algorithms utilize known data to select the best channel for 
SUs. These algorithms must recognize patterns and make the best possible decision 
by accessing the knowledge base and learning from previous actions [9]. Machine 
learning algorithms can be generally categorized as follows [26].

• Supervised learning algorithms This algorithm is a machine learning technique 
in which the information is a known dataset or labeled training data. The dataset 
contains training set examples. Each training set can be split into the input and 
the desired output. In this paper, the focus is on machine learning techniques. 
Thus, the focus of this paper is limited to the ANN, SVM and logistic regression.

• Unsupervised learning algorithms In the previous case, the dataset is known, but 
the data that are used are unlabeled, i.e., they are unfamiliar (no previous knowl-
edge of the dataset).

• Semi-supervised learning The data are not limited to labeled training, and so it is 
a supervised classification. Usually, this approach uses unlabeled and large data.

3  Conventional Spectrum Handoff Protocol

3.1  Handoff Triggering

As shown in Fig. 1, the SU communicates in a channel when the PU is absent. When 
a PU enters, a spectrum handoff must take place. The following steps occur.

1. The SU shall vacate or wait in a high-priority queue. This process occurs when 
the handoff trigger takes place based on the condition that is given in Sect. 3.2.

2. The SU vacates to a PU using a spectrum handoff [13].
3. Section 3.2 states the condition for the SU to obtain the target channel using the 

PRP M/M/1 queue model from switch S block.
4. The SU utilizes the SVM algorithm to find a suitable channel to communicate 

through.
5. The SU resumes the data transmission on the available channel. Such a process 

will repeat during multiple handoffs.

When a licensed client wants a channel in a conventional spectrum handoff 
scheme, the unlicensed clients must perform a spectrum handoff. The usage history 
helps the SU to foresee the PU’s need, and it performs a handoff, thus avoiding a 
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crash. The proposed machine learning algorithm (SVM) scheme is used by the unli-
censed clients when they try to access a channel. When k contending unlicensed 
clients access the principal k number of channels, the system throughput becomes 
high. Many clients popularly utilize this plan according to the suggested criteria.

Figure  2 displays an illustration of the spectrum handoff for choosing the best 
possible channel, which is obvious.

Fig. 1  Handoff triggering event

Fig. 2  Transmission of the primary and secondary users in different channels
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3.2  Proposed System Model

The modeled channel accepts a client using the ON and OFF processes. The rectan-
gles represent ON procedures and represent bundle transmissions by licensed cli-
ents. In Fig. 2, the PUs are represented by rectangles that are labeled PU. The OFF 
procedures are the rest of the zones in Fig.  2 and indicate that no information is 
there for licensed clients to transmit. The preemptive resume priority (PRP) M/M/1 
frameworks reflect licensed and unlicensed clients [4, 21].

In this division, some of our model assumptions are introduced. First, a time-
slotted system is assumed. Here, at the beginning of each time slot, the SU senses a 
PU if it is present in the current channel. The SRV split phase coordination protocol 
function is divided into two phases. These phases are the control and data slots. The 
control slots help all SUs wishing to start transmissions or to perform a spectrum 
handoff to synchronize with the control channel. Before starting a transmission, the 
RTS and CTS handshake signals are exchanged between the SUs. In a data slot, 
either the PU or SU performs a data transmission [3]. The SU transmits data only 
if the channel is sensed to be idle. Perfect sensing occurs when the missed detection 
and false alarm sensing errors are neglected, as in [11, 12, 16].

Any channel can be modeled using a preemptive resume priority (PRP) M/M/1 
queuing model. This phenomenon is observed through previous works that address 
proactive target channel selection approaches, as found in [11–16, 19, 25]. We pro-
pose the extension of these concepts with a better optimization algorithm. This 
algorithm is used for a more generalized case of identical channels where the ser-
vice rates remain the same among all the concerned channels. We assume the inter-
arrival rates λse

(kt), and the service rates μse
(kt) are independent. However, these rates are 

found to exponentially change with the rates for secondary user. λis
(kt) and μis

(kt) are the 
rates for the interrupted SU user at channel 1 ≤ kt ≤ Mt, where Mt is the total number 
of channels. Furthermore, the channels are assumed to be identical to each other fol-
lowing the same service rates. The PUs obviously receive top priority. Imagine that 
a PU interrupts an SU and performs a transmission. However, the SU determines 
whether its service time is smaller than the changing time. If so, then the interrupted 
SU waits at the same channel. The SU resumes the transmission after the PU leaves 
the channel [15]. Next, the concept of the preemptive resume priority is carried out. 
Here, two queues are assumed: a higher-priority queue for the interrupted SU and 
a lower-priority queue for the rest of the SUs that are waiting. This approach facili-
tates a better transmission without data loss [20].

In our work, the (PRP) M/M/1 queuing network model is employed, as in Fig. 3. 
The M/M/1 (here, 1 symbolizes the analysis of a single queue) is a basic mathe-
matical model [26] in which the users arrive according to a Poisson process. Fur-
thermore, the processing times or service times of the users are independent and 
identically distributed, which is also exponential. The interrupted SU can stay in its 
current channel and wait for the PU to complete its transmission, or it will be taken 
to a higher-priority queue. It is such that the mentioned SU is given the first oppor-
tunity to perform the dispatch while the other SUs wait in the lower-priority queue 
in the same channel. Of course, the last choice for performing a spectrum handoff 
and moving to another channel is also possible. The distribution offers the ability to 
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flexibly model customer inter-arrival times or service times. The Poisson distribu-
tion is used to determine the probability of a certain number of arrivals in a given 
time period. The tasks are carried out and processed in the order of their arrival 
(FCFS). A definite and necessary condition is as follows:

Otherwise, the queue length will explode. These assumptions enable the descrip-
tion of the state of the system spectrum by simplifying the number of jobs in the sys-
tem at an arbitrary point in time. The reason is that, for an exponential inter-arrival, 
the processing, the distribution, the next arrival and the service completion times are 
not affected by the elapsed time due to the last arrival and last service completion 
times [22]. This observation is due to the memoryless property of the exponential 
distribution. Further, the FCFS order of the processing means that the past provides 
no information about the users waiting in the queue. The (PRP) M/M/1 queuing net-
work model is chosen instead of the queuing models, since there is no buffer or pop-
ulation size limitations. In addition, only the mean arrival rate and mean service rate 
for the implementation are known, which suitably fits our domain [18]. The switch-
ing block S is used in the PRP M/M/1 queue model by the SU to determine the 
staying policy or changing policy. The above section includes the switching block 

𝜌 =
𝜆

𝜇
< 1.

Fig. 3  Preemptive resume priority (PRP) M/M/1 queuing model
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S that helps the SU to determine the service time and the time that is required for 
changing.

In the next case where the service time of an SU is relatively large, a switching 
block “S” is employed, which takes over the decision of selecting the target channel 
based on the following parameters:

• Maximum vacancy time,
• SUpower: the power that was transmitted by the PU and received by the SU,
• PUpower: the power that was transmitted by the PU, and
• SUdatarate: the data rate that was experienced by the SU in a particular candidate 

channel.

This process results in lower service times, higher throughput and better training 
accuracy.

In a single radio remote hub, it is impractical to promptly identify the impacts and 
transmitting aspects since the receiving side flag receives less energy compared to 
the transmitted flag. Hence, it is expected that in the projected scheme the two radio 
units are given to each unlicensed client. The primary function of the transmitting 
radio is to control and transmit information. The second radio examines and filters 
the channel and gathers data about the channel use. In addition, the second radio 
detects the chosen channel and ensures that no SU is there.

3.3  Channel Selection Scheme

The proposed proactive spectrum handoff is conducted in the segment by utiliz-
ing the machine learning algorithm. In this plan, each SU will know every channel 
usage data in advance. These four criteria help the SUs to choose the best possible 
channel and initiate spectrum handoff. One criterion is the lowest service time, and 
the next criterion is a channel that has the most empty space. Though the benefit is 
small, the throughput will be high. Figure 2 illustrates a plot containing the SUs in 
a CRN model that uses the machine learning algorithm. The above two criteria help 
the transmitting unit of the SUs to choose the best possible channel.

Figure 2 shows channel number 3 in slot number 1, and SU-1 begins transmit-
ting toward SU-2. This process continues until slot 12 when PU-3 enters the same 
channel 3 and wishes to transmit. Subsequently, the SU will choose another channel 
and try to perform a spectrum handoff. Alternatively, using the early criteria, the SU 
can wait for the licensed client to complete and leave the channel, and then the SU 
can continue transmitting. The chart shows that the SU continues its transmission in 
channel number 4 using the channel switch S since it is empty most of the time and 
requires the least administration time. Again, at schedule vacancy 20, a PU enters 
channel 4, and again the SU chooses one of the two options that were mentioned 
earlier.

Next, the CRN in a multi-client framework is considered with N unlicensed cli-
ents in M channels. The unlicensed clients compare the time periods in the respec-
tive channel and the changing times.
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where Sj is the staying time of the unlicensed clients in the present channel. Cq 
denotes the channel changing time that is chosen by the SU (j stands for the present 
channel number referring to the ith unlicensed client, while q denotes the channel 
change for the same ith unlicensed client). tn is the handoff delay due to the channel 
switching over. Let the ith unlicensed client proceed to transmitting on the chosen 
channel with the base time  STi. If the staying time is not as long as the changing 
time, based on the earlier four criteria, the unlicensed client decides either to remain 
in the same channel or to switch over to the most suitable channel.

4  Proposed Spectrum Handoff Decision Making Scheme Using 
Machine Learning Algorithm

In this method, as mentioned earlier, there are four attributes for determining the spec-
trum handoff decision among the set of candidate channels. Using these attributes, the 
SU that is concerned can perform the spectrum handoff when the PU returns to reclaim 
its licensed channel. For ready reference, the attributes are again restated. The attributes 
that are used in the proposed scheme are as follows:

• Maximum vacancy time,
• SUpower: the power that was transmitted by the PU and received by the SU,
• PUpower: the power that was transmitted by the PU, and
• SUdatarate: the data rate that was experienced by the SU in a particular candidate 

channel.

According to the set of metrics that were stated above, a choice must be made for 
selecting the channel that has the longest time period among all channels with zero 
changing time.

where Tx is the channel empty time with a changing time of zero. This time span 
starts at the moment when the SUs perform a spectrum handoff until the PUs are in 
the channel. In (3), the vacancy times of the SUs are organized in descending order. 
 VTx denotes the vacancy time of every channel that gets organized in decreasing 
order. Taking all the criteria into account, unlicensed clients will choose the most 
suitable channel for their transmission.

We consider  PUpower in the range of − 84 to 43 dBm and  SUpower in the range of 
− 123 to 30 dBm for an SU. These ranges are defined with the help of the transmission 
and reception ranges of the subscriber station (SS) of IEEE 802.22 [3, 13]. The four 
attributes form an input matrix, as shown in (4). We used five channels and one thou-
sand training examples for each of these attributes.

(2)STi =

{
Sj if Sj < Cq + tn
Cq if Sj ≥ Cq + tn

(3)VTx = sort
(
Tx
)

for m = 1, 2……… ,X
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where m = 15 (4 attributes and 5 channels) and n = 1000 training examples.
Additionally, in addition to the input matrix X, a corresponding output matrix Y 

(a matrix containing channels that are selected based on the four attributes) is also 
trained. This output matrix that is shown in (5) is formed to predict a channel for a 
secondary user test input, which is defined in (6).

where {y1, y2….yn} are the channels of the corresponding input attributes in X. That 
is, the channel that is selected for X11….X1m is y1 and so on for the 1000 examples. 
Hence, as the number of training examples increases, the handoff prediction accu-
racy increases.

The test matrix is a 1Xm matrix containing the attributes of an SU for which a 
channel is predicted. The X, Y and test matrices are uniformly utilized throughout 
this paper, and the results are compared in Sect. 5.

The logistic regression is a predictive analysis tool that is used to solve a classifi-
cation problem. The logistic regression generalizes to two or more discrete outputs 
yn. This algorithm relates a categorically distributed dependent variable to the inde-
pendent variables. For the test input in (6), we predict the corresponding probability 
that “y” is a member of one of our classes, where y ∈ {1, 2, 3, 4, 5} . The conditional 
probabilities for each of these classes are given as (7), (8) and (9) and finally gener-
alized as (10). These probabilities are derived later in this section.

Our hypothesis function is selected such that

(4)X =

⎡
⎢⎢⎣

X11 ⋯ X1m

⋮ ⋱ ⋮

Xn1 ⋯ Xnm

⎤
⎥⎥⎦

(5)Y =

⎡
⎢⎢⎣

y1
⋮

yn

⎤
⎥⎥⎦

(6)Test =
[
t11 ⋯ t1m

]

(7)h1
�
(x) = p(y = 1|x;�)

(8)h2
�
(x) = p(y = 2|x;�)

.… .

(9)h5
�
(x) = p(y = 5|x;�)

(10)hn
�
(x) = p(y = n|x;�)

(11)prediction = max
i

(
hi
�
(x)

)
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The hypothesis function is formed on the basis of conditional distribution func-
tions. Assume that the training set {(x1, y1),… , (xm, ym)} is drawn from the above-
mentioned distribution. The input attributes are denoted by �. The negative likeli-
hood probability function is

Since we assumed that p
(
yj|xj, �

)
 is formed on the basis of the conditional exponen-

tial family of distribution,

where (14) is the log partition function.

4.1  Spectrum Handoff Decision Making Based On Multi‑class Support Vector 
Machine (SVM)

The SVM is a machine learning model that represents training examples as points in 
space such that the separated classes are as far away as possible. Unlike the logistic 
regression, the training examples are mapped only to one of the classes, thus making 
it a non-probabilistic classifier. In our paper, we used a 5-class SVM and the inputs are 
the same as those of Sect. 4. As previously mentioned in the one-versus-all approach, 
we trained 5 two-class problems. That is, we trained the examples of one class that 
was labeled as 0 and the other class was labeled as 1 and so on for each class. We 
then calculate the maxi

(
hi
�
(x)

)
. However, a one-versus-one approach is used here with 

K(K − 1)∕2 pairwise classifiers, i.e., 1 and 0 pairwise classifiers. For each hypothesis, 
the examples of one class are labeled 0 and those of the other are labeled 1, while they 
are not associated with the rest of the examples of the other classes. Thus, the cost 
function involving all classes is calculated using (18).

From (12), (13) and (14), the negative likelihood of logistic regression takes the fol-
lowing form:

where f = wT + w0 is the log odds ratio and the assumed labels are y ϵ {0, 1}.
For a support vector machine, we use the negative likelihood as the hinge loss, 

which is given by

The cost Function J minimization is

(12)− log p(�|X, Y) = −

m∑
j=1

log p
(
yj|xj, �

)
− log p(�) + constant

(13)p(y|x, �) = exp (�(x, y), � − g(�|x))

(14)g(�|x) = log
∑
y�Y

exp (�(x, y), �)

(15)− log p(�|X, Y) = log(1 + e−fy)

(16)Lhinge = max(0, 1 − yf )

(17)J = min
1

2
||w||2 + C

N∑
i=1

(
1 − yifi

)
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A variable � is introduced for Eq. (17) to render it solvable. Equation (18) shows the 
same approach.

such that �i ≥ 0, 1 − �i ≤ yi(x
Tw + w0) . C is a regularization parameter that controls 

the number of errors that can be allowed on the training set and ||w||2 is the Euclid-
ian distance between the origin and the hyperplane.

For a two-class problem, as shown in Fig. 4, the examples of the classes are dots and 
plus signs, the continuous line is the hyperplane, and the dashed lines form the limits 
of both classes on either side of the hyperplane. The hyperplane can be considered as 
a threshold based on which the examples are classified. The highlighted examples are 
the support vectors that lie the closest to the hyperplane. It is not only that we want the 
instances to be on either side of the hyperplane (decision boundary), but also that we 
want them to be some distance apart for better generalization. The distance from the 
hyperplane to the examples closest to it is called the margin, as shown in Fig. 4. Hence, 
our goal is to maximize the margin. The separating hyperplane is chosen such that it 
results in the maximum margin for both classes. This is the large margin principle that 

(18)J = min
1

2
||w||2 + C

N∑
i=1

�i

Fig. 4  Example of a two-class SVM
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is used in the SVM, which is unlike the logistic regression where the decision boundary 
is randomly selected to classify the training examples.

Equation (20) is the equation for the hyperplane. Equation  (21) is the distance 
between the closest example (support vectors) and the hyperplane, all of which is 
depicted in Fig. 5.

To calculate the shortest distance between a support vector and a hyperplane, we 
first find w⃗, which is the perpendicular distance from the origin to the hyperplane, as 
shown in Fig. 5. The margin is normalized as

Consider a point x that is to be classified, as shown in Fig. 5. This point belongs 
to the decision region R1 if wTx + w0 > 1 , and otherwise, it belongs to the decision 
region R2. This is generalized in (21).

The decision boundary is formed by the equation g
(
x⃗
)
 , which is set to 1. Therefore, 

the margin value becomes

(19)g
(
x⃗
)
= w⃗Tx + w⃗0

(20)z =
w⃗Tx + w⃗0

||||w⃗||||

(21)
g
(
x⃗
)
≥ 1, ∀x⃗ ∈ class 1

g
(
x⃗
)
≤ 1, ∀x⃗ ∈ class 0

(22)z =
1

||||w⃗||||

Fig. 5  Classification of an example and the distance of its separation from the hyperplane
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Thus, the total margin for either side is

||||w⃗|||| is minimized to maximize the margin z. Minimizing w⃗ is a nonlinear opti-
mization problem, which is solved using the Karush–Kuhn–Tucker (KKT) method. 
According to this, the value of w⃗ is the summation equation in (24).

where �i is the Lagrangian multiplier. Then, to minimize w⃗ , our goal is to use (25) to 
maximize the margin.

Hence, for our case in which we have 1 and 0 pairwise classifiers for selecting a 
channel out of five available channels, the above equations are applied K(K − 1)∕2 
times, i.e., 10 times, for each classifier. This approach is clearly implemented in 
Sect. 4 where the 5-class SVM is trained using the one-versus-one approach. Addi-
tionally, for each case, the hinge loss (negative conditional probability) is found, and 
the maximum value is selected using (16). Then, (16) is substituted in (17) to further 
minimize the cost function. This minimization is performed in (25) by reducing ||||w⃗|||| 
(KKT), thereby maximizing the margin.

5  Results and discussion

In this section, the simulation results (NS-2) of the proposed method, i.e., the proac-
tive spectrum handoff method based on GCS and SVM, are presented. The evalu-
ated throughput is compared with the changes in the different parameters that can 
affect the throughput of the secondary users. The simulation of the cognitive radio 
for the primary user and the secondary user nodes is shown in Fig. 6 (Table 1).

In Fig. 7, the secondary user average throughput is plotted by varying the primary 
user traffic. The simulation result shows that by decreasing the primary user traffic 
load, the secondary user average throughput will increase. With the primary user’s 
transmission rate of 5 (packet/s), the proposed SVM algorithm results in a 68.7% 
and 91.1% improvement compared to the probability-based and conventional types, 
respectively.

In Fig. 8, the average throughput is plotted with the different primary user chan-
nel utilizations. As the simulation result in NS-2 shows, for the low utilization of 
the channel by primary users, the aggregate throughput of the secondary users 
will increase. In fact, secondary users’ packet generation probability λs increases, 

(23)
1

||||w⃗||||
+

1
||||w⃗||||

=
2

||||w⃗||||

(24)w⃗ =

N∑
i=0

𝜆iyix⃗i

(25)
N∑
i=0

�iyi = 0
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resulting in extra packets being produced for transmitting. In turn, this phenom-
enon leads to high competition for the transmissions. Therefore, SUs seek to use 
the maximum number of unused channels, and ultimately, the aggregate throughput 
increases. The graph shows the different values of λs, namely 0.05, 0.5 and 0.25.

In Fig. 9, the average throughput is plotted by varying the number of channels. 
The proposed SVM spectrum handoff performs better as the throughput of the sec-
ondary users increases, and the number of channels is 5 and 10. When the number 
of channels increases, the secondary users’ average throughput increases due to an 
increase in the vacant channels. This process continues until the average throughput 

Fig. 6  Simulation of the cognitive radio for the primary user and secondary user nodes

Table 1  Practical analysis 
parameters

Parameters Values

Rate of channel transmission R = 1 Mbps
Time duration of the slot T = 2 ms
Number of SUs N = 12
Number of channels X = 5
SU channels Y = 20
PU data packet length 100,000 bits
SU data packet length 60,000 bits
SU packet generation rate 600 packets/s
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reaches saturation, as a further increase in the number of channels does not result in 
any additional opportunities for secondary users to access the channels.

In Fig.  10, the average secondary user’s throughput is plotted by varying the 
number of secondary users. The illustrated graph sets the number of channels at 20. 
The simulation results show that when the number of secondary users is small, the 
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probability of a secondary user accessing the channel will increase in the proposed 
SVM method.

In Fig. 11, the average throughput is plotted by varying the total length of the 
transmission phase. The result shows that by increasing the transmission phase 
length, the aggregate throughput of secondary user decreases, since the access 
channel remains unoccupied. The graphs are plotted for three different values of γ 
with respect to the channel utilization of the primary users.

In Fig. 12, the average throughput is plotted by varying the packet generation 
of secondary users under different channel utilization rates for primary users, 
where γ is 0.05, 0.2 and 0.5. The simulation results show that with a high packet 
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Fig. 11  Average throughput of the secondary users versus the length of the transmission phase

Fig. 12  Secondary clients and the average throughput with the secondary clients’ packet generation rate
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generation rate for secondary users, the probability of secondary users accessing 
the channel will increase.

In Fig. 13, the number of handoffs is plotted by varying the number of chan-
nels. The proposed SVM spectrum handoff outperforms the other algorithms that 
are included in the graph with respect to the decrease in the number of handoffs 
by secondary users.

The channel posterior probabilities with the five channels are plotted in 
Fig. 14. The channel probability refers to the conditional probability in the con-
text of a known likelihood. In the proposed SVM method, channel 1 is chosen 
with maximum posterior probability since its training accuracy is 97.6%.

Figure 15 shows that the training accuracy of the proposed SVM algorithm is 
better than those of the existing ANN and logistic regression methods. The SVM 
method’s training accuracy is 30% higher than that of the logistic regression and 
20% higher than that of the ANN.
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6  Conclusion

The projected proactive spectrum handoff algorithm uses four parameters to 
arrive at the best possible channel selection for the secondary user. Those four 
parameters include the transmitted and received power, the service time, the data 
rate and the maximum vacancy time. This method successfully generates the 
preference order of channels for the secondary users to perform the CR spectrum 
handoff and effectively calculates unlicensed clients’ aggregate throughput. This 
method prevents the PU and SU from competing with each other. Additionally, 
this method ensures that SUs do not hinder each other. The PRP/M/M/1 scheme 
minimizes the number of handoffs. The validations are carried out using the 
NS-2. By comparing our projected method with the existing spectrum handoff 
protocol, we can conclude that the stated method is far more efficient at offering 
an enhanced spectrum allocation than the existing handoff protocol. We have pre-
sented an improved throughput that is better than most of the prevailing spectrum 
handoff protocols.

In the future, this work can be extended for non-identical channels with differ-
ent service rates by employing other optimizing algorithms. In addition, a new 
method can be discovered to address an increased number of SUs.
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