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Abstract
In this work, we explore various noise robust techniques at different stages of a Text-
Dependent Speaker Verification (TDSV) system. A speech-specific knowledge-based
robust end points detection technique is used for noise compensation at signal level.
Feature-level compensation is done by using robust features extracted from Hilbert
Spectrum (HS) of the Intrinsic Mode Functions obtained from Modified Empirical
Mode Decomposition of speech. We also explored a combined temporal and spec-
tral speech enhancement technique prior to the end points detection for enhancing
speech regions embedded in noise. All experimental studies are conducted using two
databases, namely the RSR2015 and the IITG database. It is found that the use of
robust end points detection improves the performance of the TDSV system compared
to the energy-based end points detection in both clean and degraded speech conditions.
Use of noise robust HS features augmented with Mel-frequency cepstral coefficients
further improves the performance of the system. It is also found that the use of speech
enhancement prior to signal and feature-level compensation results in further improve-
ment in performance for the low SNR cases. The final combined system obtained by
using three robust methods provides a relative improvement from 6 to 25% in terms of
the EER, on the RSR2015 database corrupted with Babble noise of varying strength
and by around from 30 to 45% relative improvement on the IITG database.

Keywords End point detection · VLRs · Dominant resonant frequency · Glottal
activity detection · Foreground speech segmentation · MEMD · IMFs · Hilbert
spectrum · MFCCs · TDSV · DTW

1 Introduction

Speech is the natural mode of communication for human beings. The speech signal
can be easily acquired which makes it a very attractive signal at low cost for the
scientific community to use in different human–machine applications [49]. Presence
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of speaker-specific information makes speech useful as biometric feature to recognize
or authenticate a person. The biometric feature contains a multitude of information
like the speakers age, height, emotion, style of speech delivery, accent, health and
physiological disorders, identity, vocabulary usage, etc. [49]. There are many services
and applications in which speaker verification (SV) could be used [12,15,39].

Among different applications involving in speech, SV has expanded remarkably
over the years since its inception. SV refers to a technology that enables machines
to recognize persons using his/her speech signal [34,35]. Based on the constraint
imposed on the text content of the speech utterance used, SV systems can be classified
into text-independent SV (TISV) and text-dependent SV (TDSV) system [23,31]. In
a TDSV system, the text is fixed and the users have to utter the same text during
training and testing. On the other hand, TISV does not put any restriction on text
content of the speech utterance during training as well as testing speech. In TDSV
system, the system takes the user’s speech utterance and the identity claim as input to
the system and decides whether the input speech utterance belongs to the claimed user
or not. In this work, all experimental studies are presented for a TDSV system suited
for the deployable systems in the practical environment and under degraded speech
conditions.

To deal with degraded conditions, the compensation is done at the signal level,
feature level, model level, score level or all of them. Compensation at the signal level
involves detection of speech regions. Inmost of themethods in the literature, the signal
is processed to detect the voiced regions by taking evidence from speech/non-speech
frames [36]. Some of the old methods used energy, amplitude, zero-crossing rate,
duration, linear prediction error energy, energy-based voice activity detection (VAD)
and pitch for detection of speech regions [27]. These methods cannot distinguish
between the true speaker’s speech and other speaker’s speech. Henceforth, statistical
modeling methods like HMM, GMM-VAD, Laplacian–Gaussian model and gamma
models were also used to detect speech regions during verification [21,32]. In [50],
the authors used glottal activity detection (GAD) for detection of speech end points in
TDSV system. Several otherworks in the literature detected vowel-like regions (VLRs)
and used the detected regions for SV [46,48]. Authors in [45] proposed a method that
uses independent processing of VLRs and non-vowel-like regions (non-VLRs) for
achieving better SV performance under clean as well as degraded conditions. One
of the recent method uses different speech-specific information for robust detection
of speech end points [4]. This method used VLRs for detection of speech end points.
Some spurious detection in the non-speechnoise regionswere removedusingdominant
resonant frequency (DRF) information [9], whereas some spurious detection in the
speech background were removed using a foreground speech segmentation (FSS)
algorithm [10]. The detected end points were further refined using glottal activity and
dominant aperiodic region detection. These begin and end points detection method is
used in the current work for signal-level compensation.

Feature-level compensation is done by using noise robust features along with the
conventional features. The MFCCs are considered as the baseline features for various
speech processing applications [12,34,45]. Most of the state-of-the-art SV systems
also use the MFCCs derived exclusively from the magnitude spectrum of the speech
utterance while neglecting its phase spectrum [49]. However, the phase spectrum
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of speech is equally critical to speech perception as the magnitude spectrum, and
has found important use in many speech processing applications [1]. Moreover, the
MFCCs may not always constitute the optimum features for all man-machine appli-
cations [24,55]. In fact, with this viewpoint, there have been many alternate avenue
features introduced to the Mel filterbank, allowing to improve the performances in
speech processing tasks [20]. To improve the feature extraction process, a standard
strategy consisting of designing filterbanks using data-driven optimization procedure
was introduced in [7]. In the same direction, different other approaches based on non-
stationary data analysis techniques [9] and Wavelet Transform have been found to be
useful in different speech processing applications [5,6,22,41,58]. In [54], an attempt
had been made to explore new features for characterizing speakers, obtained from a
nonlinear and non-stationary data analysis technique called Empirical Mode Decom-
position (EMD) [26], and its variants calledModified EMD (MEMD) [53].MEMD is a
complete data-adaptive and AM-FM analysis-based technique which can decompose
any real-world speech signal into its oscillatory or AM-FM components called the
Intrinsic Mode Functions (IMFs). The objective in [54] was to investigate the data-
adaptive filterbank nature of EMD/MEMD that could complement the Mel filterbank
in the TISV task. In a recent work [52], we have an investigation on the effect of mod-
ifying the process of extracting IMFs with lesser mode-mixing, and better reflecting
the higher frequency content of the speech. The sameMEMD-based feature extraction
method is used in this work for feature-level compensation.

In practical field deployable scenarios, the speech utterances are affected by dif-
ferent degradations like background noise, background speech, speech from other
speakers, sensor and channel mismatch, emotional conditions and other environmen-
tal conditions, resulting in degraded speech. It has been noticed that the performance
of the system falls significantly under such condition, especially when using MFCCs
as the features [3,4,42,45,52]. These observations on the TDSV system highlight the
issues related to the development of a system under such conditions and motivate a
solution for achieving better system performance. In this work, modification is per-
formed at two stages to improve the system performance under degraded conditions.
In the first stage, a signal level compensation methods are used for removing the effect
of noise from degraded speech utterances by applying the robust end point detection
using speech-specific knowledge to detect the speech regions [4]. Then, in the sec-
ond stage, the detected speech regions are passed through the Hilbert spectrum (HS),
constructed from the IMFs obtained from MEMD.

Further, in this work, we also conduct experiments to combine another spectral pro-
cessing method with the temporal processing method to obtain better noise reduction
for improved system performance. The speech signal is spectrally enhanced using the
method described in [33]. The enhanced speech signals are then passed through the
robust end point detection (EPD) using speech-specific knowledge to detect the refined
begin and end points of the speech utterances [4]. Finally, the speaker-specific features
are extracted from the detected speech regions. The contribution of this paper is by
combining the following three methods: (1) robust EPD using speech-specific knowl-
edge, (2) robust features extracted from IMFs of the HS obtained from MEMD and
(3) temporal and spectral techniques for speech enhancement. The popular RSR2015
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Fig. 1 Block diagram of the robust EPD. SP1 and SP2 denotes spurious VLRs detected in non-speech and
speech background, respectively [4]

database [34] and the IITG database [4,13,52] have been used in this work for con-
ducting all the experiments.

The rest of the paper is organized as follows: Sect. 2 discusses the Robust End
Point Detection. Section 3 discusses the robust features extracted from HS. Section 4
describes the speech enhancement techniques. Section 5 describes the experimental
setup. Section 6 presents the experimental results and analysis. Finally, Sect. 7 sum-
marizes and concludes this work.

2 Robust End Point Detection

Prior to extracting the features from the speech signal, robust EPD using speech-
specific knowledge is performed to eliminate the silence regions and background
noise regions at the beginning and end of the speech utterance. The EPD method is
shown in Fig. 1. The method is based on VLRs detection. The idea is to detect the
VLR onset and end points correctly so that begin and end points of speech can be
searched near the onset point of the first VLR and the offset point of the last VLR,
respectively. Some of the spurious VLRs are removed by using DRF information and
a FSS algorithm. Some speech regions at the beginning and end of the speech region
are detected using GAD and dominant aperiodic region detection.

2.1 Vowel-Like Region (VLR) Detection

Motivation behind the use of VLR for begin and end point detection is the high energy
nature of the VLRs which makes them high signal-to-noise ratio (SNR) region, and
therefore, they are less affected by noise degradation [48]. VLR detection involves
detection of its begin and end points, namely, the VLR onset points (VLROPs) and
VLR endpoints (VLREPs) [29,45,46].

The detection of VLROP and VLREP is performed by using excitation source
information derived from Zero Frequency Filtered Signal (ZFFS) [43] and Hilbert
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envelope of LP residual of speech (HE of LP) [38,44,47]. The evidences acquired
from these two methods are enhanced by adding amplitude envelope evidence [45],
and the begin and end points are detected more accurately.

Evidence from HE of LP residual of speech is derived as follows: First HE of
LP residual of speech is computed which enhances the excitation source information
about glottal closure instants (GCIs). The excitation contour is smoothed by taking the
maximum value of the HE of LP residual for each 5ms block with one sample shift
which is then convolved with a first-order Gaussian differentiator (FOGD) of length
100ms and a standard deviation of one-sixth of the window. This convolved output is
termed as VLROP evidence using excitation source information. Then, the evidence
for VLREP is obtained by doing convolution from right to left, instead of left to right
as in the case of VLROP.

Evidence from ZFFS is computed as follows: The first-order difference of the
ZFFS preserves the signal energy around the impulse present at zero frequency and
removes all other information. The first-order difference is also known as the strength
of excitation at the epochs [45]. The second-order difference of ZFFS contains change
in the strength of excitation. This change is detected by convolving with a 100ms long
FOGD utilizing a standard deviation of one-sixth of window length. The convolved
output termed as VLROP evidence. The VLREP evidence is obtained by convolving
from right to left.

The final VLROP and VLREP information is derived by adding the two evidences
[45]. The combined evidence is then normalized by the maximum value of the sum.
The locations of peaks between two successive positive to negative zero crossings of
the combined evidence represent the hypothesized VLROP or VLREP.

2.2 Removal of Spurious VLRs in Non-speech Region Using DRF

The vocal-tract information are captured from the spectrum in the form of dominant
resonances associated with the shape of the particular cavity in the vocal tract respon-
sible for the production of the speech segment. These resonance peaks are called DRF.
DRF is the frequency which is resonated most by the vocal tract. DRF is computed
from the Hilbert envelope of numerator group delay spectrum of zero time windowed
speech [2]. For VLRs, DRF value is mostly less than 1kHz and the non-speech noises
mostly contain high-frequency components. This knowledge is used for identifying
and removing the spurious VLRs in the non-speech region [4]. The VLRs having DRF
more than 1kHz are removed from the output of the VLR detection.

2.3 Removal of Spurious VLRs in Background Speech Using FSS

To remove the background speech, a FSS is used. FSS algorithm was proposed in
[11], which was further modified in [10]. In this paper, the modified version of the FSS
method is used to remove the background speech [4]. Themethod uses both source and
system information. Excitation source information is extracted using ZFFS analysis
and vocal-tract system features extracted from the modulation spectrum energy. The
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spurious VLRs in the background speech region are removed, and the VLRs present
in the foreground speech region are retained.

2.4 Glottal Activity and Obstruents Detection

Once the VLRs are detected, GAD can be explored to add a sonorant consonant at the
begin or at the end of speech utterance. The GAD method proposed in [14] is used
in this work. GAD detects VLRs as well as sonorant consonant regions. Therefore, it
enables better localization of voiced regions and helps to minimize the misses in the
VLR detection output. This, in turn, helps to detect the appropriate end points of the
speech utterance.

There may be an obstruent consonant at the begin and end of the speech utterance.
To include them in the speech region, obstruent detection is performed. Since the
aperiodic component is dominant in burst and frication region ofmost of the obstruents,
the dominant aperiodic region detection method proposed in [51] is used to detect the
obstruents. The first VLROP and last VLREP are considered as the refined begin and
end points and are detected with more accuracy after using obstruent detection.

2.5 Speech Duration Knowledge for Further Refining the End Points

Finally, speech duration knowledge (SDK) is used to further remove the spurious
VLRs. In many cases, one may repeat the utterance twice and can talk something
which is not part of the speech utterance. In these situations, it is not feasible to make
any rectifications. However, if the user uttered at the begin or end leaving some silence
region between actual speech utterance and the extra word. Then, there is a viable to
discard the extra word using SDK. The SDK method for refining begin and end point
detection is as follows:

First, identify all the locations of the VLROPs in the speech utterance and compute
the average of the Euclidean distances from one VLROP to all other VLROPs. The
VLROP having the minimum average Euclidean distance is marked as the center.
Then, starting from the center of the speech, the duration between two successive
VLRs is computed on either side until the peripheral VLR or the duration between
two successive VLRs is greater than 300ms [48]. At this point among the two VLRs,
the one which is closer to center is declared as the peripheral VLR. All VLRs outside
the peripheral VLRs are removed. Finally, the VLROP of first VLR and VLREP of
last VLR are declared as the begin and end points of the speech utterance, respectively
[4].

Figure 2 shows speech signal for the utterance “Lovely pictures can only be
drawn”with background noise include both speech and non-speech background noise.
Figure 2a shows the speech utterance with non-overlapping background noise and
background speech. Figure 2b shows the VLROP and VLREP evidences and detected
VLRs, respectively. The non-speech background noise present in between 0 and 0.5 s
and background speech present in between 2.25 and 3.5 s are also detected as VLRs
due to impulse-like characteristics. Second step is to remove such missed spurious
VLRs, DRF information is used. If DRF is less than 1kHz for VLRs and more than
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Fig. 2 Illustration of the begin and end point detection procedure. a Speech signal containing non-
overlapping background noise and background speech. b Detected speech regions of VLROP and VLREP
are used to obtain the VLRs. cVLRs after discarding the background noise using DRF information. dVLRs
after discarding the background speech using FSS. e Detected GADs added to the VLRs. f Refined begin
and end points using obstruent information. The center C of the speech utterance shows the arrow around
1.2 s. The duration between successive VLRs are less than 300ms or the peripheral VLR is reached. Finally,
the VLROP of first VLR and VLREP of last VLR are detected using SDK knowledge. Dotted line shows
the manually marked VLROP and VLREP points in the speech region

1kHz are considered as non-speech region are removed and refined VLRs are shown
in Fig. 2c. The third step is to remove the background speech which is obtained using
FSS. With the help of FSS, the detected spurious VLRs in the background speech
region are removed and refined VLRs are obtained after FSS are shown in Fig. 2d.
In the next step, the glottal activity regions are explored to add a sonorant consonant
at the begin or at the end of the speech utterance for better localization. The detected
GADs are obtained for appropriately detecting the begin and end points as shown in
Fig. 2e. Fifth step is to detect the obstruent consonant at the begin and end of speech
utterance. The refined begin and end points are detected with more accuracy using
obstruent evidences are shown in Fig. 2f. The arrow in Fig. 2f shows the center of
detected VLRs of the speech utterance. Starting from the center of the speech, the
duration between two successive VLRs are computed on either side until the duration
is found to be greater than 300ms or the peripheral VLR is reached. Thereafter, no
further modification is incorporated using SDK knowledge. The dotted lines on either
side show ground truth manual marking.



5260 Circuits, Systems, and Signal Processing (2019) 38:5253–5288

3 Robust Features fromHilbert Spectrum of MEMD

The EMD is a data-adaptive technique, which can decompose the speech signal into
a finite number of components, called IMFs, without the need of any a priori basis
[55]. Every speech signal has its unique and meaningful decomposition. Again, the
signal changes dynamically and varies with resonant structure of the speech signal.
The changed resonant structure distributed among its unique set of IMFs, which are
obtained without any a priori basis. MEMD explored in different real-world applica-
tions [8,18,28,54]

3.1 Distribution of Mode-Mixing for MEMD

Themode-mixingmakes the IMFs less narrowband, leading to less accurate estimation
of their instantaneous frequencies and amplitude envelopes. Moreover, this makes it
difficult to segregate or characterize a certain subset of the IMFs, as being useful for
analysis, for a particular task. Hence, in this work, we utilize a recently proposed
variants of EMD—the MEMD—which reduces mode-mixing in the IMFs [55].

Practically, the decomposition is stoppedwhen a user-definedmaximumM number
of IMFs, has been extracted. For a digital speech signal, s(n).

s(n) = rM (n) +
M∑

i=1

hi (n) =
M+1∑

i=1

hi (n) (1)

where hi (n) represents the decomposition of the signal in its IMFs, and rM (n) the
final residue, which is a trend-like signal and M is the total number of IMFs extracted.
In Fig. 3, the first 5 IMFs obtained from MEMD of a digital speech signal s(n), taken
from the RSR2015 database. This represents low- and high-frequency oscillations
present at different instants within the same IMF or distributed among multiple IMFs.
This process is called mode-mixing. These components spread across different IMFs
at different instants of time, leading to a less accurate number of extrema and number
of zero crossings differ by utmost one. The reliable IMFs of MEMD may be used to
be better suited for AM-FM analysis. To avoid unnecessary generation and processing
of higher-order IMFs, the decomposition reduced to a maximum of 10 components
(M = 9), for the MEMD method [52].

3.2 Dynamic Changes of Instantaneous Frequencies and Amplitude Envelopes

Having obtained the IMF components, their center frequencies decreases as the order
of IMF increases. The Hilbert transform is applied to each component to compute
dynamically changing instantaneous frequency and amplitude envelope. The Hilbert
transform, H [x(t)], of a signal x(t), is computed from Fourier transform.

x(t) ←→ X( f ),
1

π t
←→ − j sgn( f ) =

{− j, f > 0
j, f < 0

,
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H [x(t)] = x(t) ∗ 1

π t
←→ − j sgn( f )X( f ) =

{− j X( f ), f > 0
j X( f ), f < 0

The instantaneous frequency function, f (t), and amplitude envelope function, A(t),
is derived from the analytical signal, xA(t), which is free from any negative frequency
Fourier components.

A(t) = |xA(t)|, φ(t) = arctan
�{xA(t)}
�{xA(t)} , f (t) = 1

2π

dφ(t)

dt
(2)

Correspondingly, the discrete Fourier transform (DFT) method [49] is used for
estimating the instantaneous frequency and amplitude envelope of any discrete-time
signal, x(n) [49]. Henceforth, if Ak(n) and fk(n) represent the amplitude envelope and
instantaneous frequency of hk(n), respectively. The time-frequency distribution of the
energy envelope is the squaredmagnitude of the amplitude envelope. This formulation,
when represented in a complete, compact and adaptive Fourier representation in terms
of an image, is called the Hilbert Spectrum (HS) [17,25,26].

H( f , t) = {
A2
k(n) | fk(n), n

}
, k = 1, . . . , K ≤ M + 1 (3)

Figure 4 represents the Hilbert spectra of the speech signal used in Fig. 3, obtained
using MEMD, where fixed number of components (K = M + 1 = 10) are used.
Readers are advised to refer to the soft-copy, rather than hard-print of the manuscript,
for better visualization of the figure. Figure 4 shows the HS for a section of the speech
utterance of the last few components, which are low-frequency trend-like waveforms,
which are excluded from the spectrum, as they have high energy and obscure the
image. This is evident from the spectrum,most of the energy in the spectrum lieswithin
100–700Hz (particularly, one can observe more dots), which is the pitch frequency
range, i.e., the frequency range of vibration of the vocal folds in the glottis (during
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the production of voiced speech) [52]. This spectrum can be post-processed to obtain
instantaneous pitch frequency, which constitutes the HS, obtained from MEMD, for
carrying speaker-specific information [55].

3.3 Characteristics of HS andMFCC Features

TheMel filterbank has a fixed structure, whereas theMEMDfilterbank has an adaptive
structure at every frame, both capture speaker-specific information using their specific
methods. The HS represents the instantaneous frequencies, and amplitude envelopes
of the IMFs are processed in short-time segments to generate features. These features
capture different sort of speaker information for characterizing the speakers.

Figure 5 depicts the power spectra of the first 5 IMFs, corresponding to a 20-
ms segment of the speech signal of Fig. 3. As is evident from the figure, the power
spectra of the IMFs represent different portions of the speech spectrum, as if they have
been band pass filtered. However, in this case, the entire process takes place in the
time domain to manifest the characteristics of an adaptive filterbank. To illustrate the
difference between this adaptive and the Mel filterbank, the center frequencies of a
22-filter Mel filterbank are plotted, in Fig. 6, along with the mean frequencies of the
IMFs [53]. For a 20-ms segment of the speech signal, s(n), the mean frequency of the
corresponding segment of its kth IMF is obtained as:

Fm
k =

Fs/2∑

f =0

f × Sk( f )
∑Fs/2

f =0 Sk( f )
, k = 1, . . . , M + 1 , (4)

where Fs = 8kHz is the sampling frequency of s(n), and Sk( f ) is the power spectrum
of 20-ms segment of kth IMF. f represents the analog frequencies corresponding to
the digital frequencies of the DFT spectrum of IMF. From Fig. 6, the MEMD and Mel
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filterbank are different. The center frequencies are changes as the nature of the signal
changes [57].

3.4 Instantaneous Frequencies and Energies of the Hilbert Spectrum

The features extracted from HS constitute the instantaneous energy envelopes and
instantaneous frequencies (derived from the instantaneous phases) of the IMFs. For
visual clarity, Fig. 7 shows the first 4 IMFs, corresponding to a 20ms segment of speech
fromFig. 3 is constructed. Thus, the instantaneous energyvalues are normalized at each
time instant, and the frequencies are represented in kHz to reduce the dynamic range.
Hence, it is beneficial to extract features from them, after some degree of averaging
over the time segment. This reduces the feature space and allows the features derived
to be concatenated with theMFCCs, which are obtained for every frame, after dividing
the entire speech utterance into overlapping frames.

However, the instantaneous frequencies and energies need to be redistributed. If
no mode-mixing is present, then, at every speech frame, the first IMF, h1(n), would
produce the highest instantaneous frequency. The second highest frequency would be
given by h2(n), the third highest by h3(n), and the fourth highest by h4(n). Based on
this, the four instantaneous frequencies at every time instant are sorted in descend-
ing order of frequency. These sorted instantaneous frequencies and energies are then
rearranged. Figure 8 shows the rearranged IMFs as shown in Fig. 7, and contains
speaker-specific information, which may be used for extracting features for the task
of TDSV.

3.5 Robust Feature Extraction from the Instantaneous Frequencies and Energies

Based on the preceding discussion, different features are extracted from the IMFs of
the speech. Let K ≤ M + 1 be the number of IMFs from which the instantaneous fre-
quencies, { fk(n), k = 1, . . . , K }, and the instantaneous energies, {|Ak(n)|2, k =
1, . . . , K } are extracted. From 20ms frame size and with a frame shift of 10ms, s j (n)

represent the j th frame of speech signal s(n). Then, h j
k (n) represents the j th frame
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Fig. 8 Instantaneous frequencies (kHz), sorted in decreasing order, and the corresponding rearranged nor-
malized instantaneous energies of the first 4 IMFs (derived using MEMD) corresponding to Fig. 7

of the kth IMF of s(n). Correspondingly, f j
k (n) and |A j

k (n)|2 are the instantaneous

frequencies and energies, respectively, of h j
k (n), extracted using HS. Let N f be the

number of samples in a 20ms frame. The following features are extracted from each
speech frame. It has been shown that the first few IMFs of the speech signal show
the vocal-tract resonances of the speech utterance. In [52], the IMFs obtained from
HS have been utilized to estimate the vocal-tract resonances produced by the different
cavities that are formed when the speaker utters. These cavities depends on the sound
produced and physical structure of the vocal tract, which is never be same for two
different speakers. Hence, the first few IMFs are used for the task of TDSV system to
carry important speaker-specific information. More specifically, HS constitutes differ-
ent frequency bands and their corresponding energy bands to represent useful speaker
characteristics that can complement the MFCCs.

Mean Instantaneous Frequency: It is derived as:

F j
k = 1

N f

N f −1∑

n=0

f j
k (n)/1000, k = 1, . . . , K ≤ M + 1 (5)

F j
K = [F j

1 , F j
2 , . . . , F j

K ]T, FK = {Γ {F j
K },∀ j ∈ N} (6)

The FK feature is used to capture the dominant frequencies of the different frequency
bands of the IMFs obtained from MEMD. This feature may be expected to carry
speaker-specific cues for characterizing the speakers.

Absolute Deviation of Instantaneous Frequency: It is derived as:

�F j
k = 1

N f

N f −1∑

n=0

∣∣∣∣∣
f j
k (n)

1000
− F j

k

∣∣∣∣∣ , k = 1, . . . , K ≤ M + 1 (7)

�F j
K = [�F j

1 ,�F j
2 , . . . ,�F j

K ]T, �FK = {Γ {�F j
K },∀ j ∈ N} (8)

For a speech signal, some frequency bands of the HS show large variations, whereas
other frequency bands show comparatively steady in the HS obtained from MEMD.
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The �FK feature is used to capture these variations, spreads or widths of the first K
frequency bands arranged in the decreasing order of frequencies. This �FK feature
might be useful in characterizing the speaker information in a better way.

Correlation between Instantaneous Frequencies: It is derived as,

σ F j
k =

N f −1∑

n=0

[ { f j
k (n) − F j

k }{ f j
k+1(n) − F j

k+1}
]
, k = 1, . . . , K − 1 ≤ M (9)

σ F j
K−1 = [σ F j

1 , σ F j
2 , . . . , σ F j

K−1]T , σ FK−1 = {Γ {σ F j
K−1},∀ j ∈ N} (10)

There is a possibility that certain frequency bands may vary in a particular manner.
On the other hand, a different pair of nearest frequency bands may be closely related
with each other. For such a speech utterance, σ FK−1 feature capture the dependence
or correlation between successive frequency bands of the HS. The K frequency bands
and their K −1 successive frequency bands correlation values are obtained. Therefore,
σ FK−1 inter-band relations could serve as an useful speaker-specific cues.

Mean Instantaneous Energy: It is derived as,

|A j
k (n)|2 := |A j

k (n)|2
max
k

|A j
k (n)|2

, k = 1, . . . , K ≤ M + 1 (11)

E j
k = 1

N f

N f −1∑

n=0

|A j
k (n)|2, k = 1, . . . , K ≤ M + 1 (12)

E j
K = [E j

1 , E
j
2 , . . . , E

j
K ]T, EK = {Γ {E j

K },∀ j ∈ N} (13)

The EK feature denotes the average energy (amplitude envelope) of the different
frequency bands. For the first K frequency bands, there are equivalent number of
energy bands. Therefore, EK represents themean value of these K energies at different
frequencies. Hence, EK feature could be useful in discriminating the speakers.

Absolute Deviation of Instantaneous Energy: It is derived as,

�E j
k = 1

N f

N f −1∑

n=0

| {|A j
k (n)|2 − E j

k } |, k = 1, . . . , K ≤ M + 1 (14)

�E j
K = [�E j

1 ,�E j
2 , . . . ,�E j

K ]T, �EK = {Γ {�E j
K },∀ j ∈ N} (15)

Aparticular speaker can emit certain frequencies at varying strengths,whereas other
speaker can only emit other frequencies at specific strengths. One can observe large
energy variations in certain frequency bands (energy bands), whereas other frequency
bands (energy bands) may be relatively steady. Therefore, �EK feature represents
the variation of energy in different frequency bands. These cues may be served as an
important speaker-specific cue.
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Correlation between Instantaneous Energies: It is derived as,

σ E j
k =

N f −1∑

n=0

[ {|A j
k (n)|2 − E j

k }{|A j
k+1(n)|2 − E j

k+1}
]
, k = 1, . . . , K − 1 ≤ M

(16)

σ E j
K−1 = [σ E j

1 , σ E j
2 , . . . , σ E j

K−1]T, σ EK−1 = {Γ {σ E j
K−1},∀ j ∈ N} (17)

The σ EK−1 feature captures the relation between successive frequency bands in terms
of their energy variations. Hence, the increase in energy in a particular energy band
affects its succeeding energy band. Therefore, these energy variations may be speaker
specific and hence serve as an important feature for each speaker.

Instantaneous Energy weighted Instantaneous Frequency: It is derived as

Υ
j
k =

N f −1∑

n=0

|A j
k (n)|2

∑K
k=0 |A j

k (n)|2
f j
k (n), k = 1, . . . , K ≤ M + 1 (18)

Υ
j
K = [Υ j

1 , Υ
j
2 , . . . , Υ

j
K ]T, ΥK = {Γ {Υ j

K },∀ j ∈ N} (19)

For different speakers, the correlation may vary. To capture such correlation, ΥK

feature merges the information contained in instantaneous frequencies and energies.
The first K frequency bands (in decreasing order of frequency) and their corresponding
K energy bands can beweighted. Therefore, theΥK featuremay be expected to capture
speaker-specific cues [52].

Figure 9 represents the block diagram of the feature extraction process used for
the TDSV system. The features are extracted from the instantaneous frequencies
and energies. Along with HS features, the conventional 39-dimensional MFCCs, 51-
dimensional Ext.MFCCs, and the cGK [52,54,57] features are also derived from every
speech frame. These features are used with the expectations that their combinations
with MFCCs would significantly enhance the capability of the TDSV system.

4 Speech Enhancement Techniques for TDSV System

The main concern of the work presented in this section is to use a combined temporal
and spectral enhancement method for enhancing speech under degraded conditions.
This method can be successfully used for identifying and enhancing speech-specific
components from the degraded speech. The temporal processing method involves
identification and enhancement of speech-specific components present at the gross and
fine levels [33]. The evidences obtained byusing gross level components are as follows:
first the gross level components are used to detect high SNR regions using the sum of
the 10 largest peaks in the DFT spectrumwhich represents the vocal-tract information.
The second evidence is obtained from the smoothed HE of LP residual of speech
representing the excitation source information. The third evidence is the modulation
spectrum which represents the suprasegmental information of speech. The origin of
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Fig. 9 Feature extraction process for the TDSV system

these three approaches are different and hence combining them together improves the
robustness and detection accuracy as compared to individual processingmethods [33].
The gross weight function wg(n) computed from these three evidences are summed
up together, normalized and nonlinearly mapped using the mapping function [33].

wg(n) = 1

1 + e−λ(si (n) − T )
(20)

where λ is the slope parameter and wg(n) is the nonlinearly mapped values of the
normalized sum si (n) and T is the average value of si (n). The gross weight function is
obtained by computing the deviation between spectrally processed speech w.r.t direct
speech.

The fine level components are identified using the knowledge of the instants of
significant excitation which mostly correspond to the epoch locations [33]. Therefore,
using HE of LP residual one can extract the robust epoch locations from the speech
signal. From HE of the LP residual perspective, an approximate location of instants is
sufficient because the enhancement is commonly achieved by emphasizing the residual
signal in the speech regions around the instants of significant excitation. The speech
regions around the instants of significant excitation are used as fine level evidence.
The epoch locations are used for obtaining the fine weight function [33]. The region
around the instants of significant excitation are convolved with a Hamming window
which has a 3ms temporal duration. Therefore, the fine weight function is derived as:

w f (n) =
( NK∑

k=1

δ(n − ik)

)
∗ hw(n) (21)

where Nk is the total number of epochs located in speech frame, ik is estimated location
of speech.

A total weight function w(n) is obtained by multiplying the gross weight function
wg(n) with the fine weight function w f (n) which is represented as:

w(n) = wg(n) ∗ w f (n) (22)
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The temporally processed speech can be obtained by synthesizing as follows:

Sk(z) = Rw(z)

1 + ∑M
n=1 anz

−n
(23)

where Sk(z) represents the temporally processed speech and Rw(z) is the weighted
LP residual used to excite the time-varying all-pole filter derived from the degraded
speech to generate the enhanced speech and an is the LP filter coefficients.

The temporally processed speech is further subjected to improve the vocal-tract
characteristics at the spectral domain. Whereas the temporal processing approach
enhances the speech region around the instants of significant excitation, spectral
processing approach enhances speech-specific components and suppresses the noise
components in the spectral domain.

The short-term magnitude of the degradation and degraded speech are estimated.
Theminimummean square error of log-spectral amplitude (MMSE-LSA) estimator is
applied to the magnitude spectra for obtaining the enhanced spectra from the degraded
speech [16]. The spectral gain function for the MMSE-LSA estimator is expressed as
follows:

H(n) = ξn

1 + ξn
exp

(
1

2

∫ ∞

υn

e−x

x
dx

)
(24)

where

υn = ξn

1 + ξn
γn (25)

where ξn and γn are a priori SNR and a posteriori SNR, respectively.
The enhanced magnitude spectra and degraded phase spectra are then combined

to produce an estimate of clean speech, and the overlap-add method is used for the
re-synthesis in the time domain. The re-synthesized speech is the enhanced speech,
and this enhancement may improve the TDSV system performance under degraded
speech and challenging test conditions.

5 Experimental Setup

The proposed work is directed toward addressing issues related to practically deploy-
able systems. It is important to consider proper databases for the experimental study.
In order to evaluate the robustness of the proposed framework under degraded speech
conditions, we conducted the TDSV system experiments on two databases, namely
the RSR2015 database [34] and the IITG database [4,13,30,37,52]. The databases are
described below.
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5.1 Databases

The RSR2015 database is one of the largest publicly available and popular databases
mainly outlined for TDSVwith pre-defined speech utterances. The RSR2015 database
is recorded so as to give the speech community an adequately expansive data set from
the gender-balanced set of speakers. Each of the speakers recorded 9 sessions, each
session is made of 30 pre-defined speech utterances. In this proposed framework, three
speech utterances are selected for the experimental studies. For each speaker, out of
the 9 speech utterances (sessions) for every speech utterance, 3 speech utterances are
used for training and remaining 6 speech utterances are used for testing the system
performance. The selected three speech utterances are TD − 1: “Only lawyers love
millionaires”, TD − 2: “I know I did not meet her early enough” and TD − 3: “The
Birthday party has cupcake and ice-cream”.

To evaluate the proposed framework under degraded speech condition, the clean
speech utterances are corrupted with Babble noise to generate the noise mixed speech
[56]. The energy level of the noise is scaled such that overall SNR of the degraded
speech files is maintained at 20–0dB in steps of 5dB. The performance of the system
is evaluated on both clean and synthetically degraded RSR2015 database.

The IITG database was collected from the undergraduate and post-graduate course
students with a speech biometric-based attendance system as an application to address
the issues in the practical deployment of TDSV system [4,13,30,37,52]. During the
enrollment phase, three pre-defined speech utterances were recorded for each enrolled
course student in an anechoic chamber. The three speech utterances used for the
attendance system from the IITG database are TD − 1: “Dont ask me to walk like
that”, TD − 2: “Lovely pictures can only be drawn” and TD − 3: “Get into the hole
of tunnels”.

During the collection of the testing database, the course students could move freely
within, and in and out of the open hall in the department office, in the corridor, in front
of the classroom and also in the free environment. The data collection process was
more practical because the database includes background noise, background speech,
and other environmental conditions. The recorded data contains mismatches between
the enrollment and the testing phases, in terms of the sensors, mobile handsets, style of
speech and environment. Due to these conditions, the text-dependent SV task becomes
more challenging in IITG database. Henceforth, there is no compelling reason to add
artificial noise in the IITG database for the evaluation of the TDSV system.

5.2 Feature Extraction

During the training and testing process, the given speech signal is processed in frames
of 20ms duration at a 10ms frame shift. Prior to extracting the features, EPD is per-
formed to eliminate the background speech/background noise regions at the beginning
and end of the given speech utterance. The speech utterance between the detected end
points are considered and used for the feature extraction. For each 20ms frame size
Hamming windowed speech frame, MFCCs are computed using 22 logarithmically
spaced Mel-filterbanks. The features extracted from every frame are stacked and then



Circuits, Systems, and Signal Processing (2019) 38:5253–5288 5271

mean subtraction and variance normalization is performed, for every feature dimen-
sion. This extracted feature set is then used for the task of TDSV system, using the
technique of Dynamic Time Warping (DTW) [4,19,49,52]. DTW is a popularly well
known feature matching algorithm, which optimizes the distance between two feature
sets while maintaining the temporal relation between them. Hence, given a training
speech utterance corresponding to a speech sentence (TD-1 / TD-2 / TD-3), and a
testing speech utterance for the same speech sentence, the corresponding feature sets
obtained from the twoutterancesmaybe compared byusingDTWmatching algorithm,
resulting in a DTW score. A lesser DTW score indicates higher similarity between
the two utterances, and vice versa.

In this work, the seven different feature sets obtained from IMFs derived fromHS of
a given speech utterance are used independently, and in combination with the feature
set corresponding to 39-dimensional MFCCs, for the TDSV task, using DTW. The
dimensions of each of the 7 feature sets are varied, by varying the number of IMFs from
K = 10 to 2, in steps of 2, to observe the importance of each IMF. This can be done
in order to find out the range of IMFs which are useful for the TDSV task. From every
speech frame, two different sets of MFCCs are obtained. For extracting the MFCCs
from a speech frame, the speech frame is first passed through the pre-emphasis filter
and then 22-logarithmically spaced filters (Mel filterbank) are applied on its DFT
spectrum. Then, 39-dimensional MFCCs and an extended 51-dimensional MFCCs
(Ext. MFCCs) feature vector are obtained from each speech frame. The standard 39-
dimensionalMFCCs feature vector comprises of the first 13 cepstral (excluding the 0th
coefficient), the first 13 Δ cepstral, and the first 13 ΔΔ cepstral coefficients. The Ext.
MFCCs feature vector comprises of the first 17 cepstral (excluding the 0th coefficient),
the first 17Δ cepstral, and the first 17ΔΔ cepstral coefficients. Comparing the system
performances of the Ext.MFCCswith that of the 39-dimensionalMFCCs enables us to
notice how useful the higher dimensions of the MFCCs are in the TDSV system task.
Also, it empowers us to ascertain the combinations of the seven different feature sets
obtained from HS, with the 39-dimensional MFCCs. Apart from the aforementioned
feature sets, the refined Sum Log-Squared Amplitude feature vector, cGK , is obtained
from each speech frame using its raw IMFs of the given speech signal as described in
[55]. However, considering this enormity of our database, we derive the cGK feature
for every frame of the speech utterance. Further, we refine the feature vector using
DCT [54].

5.3 PerformanceMetrics

The performance of proposed TDSV system is evaluated on theRSR2015 and the IITG
databases, based on two standard metrics—Equal Error Rate (EER) and minimum
Detection Cost Function (mDCF) [4,52,55]. Let Dc = Dc1, Dc2, . . . , DcS represent
the entire set of the DTW scores obtained by verifying the claims of the testing speech
utterance against the training speech utterance. The set Dc score is normalized so that
Dci ε[0, 1]|i = 1, 2, .., S. Let ξ Dε[0, 1] is the decision threshold, above which the
claim of the test speech utterance against the train speech utterance is considered valid,
i.e., both test and train speech utterances are considered to belong to the same speaker.
Let DG , DF and DI , DM denote the number of genuine/true claims, imposter/false
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claims that have been accepted and the number of imposter/false claims, genuine/true
claims that have been rejected. The DTW scores of genuine and imposter together
is considered as, D = DG + DI + DM + DF . We may now define the evaluation
parameters EER and mDCF as follows:

EER (%)This assigns cost to the event of a wrong classification, and also takes into
consideration the probability that a score is genuine (claim is genuine) or not. For any
given threshold value, ξ D , the Probability of Miss is given as PM = DM

DG+DM
× 100%.

The Probability of False Alarm is given as PF = DF
DI+DF

×100%. Then, at a particular

threshold value, ξ D = ξ D
0 , Then PM = PF . This error is known as the EER. Then,

EER = PM × 100% = PF × 100%.
mDCF In this work, for calculating themDCF, two parameters,CM andCF , assign

minimum costs to the event of a miss (a genuine claim rejected) and that of a false
alarm (an imposter claim is accepted), respectively. There is also one more parameter,
an a priori probability, PT , which is assigned to the cost function. It is assumed that
out of all the test claims, only a fraction PT number of speakers are genuine claims.
Then, for any given threshold, ξ D , the cost parameter of the mDCF is given by,

CξD = CM × PM × PT + CF × PF × (1 − PT ) (26)

Then mDCF is given by,

mDCF = min
ξD∈[0,1]

CξD (27)

In thiswork,CM = 10,CF = 1, and PT = 0.01 are considered, for both the databases.

6 Results and Analysis

In this section, we present the experimental results and analysis, in terms of EER and
mDCF, for the TDSV system implemented separately on the RSR2015 and the IITG
databases.

6.1 Performances ObtainedWhen Robust EPD Followed by Extraction of MEMD
Features

The performances of the seven HS features derived from MEMD, the conventional
39-dimensional MFCCs features, the Ext. 51-dimensional MFCCs, the cGK features
and their different combinations are evaluated. The effectiveness of the robust EPD
algorithm with different features is shown by comparing the performance with the
energy-based EPD.

6.1.1 Performances on the RSR2015 Database Under Clean Conditions

The performancemetrics of the proposedmethods for theTDSVsystem is evaluated on
the clean RSR2015 database. Table 1 presents the performance metrics for each of the
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seven extracted experimental features, derived using all the 10 IMFs. For comparison,
the performance metrics for MFCCs, Ext. MFCCs and cGk features are also shown.
As it is observed from the table, for all the three speech utterances, the performance
for MFCCs is better than the rest of the features. For the TD-1 speech utterance, the
39-dimensional MFCCs provide an EER of 6.37%. The 51-dimensional Ext. MFCCs
shows improvement as compared to the standalone MFCCs, with an EER of 4.93%.
This improved performance of Ext. MFCCs over 39-dimensional MFCCs in TDSV
task was observed in one of our previous energy-based EPD work reported in [52]. In
Table 1, the numbers shown in the brackets are the results obtained by using energy-
based EPD and the numbers shown without brackets are the results obtained by using
the speech-specific knowledge-based robust end points detection method. It can be
seen that the performance for the robust end points detection method is significantly
better than the energy-based method. For all the three utterances, standalone MFCC
features and Ext. MFCCs are far better than cGk and seven experimental HS features.
Having observed the performances of the standalone features, we need to proceed
toward combining themwith theMFCCs and evaluating the effect of the combinations
on the TDSV system.

Table 2 presents the performance metrics of the feature combinations for the TD-1
sentence. The seven features extracted from HS and cGK feature are augmented with
MFCCs, and the number of IMFs from which the features are extracted are reduced
by changing K values from 10 to 2, in steps of 2. It can be observed from the table that
the best performance of the combination of the features are obtained for K � 4. The
combination of different HS features and cGK features are compared to the standalone
MFCCs, an absolute improvement in EER of around 0.5–1.0% are obtained at K = 4.
The additional 51-dimensions of the Ext. MFCCs also significantly improves the EER
as compared to the standard MFCCs. Similar trends are noticed for mDCF values in
each case. Figure 10 shows the Detection Error Tradeoff (DET) curves for different
feature combinations, considering K = 4. It can be observed from the figure that
the Ext. MFCCs outperforms the MFCCs and MFCCs+cGK combination [40]. The
MFCCs+HS combinations outperform the standard MFCCs for most of the cases.
However, they are not always competitive with the 51-dimensional Ext. MFCCs. The
results obtainedusing the speech-specific knowledge-based robust endpoints detection
method are compared with the results obtained using energy-based VAD method,
shown in brackets. It is observed that the results are improved after using the robust
end points detection method. Figure 11 presents the performance metrics of different
feature combinations for the sentences TD-2 and TD-3, respectively. In the case of TD-
2 and TD-3 sentences, the Ext. MFCCs marginally improves the system performance
after applying the robust EPD ([4]) and also very less improvement is observed in HS
feature combinations as compared to our previous work reported in [52]. However, the
MFCCs+cGK and MFCCs+HS feature, again, obtain best performances at K=4. This
study clearly suggests that HS features and cGK can naturally complement theMFCCs
performances, under clean conditions. The additional 51-dimensional Ext. MFCCs
may not always improve the system performance. Moreover, the use of robust end
points detection method further improves the performance of the system. It is clearly
observed that only the first few IMFs are useful in characterizing the speakers which
is similar to the observations reported in [52,55].
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Fig. 10 TheDET curves of the 39-dimensionalMFCCs, 51-dimensional Ext.MFCCs, and the combinations
of theMFCCswith the cGK feature and each of the seven experimental features. TheDET curves are plotted
for the TD-1 sentence of the RSR2015 database. The dimensions of the cGK and seven HS features are
fixed at K = 4
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Fig. 11 The performance of the TDSV system using robust EPD followed byMEMD feature extraction. The
results are shown for the 39-dimensionalMFCCs, 51-dimensional Ext.MFCCs, and the combinations of the
39-dimensionalMFCCswith the cGK feature and each of the seven experimental features. The performance
metrics are evaluated for the TD-2 and TD-3 sentences of the RSR2015 database. The dimensions of the
cGK and seven HS features are varied by changing K from 10 to 2

6.1.2 Performances on the RSR2015 Database Under Degraded Conditions

Having demonstrated the performances of the features and their combinations under
clean conditions, we can now evaluate how robust the features are to external inter-
ference. For this reason, the testing speech utterances are corrupted with Babble noise
[56] prior to extracting feature sets from the RSR2015 database. Table 3 presents
the performances of the HS features and cGK feature combination with MFCCs for
the TD-1 sentence. As observed from the clean speech, the best performances are
observed at K = 4 and therefore this value is used for all the experiments conducted
under degraded conditions. This can be noticed from the table that the performance
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Fig. 12 The performance of the TDSV system using robust EPD followed by MEMD feature extraction.
The results are shown for the 39-dimensional MFCCs, 51-dimensional Ext. MFCCs, and the combinations
of the 39-dimensional MFCCs with the cGK feature and each of the seven experimental features. The
performance metrics are evaluated for the TD-2 and TD-3 sentences of the RSR2015 database. The testing
utterances are corrupted by Babble noise, with SNR varying from 20 to 0dB. The dimensions of the cGK
seven features are kept constant, with K = 4

of the TDSV system degrades significantly with the increase in SNR levels. The
51-dimensional Ext. MFCCs feature show slightly better performance as compared
to the MFCCs. Most of the feature combinations (MFCCs + HS) shows improved
performance compared to the MFCCs alone. Numbers within the brackets are the
results obtained using energy-based end points detection. Clearly, use of robust end
points detection in the proposed method is giving improved results compared to the
energy-based end points detection, for different levels of degradation.

Figure 12 presents the performance metrics for the feature combinations for the
TD-2 and TD-3 sentences. The performances under different SNR levels have been
plotted for better representation of the improvement in the system performance. This
can be noticed in the figure that similar to the observations made in Table 3, in most
of the cases, the combined features are showing improved performance compared to
the MFCCs alone.

6.1.3 Performances on the IITG Database

So far we have evaluated the speech corrupted by artificially inserted Babble noise.
Now, in this section, we present the performance of the system using speech utter-
anceswhich are naturally affected by background speech, background noise, telephone
channel, interferences fromother speakers andother environmental conditions. For this
purpose, we considered the IITG database for evaluating robustness of the proposed
system under practical conditions. This system was used for practical deployment at
the institute level for marking attendance as an application.

Table 4 presents the performance metrics of the MFCCs+HS features and the
MFCCs+cGK feature combination for each of the three speech utterances. Tak-
ing characteristics of the speaker-specific cues from the examinations made for the
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Table 5 The performance of the TDSV system using enhanced 39-dimensional MFCC features

Sentence Metric Clean 20dB 15dB 10dB 5dB 0dB
Dimension 39 39 39 39 39 39

TD-1 EER (%) 4.83 (6.18) 5.12 (6.25) 5.21 (5.94) 6.24 (6.89) 11.36
(10.32)

17.36
(18.71)

mDCF 0.0386
(0.0351)

0.0378
(0.0429)

0.0402
(0.0439)

0.0421
(0.0442)

0.0653
(0.0479)

0.0756
(0.0488)

TD-2 EER (%) 4.77 (5.53) 5.16 (6.3) 6.11 (5.94) 7.73 (7.35) 13.15
(14.09)

19.05
(21.71)

mDCF 0.0367
(0.0404)

0.042
(0.0453)

0.0432
(0.0439)

0.0498
(0.0473)

0.0674
(0.0684)

0.0772
(0.088)

TD-3 EER (%) 4.85 (5.18) 5.49 (5.94) 5.84 (6.43) 7.52 (7.49) 10.26
(12.65)

15.79
(18.31)

mDCF 0.0384
(0.0383)

0.0396
(0.0425)

0.0429
(0.042)

0.0525
(0.044)

0.0634
(0.0631)

0.073
(0.0721)

The performance metrics are evaluated for the TD-1, TD-2 and TD-3 speech utterances of the RSR2015
database in terms of the EER andmDCF. The experimental analysis done on the clean and testing utterances
are corrupted with varying strength from 0 to 20dB, in steps of 5dB. The numbers shown in brackets
are obtained by MFCCs+HS best performing results and without brackets are obtained by using speech
enhancement followed by robust EPD method

RSR2015 database, the dimensions of the cGK and different HS features remain
fixed by setting K = 4. From the table, one can notice that the 51-dimensional Ext.
MFCCs andMFCCs+cGK feature combination provide the improved performance of
the system with respect to the MFCCs for the TD-1 and TD-3 speech utterances, but
MFCCs+cGK feature combination for the TD-2 speech utterance case show slightly
degraded performance as compared to the MFCCs and Ext. MFCCs. The MFCCs
+ HS feature combinations inconsistently provide the improved performance, for all
the three speech utterances. The best performances are spread across different feature
combinations, and hence, fusion of various low-dimensional features could be useful.
It is also observed that the robust end points detection is helping inmost of the cases by
improving the EER compared to the energy-based end points detection. In the table,
results obtained by using energy-based end points detection are shown inside brackets.

6.2 Performances Obtained by Using Speech Enhancement Followed by Robust
EPDMethod

In this experiment, speech enhancement is performed before the end points detection
and feature extraction stage. The performance on the RSR2015 database is presented
not only under clean speech conditions but also under Babble noise of varying strength.
Table 5 presents the performances of the RSR2015 database under clean and dif-
ferent noise levels. Numbers inside the bracket show the best results from Table 3.
These results were obtained without performing speech enhancement and are shown
in Table 5 for comparison.
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Table 6 The performance metrics are evaluated for the TD-1, TD-2 and TD-3 speech utterances of the IITG
database

Sentence TD-1 TD-2 TD-3
Metric 39 dim 39 dim 39 dim

EER (%) 6.82 (9.42) 7.38 (9.1) 8.54 (14.69)

mDCF 0.0331 (0.0423) 0.0343 (0.04) 0.0398 (0.0497)

The testing utterances are collected in the practical scenarios. The results are evaluated in terms of EER and
mDCF. The numbers shown in brackets are obtained by MFCCs+HS best performing results and without
brackets are obtained by using speech enhancement followed by robust EPD method

From the table, one can observe that introduction of the temporal and spectral
enhancement on the speech utterances provides slightly better and comparable per-
formances, under various conditions. Table 5 show the experimental results that
consistently providing improved results as compared to the MFCCs augmented with
HS features and MFCC standalone features. Table 6 shows the same experiments for
the IITG database. The IITG database is already affected by environmental noise,
telephone channel and interference from other speakers, and hence noise is not added
artificially. Similar trend in performance is observed for the IITG database as well.
Speech enhancement improves the performance of the TDSV system significantly.

6.3 Performances Obtained by Using Speech Enhancement Followed by Robust
EPD and Extraction of MEMD Features

The final combined system can be obtained by using all three robust methods, where
robust EPD is performed on the enhanced speech and the robust MEMD features
are extracted from the detected speech regions. Performances are evaluated on the
RSR2015 and the IITG databases.

Table 7 shows the results of thefinal combined systemobtained byusing three robust
methods applied on the speech utterances in a sequential manner. The obtained results
shows improvement in performances compared to the performances with the signal-
and feature-level compensation techniques shown in Table 3. The improvements are
consistently observed for the lowSNRcases namely, 0dB and 5dBSNR. For 10–20dB
SNR, improvements are observed in some of the cases. Similar trend in performances
are observed for TD-2 and TD-3 speech sentences as shown in Fig. 13.

Table 8 shows the same set of features and same experiments for the IITG database.
Similar trend in the system performance is observed for the IITG database as well,
which can be observed by comparing the results in Table 8 with the corresponding
results shown in Table 4. The combination of three robust methods improves the
performance of the TDSV system for most of the cases.

7 Summary and Conclusion

Thiswork focuses on using robust techniques for TDSV systemunder degraded speech
and challenging test conditions. The process of TDSV system includes several stages
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Fig. 13 The performance of the TDSV system using speech enhancement followed by robust EPD and
extraction of MEMD features. Results are shown for 39-dimensional MFCCs with the cGK feature and
each of the seven experimental features. The performance metrics are evaluated for the TD-2 and TD-3
sentences of the RSR2015 database. The testing utterances are corrupted byBabble noise, with SNR varying
from 20 to 0dB. The dimensions of the cGK seven features are kept constant, with K = 4

such as, pre-processing, feature extraction,modeling anddecision. In thiswork, several
robustmethods are explored in different stages of the speaker verification system. In the
pre-processing stage, a robust end points detection using speech-specific knowledge
is used instead of energy-based VAD. Similarly, in the feature extraction stage, robust
features extracted from HS of IMFs obtained from MEMD are used in addition to
the conventional MFCC features. We observed that when we perform the robust end
points detection and use the robust HS features as additional features in the TDSV
system, there is improvement in performance as compared to the standalone MFCCs
extracted from the speech regions detected by energy-basedVAD.The seven features in
combinationwith theMFCCs, i.e.,MFCCs+HS features show improved performance
compared to MFCCs alone in different levels of degradation. This improvement is
observed for HS features obtained from low dimensions of IMFs as expected, and the
best performances are spread across different feature combinations with MFCCs.

Moreover, we also explored a combined temporal and spectral technique for speech
enhancement. The enhanced speechutterances are passed through robustEPD toobtain
the refined begin and end points. The results obtained after performing speech enhance-
ment show slightly better performance compared to the best performance obtained by
using MFCCs augmented with HS features and standalone MFCCs, without perform-
ing speech enhancement. Finally, we used all three methods in a sequential manner,
where robust EPD is performed on the enhanced speech and then MEMD features are
extracted from the regions between the detected end points. The combined method
significantly improves the system performance for the test utterances with 0dB, 5dB
and 10dB SNRs. On the RSR2015 database, the proposed method provides the rela-
tive improvement of EER by 25%, 23% and 6%, for 0dB, 5dB and 10dB, SNR cases,
respectively. On the IITG database provides the relative improvement of EER from
30 to 45%. Performance is improved in terms of mDCF as well. On the RSR2015
database, the combined method shows relative improvement in the mDCF by 8%,
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23% and 14%, for 0dB, 5dB and 10dB, SNR cases, respectively, whereas the mDCF
is relatively improved by 24% on the IITG database.
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