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Abstract
Cognitive radio (CR) technology is designed to improve reliability in communication
between users through efficient and dynamic spectrum exploitation. CRs address the
problems in spectrum allocation and channel access and improve the rate of radio
resource utilization. The flexibility of the CR networks (CRN) and communication
medium exposes it to a variety of threats; primary user emulation attack (PUEA) is a
malicious and denial-of-service kind of adversary that defaces CRNperformance. This
manuscript proposes an adaptive learning-based attack detection in CRN for detecting
and mitigating PUEA by analyzing the received power of the transmitter. The learning
process endorses some beneficial features by distinguishing low spectrum legitimate
PU from an adversary. The learning process adopts cyclostationary feature analysis for
distinguishing adversaries and low power PU in CR communications. The process of
learning is further enhanced by estimating distance variance and communication time-
based analysis for improving the rate of signal classification and SU communication
rate. The experimental analysis proves the stability of the proposed detection method
by improving theSU throughput,with lesser signal classification time andmisdetection
probability.
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1 Introduction

With the development in communication technology, the problem of spectrum scarcity
increases due to heterogeneouswireless user communication. Cognitive radio (CR) is a
widely adapted technology to cope up with the user demands by improving spectrum
utilization and thus reducing the scarcity problem. Cognitive radio network (CRN)
consists of licensed or primary users (PU) and un-licensed or secondary users (SU).
The SUs share the unused PU spectrum without interrupting their communications.
The licensed frequency spectrum of the PUs is engaged by the un-licensed SUs for
improving user-level communications [4]. Spectrum sensing is the fundamental task
to discover PU channels that exploit the spatial diversity of the SUs. Spectrum sensing
is a challenging task in CRs due to channel overhearing, hidden terminals, shadowing
and fading that result in path loss. SUs gain transmission over the PU spectrum by
detecting the free spectrum through sensing process. If the PU gains control over the
free leased spectrum, SU senses an alternate spectrum to swap their communication.
An idle or spectrum un-allocated SU causes interference in the other neighboring
channels [15].

Due to the openness and flexibility of the CR network, the network is exposed to
threats that degrade the performance of the network. CR facilitates the existence of
multiple primary and secondary users with a common spectrum sharing space. The
sensing and spectrum detection characteristics are vulnerable for injection of threats
in the network [1]. The advantages of the above features are mimicked by adversaries
andmalicious users to either utilize their spectrum completely or prevent the SUs from
accessing resources. This type of attack is labeled as primary user emulation attack
(PUEA). PUE is an easy to launch and hard to detect attack that interrupts the dynamic
spectrum access of the SU by exploiting jamming [24]. Detection and elimination of
these attacks are tedious as the mimicking user utilizes the spectrum band of the
legitimate PU. This deceives the CR to get false information about the spectrum and
prohibits spectrum access to the SUs. If a PUEA utilizes the entire spectrum, it is
preventing the SUs to access radio resources, creating a denial-of-service kind of
attack. PUEA also behaves in a selfish manner by occupying the entire spectrum due
to which detection and sensing process of SU are retarded [3].

To mitigate the effects of PUE in CR, a range of solutions have been provided in
recent years. Localization-based PUE detection is a common method that analyzes
the signal characteristics of the PUs. This detection method relies on the channel
occupancy of the PUs, differentiating the communicating channel and the occupied
illegitimate channel [3, 18]. Physical layer security is designed for securing CR from
PUE attacks by integrating authentication features to the PU signals. Contrarily, due to
the improvement in channel flexibility, PUEattackers launchmulti-channel emulations
due to which both location-based and authentication-based securities are defaced [7].
The contributions of this manuscript are:

(i) Designing an adaptive learning method for observing and analyzing the PU
spectrum characteristics to detect emulation attacks in CRN. Precise detection
of emulation attacks minimizes misdetection and time delay.
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(ii) Designing a learning case for differentiating low spectrum and malicious PU to
improve the SU throughput and to facilitate higher detection. This differentiation
improves the availability of least used spectrum in the network to cope up with
the spectrum deficiency problem.

(iii) Analyzing the performance of the proposed ALAD method using different met-
rics and a comparative evaluation of the samewith the existing methods to verify
the consistency of the proposed method.

1.1 RelatedWork

Karimi and Sadough [12] proposed a spectrum access function to improve the rate of
SU communication under PUEA. A new transmission rule is defined to maximize the
transmission rate of SU by estimating the misdetection probability for the detected
attackers. The transmission rule is built by considering the energy decay properties of
the PU over each channel during spectrum access.

A novel adaptive resource allocation algorithm [5] is designed for mitigating PUEA
and to improve energy efficiency of the CR networks. Resource allocation problem
is based on soft decision fusion method that detects the presence of attackers to opti-
mize the network performance. SU selection is approximated using nonlinear and
convergence-free maximization of energy efficiency by minimizing energy utiliza-
tion.

A cooperative spectrum sensing (CSS) scheme is introduced by Ghaznavi and
Jamshidi [10] for detecting PUE in CR communications. This probabilistic sensing
(P-CSS) method analyzes the power statistics of the users to detect an attacker. The
fusion center (FC) decides upon the reliability of the CR user based on the analyzed
statistics.

A network manager-based commitment model [21] is proposed to improve the
attacker detection probability in CRNs. The network manager performs a channel
surveillance strategy to aggregate channel properties and its characteristics. It analyzes
the characteristics using string Stackelberg equilibrium to decide on its liability. The
reliable PU information is broadcasted to the CR users for securing communication.

Lin et al. [14] proposed a spectrum management protocol for defending against
threats in CR-assisted Internet of Things applications (IoT). This protocol incorporates
the advantages of IoT architecture and physical CR properties to resolve the security
issues in local processing. This protocol performs both dynamic spectrummanagement
and attack detection as it is distributed.

A dynamic spectrum sharing method is introduced by Dong et al. [6] for improving
the communication privacy two-tier cognitive networks. This spectrum sharingmethod
employs a rank-based SU preference method for differentiating legitimate CR users.
The rank of the SUs facilitates operation time allocation for the CR users based on
availability.

Elghamrawy [8] proposed a hybrid genetic artificial bee colony (GABC) algorithm
for improving spectrum utilization of the users in cognitive radio networks. This algo-
rithm detects PUE to improve spectrum utilization. This algorithm facilitates precise
PU signal detection by the SUs by minimizing the false alarms of the malicious users.
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The performance of the algorithm is found tominimize themisdetection factor solving
the convergence issues.

The authors in [20] designed a throughputmaximization scheme for SUs in the pres-
ence of PUEA, in CR networks. Different from the conventional methods, this scheme
endorses a weight-based cooperative spectrum sensing (CSS) scheme for minimizing
the communication interference of PUEAs. The authors apply Nelder–Mead simplex
algorithm to address the problems in weight-based CSS detection.

Madbushi et al. [16] proposed a chaotic tag-based sequencing for detecting and
mitigating PUEA in cognitive radio networks. The base station monitors and reports
the activity of CRs in the network at the initial stage for attack detection. The sig-
nal decoding procedure distinguishes the attacker from a legitimate CR, minimizing
detection delay and improving the rate of detection.

APUEAdetectionmethod is proposed in [11] by exploiting the channel information
of the CRNs. This method analyzes the channel impulse response between PU and SU
to identify the attacker. The impulse response is also used to detect unused spectrum
to minimize errors in detection.

Cluster-based distributed cooperative spectrum sensing model [17] is proposed for
detecting PUE attacks in cognitive radio networks. In this model, the cluster heads
reduce communication delay and improve detection time by periodically communicat-
ing with the other clusters. The fusion center is responsible for electing cluster heads.
The CHs analyze the receiver power to detect malicious PUs. Besides, this model also
improves network performance by optimizing energy and minimizing delay.

A self-decision-based PUEA detection technique is introduced by Khaliq et al. [13]
for improving user security in CRN. The adversaries are detected by verifying their
location and detecting their energy. Based on the observations, a game-based decision
making is adopted by the legitimate users to detect and utilize radio resources. This
method achieves lesser cost and improves network lifetime.

Artificial neural network (ANN) is used for classifying known users in cognitive
radio network. The classification is extended for identifying PUE by incorporating the
advantages of distributed sensor network and node properties. The precision of the
neural network improves through a voting system, and an in-range neighbor is used
to classify unknown and known users. The software-defined radio (SDR) experiment
of ANN classification minimizes signal sorting time with better classification results.

Sevcik fractal dimension in frequency domain (SSMS) and normalized Petrosian
fractal dimension (SSMSP) are two spectrum sensingmethods [9] proposed tomitigate
the impact of PUEA in CR communications. The PUE is identified by classifying the
received signal modulation using support vector machines. These methods improve
the CR performance by minimizing false alarm and improving detection probability
in the network [22].

From the above survey, the process of attack detection is formulated based on
different techniques such as clustering [17], fusion center [10] and spectrum analysis
[6, 8, 9]. These techniques are focused to improve spectrum utilization by mitigating
PUEA, whereas the detection process is least concentrated. The process is complex
in determining the presence of the malicious users due to frequent spectrum sharing
and allocation. Considering this fact, to leverage the SU throughput, detection of
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Fig. 1 Network model

attackers is a prominent task. The proposed learningmethod-based detection enhances
the detection rate with the help of cooperative sensing feature of the CRs.

1.2 Adaptive Learning for Detecting PUE Attacks Through Signal Analysis

In the proposed detection method, CS is used to evaluate the PU signals through near
to accurate reconstructions. The spares signal reconstruction relies on the distance and
path loss errors observed in the transmitted signal. Adaptive learning process verifies
the reconstructed signal for rationalizing the errors to differentiate original and PUEA
signals [23].

1.3 NetworkModel

The network is modeled as an undirected graph G � (N , M)where N is the set of CR
SUs. The SUs are connected to a PU. The SUs communicate with each other and to
the PU through wireless channels represented as M . Figure 1 illustrates the network
model. SUs interact with PUs and fusion center (FC) or form independent SU–SU
communication [19].

1.4 Attack Model

In thismanuscript, primary user emulation attack (PUEA) is considered. Themalicious
PU mimics the signal of a legitimate PU to make the other user believe them. This
kind of attack focuses in attracting the entire spectrum in a selfish manner to interrupt
SU communication. The malicious PU replicates the power levels of the legitimate
PUs and broadcasts them to lure other users to them. These attacks occupy the entire



1076 Circuits, Systems, and Signal Processing (2020) 39:1071–1088

Fig. 2 PUE attack model

channel allocated for the other users to intervene the other radio communication.
PUEA launches either a denial-of-service attack or a selfish attack to grasp the entire
resource. A model of the PUE attack is represented in Fig. 2.

1.5 Channel and CommunicationModel

The N SUs communicate using {1, 2, . . . ,m} ∈ M channels in a cooperative manner.
The direct interaction between the SUs is enabled using common control channel.
The local interference between SUs is controlled by assigning time slots by the FC
to accumulate the sensed information. Let s denote the time slots in a channel M
where (s − 1) slots are used for accumulating sensed information. A single time is
used for processing sensed information. SU broadcasts the information to the FC in
its allocated time slots.

1.6 Methodology

Detecting PU signals instigates with the observation of received signal power. As free
space propagation loss is not ideal for shorter distance, log-normal fading propagation
is used to evaluate the received signal power (pr).

pr � pt + L − 10η log10
d

do
+ I (1)

where pt is the transmit power, L is the path loss, η is the exponent for path loss, do
is the reference distance, d is the distance between transmitter and receiver and I is



Circuits, Systems, and Signal Processing (2020) 39:1071–1088 1077

Fig. 3 Distance estimation

a random integer. With the received power, the distance between the transmitting PU
and SU is estimated as:

d∗ � 10pt−pr/
η (2)

The above distance is estimated and analyzed with two cases of the received power
with respect to the position of the PU. The estimated d∗ differs from d due to L
observed in transmission. The SU shares the sensing information with the FC for
further processing; FC decides the reliability the PU. Let �i represent the sensing
ability of a SU i to transmit a information through broadcast to its receiver pair. The
probability of SU to detect a channel M to communicate at a slot (ρd) is estimated
using Eq. (3):

ρd � 1 − [
ρ(ρr|�i � 1

)
] (3)

Here, �i � 1 if a PU is presented within the communication range (R) of an SU.
With ρd , the ρr for each ∅t is estimated for the minimum and maximum distance in R
of the transmitter.

Now, chances of selecting a transmitter are assessed by the reward-based learning
process. In Fig. 3, the minimum and maximum distance

(
dmin and dmax

)
within and

outside the range of the transmitter is illustrated. Theminimum andmaximumdistance
varies the rate of interference in the pr. The minimum and maximum distance factors
are estimated for approximating the detection factor. The detection of malicious users
is instigated with their signal strength-based distance that is different for legitimate
and mimic users. The learning process operates on this distance to enumerate CS to
classify the uniqueness of the signal. The channel occupancy and the time interval of
communication are evaluated based on the learning approximated distance factor.

Let df be the fixed distance estimated in a conventional manner by knowing the
position PU. The difference |df − d∗| must be less than the threshold dth for a PU to
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Fig. 4 Learning process

be legitimate. Contrarily, the case is valid for PU with direct communication with SU,
whereas a PUwith lesser transmission or varying distance (due tomobility) does not fit
this condition. This results in increasing misdetection probability, decreasing the rate
of reliability. To avoid misdetection, the FC employs an adaptive learning technique
to differentiate the following cases:

(i) Legitimate PU
(ii) PU with less communication
(iii) PU is malicious

The learning process is represented in Fig. 4.
The learning technique is fed with a series of distance inputs {x1, x2, . . . xn} that

is processed for L and η at the hidden layers {h1, h2, . . . hn}. The final output of the
learning process is the d∗ and η. The η is accounted at the time of processing the next
set of distance inputs. The near to precise distance is estimated with the received pr
considering η that has been experienced in the previous learning iterate.

Case 1 If |df − d∗| < dth, i.e., the difference between fixed distance and observed
distance is less than the threshold distance, then the PU is said to be legitimate. On the
other hand, the minimum and maximum distance constraints are verified for proper
PU estimation. If dmin ≤ dth < dth, then the SU is present in line of sight (LOS) with
the PU, and therefore, interference is nearly 0, and hence, error η is computed using
Eq. (4):

η � ∣∣pr(d) − pr
(
d∗)∣∣ (4)

The error in distance variation is now more accurately analyzed to get awareness
of the actual SU and illegitimate user using the allocation channel. To verify the η
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with respect to the density ∅ of N neighbors for pr, a normalization error matrix is
constructed such that

η(N , d) � pi

⎡

⎢⎢
⎣

L11
/
d11 . . . LN1

/
dN1

...
L1N

/
d1N . . . LNN

/
dNN

⎤

⎥⎥
⎦ (5)

Equation (5) is satisfied when two or more SUs share the same R of a PU. The
simple expression of Eq. (5) is expressed for a set of x iterates as:

η(N , do) � pi
(
L1

/
d0

)

η(N , d1) � pi
(
L0

/
d1

)

...

η(N , dn) � pi
(
Li−1

/
dn

)

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(6)

The FC verifies |pr(d) − pr(d∗)|with each of the obtained η(N , d). The difference
in df and d∗ between [dmin, dmax] is always less than dth for all the N iterates of the
learning process (Fig. 4).

Case 2 The PU is legitimate, but the number of communication through the PU is
less.

The learning process concludes that |df − d∗| ≥ dth as the PUs spectrum is not
sensed in at most intervals. Therefore, the cyclostationary feature of the signal is
analyzed as the above condition misdetects a legitimate PU as malicious. As the
communication interval is sparse, the unused spectrum is influenced by the noise of
the neighbors in the sane L. The error reduction feature of the detection minimizes η

and L in the least sensed PU spectrum. The error reduction is performed using a signal
mean function that is estimated over a time t. The communication through the PU is
analyzed in this time and is prolonged for a time period of (t + s). This is analyzed
to observe if there are any changes in the communication with the time factor. The
observed variation is correlated with the signal strength, time factor and detection
approximations to verify the presence of any malicious users. The mean m(t) of a
signal s(t) is estimated using Eq. (7) as:

m(t) � m(t + s) (7)

And the autocorrelation function c(t) is represented as:

c(t) � c(t + s0, η) (8)
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To determine the reliability of the signal from the PU, spectral correlation function
��( f ) is estimated as:

��( f ) �
∞∏

s�1

.

∞∏

�t�1

1

�t

−�t/2∫

�t/2

1

s
ϕ
(
s, f +

γ

2

)
ϕ
(
s, f − γ

2

)
dt (9)

where ϕ(s, f ) is the Fourier transform in (s − s1), (s1 − s2), . . . , (sn−1 − sn) time
slots and γ is the set of all Fourier transform functions which are given as:

ϕ(s, f ) �
t+ s

2∫

t− s
2

ϕ(t +
s

2
)e−2π f .ϕ

(
t − s

2

)
.e−2π f dt (10)

ϕ(s, f ) �
t+ s

2∫

t− s
2

e−2π f
[
ϕ
(
t +

s

2

)
· ϕ

(
t − s

2

)]
dt (11)

As the time slot for that particular PU communication is of prolonged time, i.e.,
0 < t ≤ s, s → ∞, interference is observed, and hence, γ 
� 0. This minimizes the
pr that is precisely estimated using a normalization. The normalization of Eqs. (9) and
(11) is represented as:

C( f )(dm)( f ) � ��( f )
√[

��
(
f + γ

2

) · ��
(
f − γ

2

)] (12)

The adverse channel effects are removed by normalizing the signal of a least used
PU. Now, the error matrix is estimated as:

η(N , d) � pr

⎡

⎢⎢
⎣

γ11
/
d11 . . . . . . γ11

/
d(N−x)1

...
γ1(N−x)

/
d1(N−x)

. . . . . . γ(N−x)(N−x)
/
d(N−x)(N−x)

⎤

⎥⎥
⎦ (13)

where (n − x) ∈ [s,∞] and (N − x) < N .
The learning process for Case 2 is illustrated as shown in Fig. 5.
The output of the learning process is assessed at (s + 1) slots at which the commu-

nication occurs. The γ obtained in this phase is less than η of a regular PU. Despite
normalization and feature detection, if γ > η, then the PU is malicious.

Case 3 If the PU is malicious.
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Fig. 5 Learning process when
∣∣df − d∗∣∣ ≥ dth

Analysis 3 Excluding the Cases 1 and 2, the PUs that are detected are classified as
attackers. The exceptions of Case 1 and Case 2 are discussed here. From Case 1, if
that |df − d∗| > dth, then the PU is malicious; the η is estimated as

η(N , d) � pr + σ

(
L

d

)
(14)

where σ is the variance error observed in the PU communication. The error observed
in this case is high due to inconsistent data handling and CS observations. The rate of
learning is instantaneous to detect the malicious user to prevent additional impact on
other channels. The detection process is first assessed using the distance factor. The
successive process of detection confirms the detection of malicious users occupying
the channel. Unlike the previous cases, matrix normalization is not required for all N
neighbors; if any of the neighbor senses the η, then the PU is declared as malicious. To
further verify the proof of identification, |pr(d) − pr(d∗)| > η(N , D) is considered.
The malicious user distance (dm) is estimated using Eq. (15) from Eq. (2):

dm � 10
(pt − pr)/η + σ (15)

Hence, in this case, the signal received is feeble with errors. Therefore, as per Case
2, the cyclostationary mean of the signal s(t) is given as in Eq. (16):

m(t) � m(t + s + σ) (16)

And autocorrelation function is represented as:

c(t) � c(t + s, (η + σ)) (17)
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The normalization C( f ) is expected to be:

C( f )(dm) � ��( f , σ )
√

��( f + σ) · ��( f − σ)
(18)

C( f )(dm) � ��( f , σ )
√

��[( f + σ) · ( f − σ)]
(19)

where��( f , σ ) represents the spectral correlation with respect to error variance. Both
the additive ( f + σ) and nonadditive variations ( f − σ) are addressed for normaliza-
tion with respect to the autocorrelation function represented in Eq. (17), provided the
function is determined for the cyclostationary mean of the signal observed between t
and (s + t) period for the CS. Equation (19) determines the normalization of sensing
function with error, where γ 
� 0 and |df − d∗| > dth.

The transmitting PU that satisfies Case 1 and Case 2 of the learning process is
classified as legitimate, and hence, the SU shares the spectrum of the PUs. Contrarily,
if the exception cases of 1 and 2 are met, then the PU is illegitimate, and therefore, the
FC announces the SU to evade spectrum access of that particular PU. The efficiency of
the system is designed as a joint optimization with respect to malicious detection and
throughput optimization. The throughput of the SUs is enhanced by detecting mali-
cious SUs by analyzing the error which is distance based on CS. The rate of channel
utilization and occupancy of the legitimate users are definite to improve communica-
tion rate of the SUs. More precisely, the distance variation as estimated in the learning
process confines improper signal strength evaluations to improve the rate of detection.

2 Results and Discussion

The performance of the proposed ALAD is analyzed through simulations performed
in network simulator. In this simulation, there are 300 SUs distributed in a region of
2000 m×2000 mwith a communication range of 150 m. There are 10 PUs placed that
covers an interference range of 500 m with eight channels operating at a frequency
rate of 6 MHz. The path loss factor L is set as one for indoor users and two for outdoor
users. The performance of the proposed RL-CSS is analyzed using a comparative
analysis with the existing P-CSS [10], ANN-SDR and GABC [8] for the metrics:
SU throughput, signal classification time [2], misdetection probability and detection
probability. Concentrating the rate of detection based on received signal strength cor-
relating the false alarm is introduced in ALAD. ALAD classifies the PU signals to
differentiate legitimate and illegitimate users based on thorough learning process. The
lag in the existingmethodsmentioned above is addressed in the proposedmethod using
cyclostationary analysis. The variations in measurements are presented in the form of
analysis, and results are illustrated below. A detailed description of the experimental
setup is presented in Table 1.



Circuits, Systems, and Signal Processing (2020) 39:1071–1088 1083

Table 1 Experimental parameter
and values

Experimental parameter Value

Network region 2000 m×2000 m

SU 300

Frequency 6 MHz

PU 10

Radio range 150 m

Interference range 500 m

Path loss factor 1/2

Fig. 6 SNR versus SU throughput

2.1 SU Throughput Analysis

Figure 6 illustrates the comparison of SU throughput between the existing and pro-
posed methods. In the proposed ALAD, the reliability of the PU is classified through
two learning cases. This aid SU to detect illegitimate PU more precisely that prevents
the SU from accessing their spectrum. This improves the communication rate of SU,
retaining higher throughput. Besides, different from the existing methods, the low sig-
nal SU is independently identified through a constraint-based learning (Case 2) due to
which it is efficiently identified amid the presence of PUEA. The least possible radio
resource is also utilized by the SU for communication that adds up SU throughput.

2.2 Signal Classification Time

The conventional signal classification is facilitated by analyzing the L in the received
power. In the proposed ALAD, the specific analysis of the signal in Case 2 helps
to improve the rate of differentiation. Both least used signal and unknown signal
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Fig. 7 PUs versus classification time of unknown signal

satisfying |df − d∗| < dth(legitimate PU) or (n − x) ∈ [s,∞] and (N − x) < N for
Eq. (13) (low communication PU) are distinguished through assessment in s and (s-1)
intervals. Therefore, both the cases aid ease of signal detection consuming lesser time
through appropriate learning instances (Cases 1 and 2). The comparative analysis of
the signal classification time is portrayed in Fig. 7.

2.3 Misdetection Probability Analysis

In Fig. 8, the misdetection probability is compared between the existing and proposed
methods with respect to false alarm. In ALAD, the learning process is recursive con-
sidering the error in the previous output for analyzing the legitimacy of PUs. Case 2 of
the learning process analyzes the signal in communication time slots with the L factor
in communication. The low signal user is also differentiated from the malicious CR,
minimizing the rate of misdetection. The learning Case 1 identifies the legitimacy and
Case 2 differentiates the users. Therefore, the chances of misdetection are less; the
users in dm are identified as malicious if |df − d∗| < dth for the first iterate. Therefore,
the ALAD shows up some misdetection. Obviously, it is less compared to the existing
methods, where low signal PU is classified as malicious.

Figure 9 illustrates the comparison of misdetection probability with respect to
signal-to-noise (SNR) ratio. The misdetection probability in the proposed method
is less (comparatively) due to the classification induced by the learning process. The
variation in misdetection occurs as it analyzes the cyclostationary features of a signal
for distinguishing from the illegitimate PU signal. The above graph is accounted for
one iterate of the learning process; the consecutive learning minimizes the misde-
tection probability of the proposed ALAD. In addition to the feature classification,
distance-based verification minimizes the rate of misdetection. Table 2 presents the
SU throughput observed in the corresponding misdetection of the adversary.
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Fig. 8 False alarm versus misdetection probability

Fig. 9 SNR versus misdetection probability

2.4 Detection Probability

Figure 10 illustrates the detection probability comparison of the existing methods with
the proposed ALAD. As mentioned in Fig. 9, the number of iterates minimizes the
rate of misdetection for the observed SNR. The rate of path loss L and γ are estimated
separately for both legitimate and malicious users. To improve the detection precision,
the received signal is analyzed for η(N , do) to η(N , dn) if the transmitted is legitimate,
and for illegitimate users, bothC( f )(dm) and γ are estimated to verify its consistency.
Based on the analysis and feature detection in Cases 2 and 3, the user is identified
more precisely (in spite of low communication), achieving a higher detection rate in
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Table 2 SU throughput and
misdetection analysis values

SNR SU throughput (bits/s/Hz) Misdetection

− 15 1.45 1

− 10 1.4 0.79

− 5 1.34 0.58

0 1.23 0.28

5 1.11 0.2

10 0.97 0.18

Fig. 10 Malicious SU versus network throughput

Table 3 Experimental data
values of the existing and
proposed methods

Metric P-CSS ANN-SDR GABC ALAD

SU throughput (bits/s/Hz) 0.74 0.8 0.82 0.94

Unknown signal
classification time

0.49 0.45 0.35 0.22

Misdetection 0.35 0.3 0.2 0.1

the proposed ALAD. Table 3 presents the experimental data values observed for the
existing P-CSS, ANN-SDR and GABC and proposed ALAD in order.

In Table 3, the observed analysis is presented. The analysis varies with respect to
SNR for throughput, PUdensity for classification time and false alarm formisdetection
correspondingly. The variations are observed from t to (s + t) accounting σ and η for
all the iterations of CS process.
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3 Conclusion

This manuscript proposes an adaptive learning-based attack detection in cognitive
radio networks. The adaptive learning is responsible for detecting and distinguish-
ing legitimate and malicious transmitters by analyzing their signals. The learning
method adopts both distance and cyclostationary feature-based analyses for differen-
tiating legitimate users from malicious transmitters. The learning method is reliable
for identifying legitimate users through constraint based on communication slots.
Experimental results illustrate the consistency of the proposed ALAD by improving
SU throughput and detection by 16.31% and 9.67% and minimizing signal classifi-
cation time and misdetection by 48.53% and 18.3% correspondingly. In the future
process of attack detection, self-decision-making opportunistic methods are planned
to be incorporated. This improves the rate of detecting a various class of attacks with
predetermined unknown signal classification, reducing the time of detection.
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