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Abstract
It is known that the conventional adaptive filtering algorithms can have good per-
formance for non-sparse systems identification, but unsatisfactory performance for
sparse systems identification. The normalized least mean absolute third (NLMAT)
algorithm which is based on the high-order error power criterion has a strong anti-
jamming capability against the impulsive noise, but reduced estimation performance
in case of sparse systems. In this paper, several sparse NLMAT algorithms are pro-
posed by inducing sparse-penalty functions into the standard NLMAT algorithm in
order to exploit the system sparsity. Simulation results are given to validate that the
proposed sparse algorithms can achieve a substantial performance improvement for a
sparse system and robustness to impulsive noise environments.

Keywords Sparse system identification · Adaptive filtering · Normalized least mean
absolute third (NLMAT) algorithm · High-order error power · Impulsive noise

1 Introduction

Adaptive filtering algorithms have received much attention over the past decades and
are widely used for diverse applications such as system identification, adaptive beam-
forming, interference cancelation and channel estimation [15, 19, 30, 35]. The least
mean square (LMS) algorithm, introduced by Widrow and Hoff [41], has become one
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of themost popular methods for adaptive system identification due to its simplicity and
low computational complexity. The normalized least mean square (NLMS) was also
proposed to further improve the identification performance [34, 41]. There is a trade-
off between lower steady-state error and fast convergence rate in LMS and NLMS.
However, their major drawbacks are slow convergence and performance degradation
with colored input signals or in the presence of heavy-tailed impulsive interferences
[33]. Therefore, in order to overcome these limitations, a normalized robust mixed-
norm RMN (NRMN) algorithm [26, 27] was presented by using the variable step
size instead of the fixed step size of the RMN algorithm [7]. Nevertheless, it needs to
know the variance of the white noise and impulsive noise. In the recent years, adaptive
filtering algorithms that were based on high-order error power (HOEP) conditions
were proposed [13, 28, 39] which can improve the convergence rate performance
and mitigate the noise interference effectively. The least mean absolute third (LMAT)
algorithm is based on the minimization of the mean of the absolute error value to the
third power [12, 13]. The error function is a perfect convex function with respect to the
filter coefficients, so there is no local minimum for the LMAT algorithm. The LMAT
algorithm often converges faster than the LMS algorithm and is suitable for various
noise conditions [23]. To alleviate the dependence of the input signal power effect,
a normalized form of LMAT (NLMAT) algorithm is proposed in [43]. The NLMAT
algorithm exhibits good stability and can mitigate non-Gaussian impulsive noise.

In many physical scenarios, the unknown systems to be identified exhibit sparse
representation, i.e., their impulse response has few nonzero (dominant) coefficients,
while most of the coefficients are zero or close to zero. Such systems are encountered
in many practical applications such as wireless multipath channels [1], acoustic echo
cancelers [4] and digital TV transmission channels [31]. The channel impulse response
in an acoustic system is relatively long due to the presence of echoes, but is zero for
most of the time. Such a system is said to be sparse, meaning that many of the terms
in the impulse response are zero, while only a few terms are nonzero. It is worthy
to note that if the a priori knowledge about the system sparsity is properly utilized,
the identifying performance can be improved. However, all of the above-mentioned
algorithms do not take into account such sparse prior information present in the system
and may lose some estimation performance.

Recently, many sparse adaptive filter algorithms that exploit system sparsity
have been proposed, notable among them being the proportionate normalized LMS
(PNLMS) algorithm [17] and its variants [5, 11, 14, 22]. On the other hand, motivated
by the least absolute shrinkage and selection operator (LASSO) [38] and the recent
research in compressive sensing [3, 6, 16], an alternative approach to identify sparse
systems has been proposed in [10]. The approach applies �1 relaxation, to improve
the performance of the LMS algorithm. To achieve further performance improvement,
adaptive sparse channel estimation methods using reweighted �1-norm sparse-penalty
LMS (RL1-LMS) [36, 37] and non-uniform norm constraint LMS (NNC-LMS) [42]
were also proposed. Under the Gaussian noise model assumption, these algorithms
exhibit improved performance in comparison with the traditional adaptive filters.
Recently, a novel �0-norm approximate method based on the correntropy-induced
metric (CIM) [32] is widely used in sparse channel estimation [18, 21, 24, 40]. How-
ever, these methods may be unreliable in estimating the system under non-Gaussian
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impulsive noise environments. In [25], the impulsive noise is modeled as a sparse
vector in the time domain and proved useful for a powerline communication appli-
cation. Fractional adaptive identification algorithms have been applied for parameter
estimation in channel equalization, linear and nonlinear control autoregressivemoving
averagemodel [2, 8, 9, 29]. It is observed that fractional-based identification algorithms
outperform standard estimation methods in terms of accuracy, convergence, stability
and robustness. The theoretical development for the case in which both sparsity and
impulsive noise are present is out of the scope of this paper.

The normalized LMAT algorithm has been successfully validated for system iden-
tification under impulsive noise environments [43]. To the best of our knowledge, no
paper has reported on sparse NLMAT algorithms. In this paper, we propose sparse
NLMAT algorithms based on different sparsity penalty terms to deal with sparse
system identification under impulsive noise environment and various noise distribu-
tions. The following algorithms that integrate similar approaches presented above
are proposed: the zero-attracting NLMAT (ZA-NLMAT), reweighted zero-attracting
NLMAT (RZA-NLMAT), reweighted �1-normNLMAT (RL1-NLMAT), non-uniform
norm constraint NLMAT (NNC-NLMAT) and correntropy-induced metric NLMAT
(CIM-NLMAT).

The remaining part of the paper is organized as follows. Section 2 reviews the
known LMAT and NLMAT algorithms. In Sect. 3, the sparse NLMAT algorithms are
derived. In Sect. 4, we compare the proposed algorithms in terms of computational
complexity. The performances of the proposed algorithms are demonstrated in Sect. 5.
Finally, Sect. 6 concludes the paper.

2 Review of LMAT and Normalized LMAT Algorithm

The general block diagram of sparse system identification using an adaptive filter is
shown in Fig. 1.
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Fig. 1 Block diagram of sparse system identification
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The desired response d(n) of the adaptive filter is calculated as d(n) � hT x̄(n) +
v(n), where superscript T indicates transpose of matrix or vector, h denotes the weight
vector of the unknown system of length L, x̄(n) � [x(n), x(n − 1), . . . x(n − L + 1)]T

is the input vector of the system, and v(n) is the system background noise. The system
noise consists of the impulsive noise alongwith different noise distributions (Gaussian,
uniform, Rayleigh and exponential).

2.1 LMAT Algorithm

The objective function of LMAT algorithm is

JLMAT(n) � |e(n)|3
� |d(n) − y(n)|3 (1)

where y(n) � W̄ T (n)x̄(n) is the output of the adaptive filter, e(n) � d(n) − y(n)
denotes the error signal, and W̄ (n) � [w1(n), w2(n), . . . wL (n)]T is the weight vector
of the adaptive filter.

The gradient descent method is used to minimize JLMAT(n) which can be expressed
as

W̄ (n + 1) � W̄ (n) − μ

3

∂ JLMAT(n)

∂W̄ (n)
(2)

By substituting Eq. (1) in the above equation, the weight update rule of the LMAT
algorithm is given by

W̄ (n + 1) � W̄ (n) + μe2(n)sgn[e(n)]x̄(n) (3)

where the positive constant μ is the step-size parameter.
sgn(x) denotes the sign function of x which is defined as

sgn(x) � x

|x | , x �� 0

� 0, x � 0 (4)

The drawback of the LMAT algorithm is that its convergence performance is highly
dependent on the power of the input signal.

2.2 Normalized LMAT Algorithm

To avoid the limitation of the LMAT algorithm, the NLMAT algorithm [43] is derived
by considering the following minimization problem [34]:

min
W̄ (n+1)

{
1

3

∣∣∣d(n) − W̄ T (n + 1)x̄(n)
∣∣∣3 + 1

2
‖x̄(n)‖2∥∥W̄ (n + 1) − W̄ (n)

∥∥2} (5)
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where ‖•‖ is the Euclidean norm of a vector.
Derivating Eq. (5) with respect to W̄ (n + 1) and equating to zero yields

W̄ (n + 1) � W̄ (n) +
e2(n)sgn[e(n)]x̄(n)

x̄ T (n)x̄(n)
(6)

The weight update equation for the NLMAT algorithm is given by

W̄ (n + 1) � W̄ (n) + μ
e2(n)sgn[e(n)]x̄(n)

x̄ T (n)x̄(n) + δ
(7)

where μ is a step-size parameter, and δ is a small positive constant to prevent division
by zero when x̄ T (n)x̄(n) vanishes.

In the presence of impulsive noises, the squared error term e2(n) in Eq. (7) might
degrade the NLMAT algorithm in the convergence performance, and hence, we con-
sider assigning an upper-bound eup to e2(n).

Thus, the NLMAT algorithm is modified as

W̄ (n + 1) � W̄ (n) + μ
sgn[e(n)]x̄(n)

x̄ T (n)x̄(n) + δ
min

{
e2(n), eup

}
(8)

where eup is the upper-bound assigned to e2(n) in Eq. (7).
The posteriori error ep(n) is defined as

ep(n) � d(n) − W̄ T (n + 1)x̄(n)

� e(n)

[
1 − μ

e(n)sgn[e(n)]x̄ T (n)x̄(n)

δ + x̄ T (n)x̄(n)

]
(9)

For convenience, we can neglect the small parameter δ in Eq. (9) and have

ep(n) � e(n)[1 − μe(n)sgn[e(n)]] (10)

Taking the mathematical expectation of both sides of Eq. (10),

E[ep(n)] � E[e(n)] − E[μe2(n)sgn[e(n)]] (11)

Denoting μ̄ � μe2(n) [20], Eq. (11) is rewritten as

E[ep(n)] � E[e(n)] − E[μ̄sgn[e(n)]] (12)

By using the Price’s theorem in [12], Eq. (12) can be simplified as

E[ep(n)] � E[e(n)] −
√

2

π

1

σe(n)
E[μ̄e(n)] (13)

where σe(n) is the standard deviation of the error e(n).
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In steady-state condition, the algorithm is assumed to be converged such that the
error e(n) is considerably smaller. Hence,

E[μ̄e(n)] � E[μ̄]E[e(n)] (14)

Thus, substituting Eq. (14) into Eq. (13), we get

E[ep(n)] � E[e(n)]

[
1 −

√
2

π

1

σe(n)
E[μ̄]

]
(15)

The magnitude of the a posteriori error E[ep(n)] does not exceed that of the priori
error E[e(n)], and then, the following inequality must be satisfied [20]

∣∣∣∣∣1 −
√

2

π

1

σe(n)
E[μ̄]

∣∣∣∣∣ < 1 (16)

Finally, by solving Eq. (16), we can obtain the upper-bound of eup as

eup �
√
2πσe(n)

μ
(17)

The standard deviation σe(n) is estimated by the following probabilistic method [7,
26, 27]

σe(n) �
√

OT (n)TwO(n)

Nw − K
(18)

where Tw is the diagonal matrix defined as, Tw � diag[1, . . . , 1, 0, . . . 0], that sets
the last K elements of O(n) to zero, and forms an unbiased estimate σe(n) by using
the remaining (Nw − K ) elements.

O(n) � sort
(
[|e(n)|, . . . , |e(n − Nw + 1)|]T ) contains the Nw most recent values

of e(n) arranged in the increasing order of the absolute value.
In general, Nw and K are chosen as Nw � L and K ≥ 1 + �L Pr� where �•� is the

floor operator which rounds a number to the next integer and Pr is the probability of
the impulsive noise occurrence.

3 Proposed Sparse NLMAT Algorithms

To exploit the system sparsity and robustness against impulsive noise, several sparse
NLMAT algorithms are proposed by inducing effective sparsity constraints into
the standard NLMAT, namely zero-attracting NLMAT, reweighted zero-attracting
NLMAT, reweighted �1-norm (RL1)-NLMAT, non-uniform norm constraint (NNC)-
NLMAT and correntropy-induced metric (CIM)-NLMAT.
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The update equation of LMAT sparse adaptive filter can be generalized as

W̄ (n + 1) � W̄ (n) + Adaptive error update︸ ︷︷ ︸
LMAT

+Sparse penalty

︸ ︷︷ ︸
sparse LMAT

(19)

3.1 Zero-Attracting NLMAT (ZA-NLMAT)

The cost function of ZA-LMAT filter with �1-norm penalty is given by

JZA(n) � 1

3
|e(n)|3 + λZA

∥∥W̄ (n)
∥∥
1 (20)

The updating equation of ZA-LMAT filter can be written as

W̄ (n + 1) � W̄ (n) − μ
∂ JZ A(n)

∂W̄ (n)
(21)

W̄ (n + 1) � W̄ (n) + μe2(n)sgn[e(n)]x̄(n) − ρZAsgn(W̄ (n) (22)

where ρZA � μλZA.
Based on the updated Eq. (7), the NLMAT-based sparse adaptive updated equation

can be generalized as

W̄ (n + 1) � W̄ (n) + Normalized Adaptive

error update︸ ︷︷ ︸
NLMAT

+ Sparse penalty

︸ ︷︷ ︸
sparse NLMAT

(23)

In order to avoid the stability issues of Eq. (22), the modified form can be represented
as

W̄ (n + 1) � W̄ (n) + μ
e2(n)sgn[e(n)]x̄(n)

x̄ T (n)x̄(n) + δ
− ρZAsgn(W̄ (n)) (24)

Equation (24) corresponds to the updated equation of sparse NLMAT filter.
The update equation of the modified sparse NLMAT algorithm is given by

W̄ (n + 1) � W̄ (n) + μ
sgn[e(n)]x̄(n)

x̄ T (n)x̄(n) + δ
min

{
e2(n), eup

}
− ρZAsgn(W̄ (n)) (25)

which is termed as the zero-attracting NLMAT (ZA-NLMAT).
The ZA-NLMAT algorithm based on �1-norm penalty is easy to implement and

performswell for the systems that are highly sparse, but struggles as the system sparsity
decreases. This behavior comes from the fact that the shrinkage parameter in the ZA-
NLMAT cannot distinguish between zero taps and nonzero taps. Since all the taps are
forced to zero uniformly, its performance would deteriorate for less sparse systems.
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3.2 Reweighted Zero-Attracting NLMAT (RZA-NLMAT)

The cost function of the Reweighted ZA-LMAT algorithm is derived by introducing
the log-sum penalty

JRZA(n) � 1

3
|e(n)|3 + λRZA

L∑
i�1

log(1 + εRZA|wi (n)|) (26)

The ith filter coefficient is then updated as

wi (n + 1) � wi (n) − μ
∂ JRZA(n)

∂wi (n)

� wi (n) + μe2(n)sgn[e(n)]xi (n) − ρRZA
sgn(wi (n))

1 + εRZA|wi (n)| (27)

The RZA-LMAT update equation can be expressed in vector form as

W̄ (n + 1) � W̄ (n) + μe2(n)sgn[e(n)]x̄(n) − ρRZA
sgn(W̄ (n))

1 + εRZA
∣∣W̄ (n)

∣∣ (28)

By using λRZA
∑L

i�1 log(1 + εRZA|wi (n)|) as a sparse penalty in Eq. (23), the RZA-
NLMAT update equation can be expressed as

W̄ (n + 1) � W̄ (n) + μ
sgn[e(n)]x̄(n)

x̄ T (n)x̄(n) + δ
min

{
e2(n), eup

}
− ρRZA

sgn(W̄ (n))

1 + εRZA
∣∣W̄ (n)

∣∣
(29)

where ρRZA � μλRZAεRZA and λRZA > 0 is the regularization parameter for RZA-
NLMAT.

A logarithmic penalty that resembles the �0-norm which is the exact measure of
sparsity is considered in RZA-NLMAT. This makes RZA-NLMAT to exhibit a better
performance than the ZA-NLMAT. However, the cost function Eq. (26) is not convex
and the convergence analysis is problematic for Eq. (29).

3.3 Reweighted �1-Norm NLMAT (RL1-NLMAT)

Since the complexity of using the �0-norm penalty is high, a term more similar to the
�0-norm, i.e., the reweighted �1-norm penalty is used in the proposed RL1-NLMAT
algorithm. This penalty term is proportional to the reweighted �1-norm of the coeffi-
cient vector.

The cost function of the reweighted �1-norm LMAT algorithm is given by

JRL1(n) � 1

3
|e(n)|3 + λRL1

∥∥ f̄ (n)W̄ (n)
∥∥
1 (30)
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where λRL1 is the parameter associated with the penalty term and the elements of f̄ (n)
are set to

[
f̄ (n)

]
i � 1

δRL1 +
∣∣[W̄ (n − 1)

]
i

∣∣ , i � 0, 1, . . . L − 1 (31)

with δRL1 being some positive number, and hence,
[
f̄ (n)

]
i > 0 for i � 0, 1, . . .

L − 1. Differentiating Eq. (30) with respect to W̄ (n),, the update equation of RL1-
LMAT is

W̄ (n + 1) � W̄ (n) − μ
∂ JRL1(n)

∂W̄ (n)

� W̄ (n) + μe2(n)sgn[e(n)]x̄(n) − ρRL1
sgn

(
W̄ (n)

)
δRL1 +

∣∣W̄ (n − 1)
∣∣ (32)

According to the NLMAT in Eq. (8), the update equation of RL1-NLMAT can be
written as

W̄ (n + 1) � W̄ (n) + μ
sgn[e(n)]x̄(n)

x̄T(n)x̄(n) + δ
min

{
e2(n), eup

}
− ρRL1

sgn
(
W̄ (n)

)
δRL1 +

∣∣W̄ (n − 1)
∣∣
(33)

where ρRL1 � μλRL1.
The cost function Eq. (30) is convex unlike the cost function for the RZA-NLMAT.

Therefore, the algorithm is guaranteed to converge to the global minimum under some
conditions.

3.4 Non-uniform Norm Constraint NLMAT (NNC-NLMAT)

In all the above algorithms, there is no adjustable factor which can effectively adapt
the norm penalty itself to the unknown sparse finite impulse response of the system.
In order to further improve the performance of sparse system identification, the non-
uniform p-norm-like constraint is incorporated into NLMAT algorithm.

Let us consider the cost function of sparse NLMAT with p-norm-like constraint as

J (n) � 1

3
|e(n)|3 + λ

∥∥W̄ (n)
∥∥p
p (34)

where
∥∥W̄ (n)

∥∥p
p �

L∑
i�1

|wi (n)|p is called L p
p - norm or p-norm like, 0 ≤ p ≤ 1.

The gradient of the cost function J (n) with respect to W̄ (n) is

∇ J (n) � ∂
( 1
3 |e(n)|3

)
∂W̄ (n)

+ λ
∂
∥∥W̄ (n)

∥∥p
p

∂W̄ (n)
(35)
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Thus, the gradient descent recursion of the filter coefficient vector is

wi (n + 1) � wi (n) − μ∇ J (n)

� wi (n) + μe2(n)sgn[e(n)]x(n − i) − ρ
psgn(wi (n))

|wi (n)|1−p , ∀0 ≤ i < L

(36)

Similar to the sparse algorithms created by using �0-norm and �1-norm, the zero
attractor term in Eq. (36) which is produced by the p-norm-like constraint will cause
an estimation error for the desired sparsity exploitation. To solve this problem, the
non-uniform p-norm-like definition which uses a different value of p for each of the
L entries in W̄ (n) is provided,

∥∥W̄ (n)
∥∥p
p,L �

L∑
i�1

|wi (n)|pi , 0 ≤ pi ≤ 1 (37)

The new cost function using the non-uniform p-norm-penalty is given as

JNNC(n) � 1

3
|e(n)|3 + λNNC

∥∥W̄ (n)
∥∥p
p,L (38)

The corresponding gradient descent recursion equation is

wi (n + 1) � wi (n) + μe2(n)sgn[e(n)]x(n − i) − ρNNC
pi sgn(wi (n))

|wi (n)|1−pi
, ∀0 ≤ i < L

(39)

g(n) � E[|wi (n)|], ∀0 ≤ i < L (40)

wi (n + 1) � wi (n) + μe2(n)sgn[e(n)]x(n − i) − ρNNC fi sgn(wi (n)), ∀0 ≤ i < L
(41)

where

fi � sgn[g(n) − |wi (n)|] + 1

2
, ∀0 ≤ i < L (42)

and ρNNC � μλNNC.
The reweighted zero attraction which is used to reduce the bias is introduced to

Eq. (41).
The weight update equation of NNC-LMAT algorithm is written as

wi (n + 1) � wi (n) + μe2(n)sgn[e(n)]x(n − i) − ρNNC
fi sgn(wi (n))

1 + εNNC|wi (n)| , ∀0 ≤ i < L

(43)

where εNNC > 0.
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The weight update equation of NNC-NLMAT algorithm can be written in vector
form as

W̄ (n + 1) � W̄ (n) + μ
sgn[e(n)]x̄(n)

x̄ T (n)x̄(n) + δ
min

{
e2(n), eup

}
− ρNNCFsgn(W̄ (n))

1 + εNNC
∣∣W̄ (n)

∣∣ (44)

where F is defined as

F �

⎡
⎢⎢⎢⎢⎣

f0
0

...

0

0 · · · 0
f1 · · · 0
0
. . . 0

0 · · · fL−1

⎤
⎥⎥⎥⎥⎦

L×L

(45)

3.5 Correntropy-InducedMetric NLMAT (CIM-NLMAT)

Due to the superiority of the correntropy-induced metric (CIM) for approximate the
�0-norm, CIM is used as the penalty term in the CIM-NLMAT algorithm. CIM favors
sparsity and can be used as a sparsity penalty term in the sparse channel estimation.

The similarity between two random vectors p � {p1, p2, . . . pL} and q �
{q1, q2, . . . qL} in kernel space can be measured using CIM which is described as

CIM( p, q) �
(
k(0) − V̂ ( p, q)

)1/2 (46)

where

k(0) � 1

σ
√
2π

, and (47)

V̂ ( p, q) � 1

L

L∑
i�1

k(pi , qi ) (48)

For the Gaussian kernel,

k(p, q) � 1

σ
√
2π

exp

(
− e2

2σ 2

)
(49)

here e � p − q and σ is the kernel width.
The CIM provides a good approximation for the �0-norm that can be represented

as

‖ p‖0 ∼ CIM2( p, 0) � k(0)

L

L∑
i�1

(
1 − exp

(
− (pi )2

2σ 2

))
(50)
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The Gaussian kernel-based CIM is integrated into the cost function of the LMAT
algorithm which is given by

JCIM(n) � 1

3
|e(n)|3 + λCIMCIM2(W̄ (n), 0)

� 1

3
|e(n)|3 + λCIM

k(0)

L

L∑
i�1

(
1 − exp

(
− (wi (n))2

2σ 2

))
(51)

The gradient of the cost function JCIM(n) with respect to W̄ (n) is

∇ JCIM(n) � ∂ JCIM(n)

∂W (n)

� −e2(n)sgn[e(n)]x(n − i) + λCIM
1

Lσ 3
√
2π

wi (n) exp

(
− (wi (n))2

2σ 2

)

(52)

The weight update equation of CIM-LMAT is expressed as

wi (n + 1) � wi (n) − μ∇ JCIM(n)

� wi (n) + μe2(n)sgn[e(n)]x(n − i) − ρCIM
1

Lσ 3
√
2π

wi (n) exp

(
− (wi (n))

2

2σ 2

)

(53)

where ρCIM � μλCIM > 0 is a regularization term which balances the estimation
error and sparsity penalty.

Equation (53) can be rewritten in matrix form as

W̄ (n + 1) � W̄ (n) + μe2(n)sgn[e(n)]x̄(n) − ρCIM
1

Lσ 3
√
2π

W̄ (n) exp

(
−
∥∥W̄ (n)

∥∥2
2σ 2

)

(54)

By using λCIM
k(0)
L

L∑
i�1

(
1 − exp

(
− (wi (n))2

2σ 2

))
as a sparse penalty in Eq. (23), the CIM-

NLMAT update equation is given by

wi (n + 1) � wi (n) + μ
sgn[e(n)]x̄(n)∑L−1

i�0 (x(n − i))2 + δ
min

{
e2(n), eup

}
x(n − i)

− ρCIM
1

Lσ 3
√
2π

wi (n) exp

(
− (wi (n))2

2σ 2

)
, (55)
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Table 1 Pseudocodes

Initialization W̄ (0) � 0Lx1, σe(0) � 0,Nw � L

Parameters μ, δ, ρZA, ρRZA, εRZA, ρRL1, δRL1, ρNNC, εNNC, ρCIM, σ

Loop For n � 1, 2, 3 . . .

y(n) � W̄ T (n)x̄(n)
e(n) � d(n) − y(n)
The proposed algorithms can be written in a unifying form as
W̄ (n + 1) � W̄ (n) + μ f (e(n))x̄(n) + ρg(W̄ (n))
where
f (e(n)) � sgn[e(n)]

x̄ T (n)x̄(n)+δ
min

{
e2(n), eup

}

eup �
√
2πσe(n)

μ , σe(n) �
√

OT (n)TwO(n)
Nw−K

and for ZA − NLMAT : g(W̄ (n) � −sgn(W̄ (n))

RZA − NLMAT : g(W̄ (n) � − sgn(W̄ (n))
1+εRZA

∣∣W̄ (n)
∣∣

RL1 − NLMAT : g(W̄ (n) � − sgn
(
W̄ (n)

)
δRL1+

∣∣W̄ (n−1)
∣∣

NNC − NLMAT : g(W̄ (n) � − Fsgn(W̄ (n))
1+εNNC

∣∣W̄ (n)
∣∣

CIM − NLMAT : g(W̄ (n) � − 1
Lσ3

√
2π

W̄ (n) exp

(
−
(
W̄ (n)

)2
2σ2

)

Table 2 Comparison of computational complexity of the investigated algorithms

Algorithms Additions Multiplications Divisions Square roots Comparisons Exponents

NLMAT [43] 4L+2 4L+1 2 1 LlnL+2 –

ZA-NLMAT 5L+2 5L+1 2 1 LlnL+2 –

RZA-NLMAT 5L+3 5L+2 L+2 1 LlnL+2 –

RL1-NLMAT 5L+2 5L+1 L+2 1 LlnL+2 –

NNC-NLMAT 5L+3 6L+2 L+2 1 LlnL+2 –

CIM-NLMAT 4L+2 7L+1 L+2 1 LlnL+2 L

The matrix form of CIM-NLMAT algorithm is expressed as

W̄ (n + 1) � W̄ (n) + μ
sgn[e(n)]x̄(n)

x̄ T (n)x̄(n) + δ
min

{
e2(n), eup

}− ρCIM
1

Lσ 3
√
2π

W̄ (n) exp

(
−
(
W̄ (n)

)2
2σ 2

)

(56)

Pseudocodes for the proposed sparse NLMAT algorithms are summarized in Table 1.

4 Computational Complexity

The numerical complexity of the proposed sparse algorithms in terms of additions,
multiplications, divisions, square roots and comparisons per iteration is shown in
Table 2.
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5 Simulation Results

In this section, the performance of the proposed sparse algorithms is evaluated in the
context of system identification using various noise distributions and impulsive noise
environment. The unknown system, h, is of length L=16, and its channel impulse
response (CIR) is assumed to be sparse in the time domain. The adaptive filter is
also assumed to be of the same length. The proposed algorithms are compared under
different sparsity levels S �1 and S �4. The active coefficients are uniformly dis-
tributed in the interval (−1, 1), and the position of the nonzero taps in the CIR is
randomly chosen. The Gaussian white noise with variance σ 2

x � 1 is considered as
the input signal x(n). The correlated signal z̄(n) is obtained using a first-order autore-
gressive process, AR(1), with a pole 0.5 and is given by z̄(n) � 0.5z̄(n − 1) + x̄(n).
The system background noise consists of impulsive noise combined with different
noise distributions such as (1) white Gaussian noise with N (0, 1), (2) uniformly dis-
tributed noise within the range (-1, 1), (3) Rayleigh distribution with 1 and (4) an
exponential distribution with 2. The impulsive noise is modeled by a Bernoulli–Gaus-
sian (BG) process and is given as ξ (n) � a(n)I (n), where a(n) is a white Gaussian
signal with N

(
0, σ 2

a

)
and I (n) is a Bernoulli process described by the probability

p{I (n) � 1} � Pr, p{I (n) � 0} � 1− Pr, where Pr represents the probability of the

impulsive noise occurrence. We choose Pr �0.01 and σ 2
a � 104/

12.
The mean square deviation (MSD) and excess mean square error (EMSE) are used

as the performance metrics to measure the performance of the proposed algorithms
which are expressed as

MSD(dB) � 10 log10
(∥∥h − W̄ (n)

∥∥2
2

)
(57)

and

EMSE(dB) � 10log10[ε(n)]
2, respectively. (58)

ε(n) � θT (n)x̄(n), where θ (n) � h − W̄ (n).
The average of 100 independent trials with SNR�20 dB is used in evaluating the

results.
In order to show the effectiveness of the proposed sparse NLMAT algorithms, a

comparison with the NRMN algorithms is performed. In Fig. 2, the simulation results
for the proposed algorithms are shown for the white Gaussian input and when the
background noise consists of only white Gaussian noise for the system with sparsity
S �1. The simulation results shown in Fig. 3 are carried out for the white Gaussian
input with background noise consisting of white Gaussian noise and impulsive noise
with sparsity level S �1. It can be seen from Figs. 2 and 3 that the proposed sparse
NLMAT algorithms exhibit better performance than NLMAT and NRMN algorithms
in terms of MSD for the very sparse system. Moreover, the proposed CIM-NLMAT
algorithm achieves lower steady-state error value.

In Fig. 4, the simulation results for the proposed algorithms are shown for the white
Gaussian input, while the background noise has white noise with uniform distribution
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Fig. 2 MSDComparison of the proposed algorithms with white Gaussian noise as the background noise and
the Gaussian white input signal for the system with sparsity S �1. The simulation parameters for sparse
NLMAT algorithms are given asμ � 0.8, δ � 1×10−3, ρZA � 5×10−5, ρRZA � 3×10−4, εRZA � 20,
ρRL1 � 1 × 10−5, δRL1 � 0.01, ρNNC � 1 × 10−3, εNNC � 20, ρCIM � 2 × 10−3, σ � 0.05

Fig. 3 MSD Comparison of the proposed algorithms with white Gaussian noise and impulsive noise as the
background noise and the white Gaussian input signal for the system with sparsity S �1. The simulation
parameters for sparse NLMAT algorithms are given as μ � 0.8, δ � 1 × 10−3, ρZA � 1 × 10−4,

ρRZA � 4 × 10−4, εRZA � 20, ρRL1 � 1 × 10−5, δRL1 � 0.01, ρNNC � 1 × 10−3, εNNC � 20,
ρCIM � 2 × 10−3, σ � 0.05

within the range (−1, 1) and impulsive noise for the system with sparsity S �1. In
Fig. 5, the input is white Gaussian with background noise consisting of Rayleigh
distributed noise with 1 and impulsive noise for the system with sparsity S �1. In
Fig. 6, the input is white Gaussian signal and the background noise is composed of an
exponential distribution of 2 and impulsive noise for the system with sparsity S �1.



5118 Circuits, Systems, and Signal Processing (2019) 38:5103–5134

Fig. 4 MSDComparison of the proposed algorithms when the background noise is composed of white noise
with uniform distribution within the range (−1, 1) and impulsive noise and the white Gaussian input signal
for the system with sparsity S �1. The simulation parameters for sparse NLMAT algorithms are given
as μ � 0.8, δ � 1 × 10−3, ρZA � 1 × 10−4, ρRZA � 4 × 10−4, εRZA � 20, ρRL1 � 1 × 10−5,

δRL1 � 0.01, ρNNC � 1 × 10−3, εNNC � 20, ρCIM � 2 × 10−3, σ � 0.05

Fig. 5 MSD Comparison of the proposed algorithms with background noise comprising of a Rayleigh
distributed noise with 1 and impulsive noise and the input is white Gaussian signal for the system with
sparsityS�1.The simulation parameters for sparseNLMATalgorithms are given asμ � 0.8, δ � 1×10−3,

ρZA � 1 × 10−4, ρRZA � 5 × 10−4, εRZA � 20, ρRL1 � 3 × 10−5, δRL1 � 0.01 ρNNC � 1 × 10−3,

εNNC � 20, ρCIM � 2 × 10−3, σ � 0.05

It can be easily seen from Figs. 4, 5 and 6 that the proposed sparse NLMAT algo-
rithms provide better performance than NLMAT and NRMN algorithms in terms of
MSD for the very sparse system. As shown above, the proposed CIM-NLMAT algo-
rithm achieves lower steady-state error too.
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Fig. 6 MSD Comparison of the proposed algorithms with background noise comprising of an exponential
distribution with 2 and impulsive noise and the white Gaussian input signal for the system with sparsity
S �1. The simulation parameters for sparse NLMAT algorithms are given as μ � 0.8, δ � 1 × 10−3,

ρZA � 1 × 10−4, ρRZA � 5 × 10−4, εRZA � 20, ρRL1 � 3 × 10−5, δRL1 � 0.01, ρNNC � 2 × 10−3,

εNNC � 20, ρCIM � 2 × 10−3, σ � 0.05

Table 3 Comparison of EMSE values for different NLMAT algorithms with uncorrelated input signal and
system sparsity S �1

EMSE in dB

Uncorrelated input
signal with

NLMAT ZA-NLMAT RZA-NLMAT RL1-NLMAT NNC-
NLMAT

CIM-NLMAT

Gaussian noise −30.5626 −32.2503 −35.4460 −36.0610 −36.1562 −36.3304

Gaussian+ impulsive
noise

−24.2397 −25.7307 −27.6974 −28.0753 −29.1522 −30.8891

Uniformly+ impulsive
noise

−24.4995 −25.9092 −27.6775 −28.0074 −29.1906 −31.4352

Rayleigh+ impulsive
noise

−24.7076 −26.1345 −28.3539 −29.8174 −29.4793 −31.5281

Exponential+ impulsive
noise

−23.2402 −24.6765 −26.8894 −28.1389 −28.3890 −29.1493

The EMSE values of the proposed algorithms obtained for different noises with
uncorrelated input and system sparsity S �1 are given in Table 3. It is confirmed that
the proposed sparse algorithms outperform the NLMAT algorithm in identifying a
sparse system.

In the simulations shown in Figs. 7, 8, 9, 10, 11, the input signal is the corre-
lated/colored input and the system sparsity is S �1. In Fig. 7, the system noise is
only white Gaussian noise, while for Fig. 8 is both white Gaussian noise and impul-
sive noise. The system noise for simulations shown in Fig. 9 consists of white noise
with uniform distribution within the range (−1, 1) and impulsive noise. In the case
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Fig. 7 MSD Comparison of the proposed algorithms with white Gaussian noise as the background noise
and the input is the correlated signal for the system with sparsity S �1. The simulation parameters for
sparse NLMAT algorithms are given as μ � 0.8, δ � 1 × 10−3, ρZA � 5 × 10−5, ρRZA � 3 × 10−4,

εRZA � 20, ρRL1 � 1 × 10−5, δRL1 � 0.01, ρNNC � 1 × 10−3, εNNC � 20, ρCIM � 2 × 10−3,

σ � 0.05

Fig. 8 MSD Comparison of the proposed algorithms with white Gaussian noise and impulsive noise as the
background noise and the input is the correlated signal for the system with sparsity S �1. The simulation
parameters for sparse NLMAT algorithms are given as μ � 0.8, δ � 1 × 10−3, ρZA � 1 × 10−4,

ρRZA � 4 × 10−4, εRZA � 20, ρRL1 � 1 × 10−5, δRL1 � 0.01, ρNNC � 1 × 10−3, εNNC � 20,
ρCIM � 2 × 10−3, σ � 0.05

of Fig. 10, the system noise has Rayleigh distributed noise of 1 and impulsive noise,
while for Fig. 11 consists of an exponential distribution of 2 and impulsive noise. It is
observed from Figs. 7, 8, 9, 10 and 11 that the proposed sparse NLMAT algorithms
exhibit better performance than NLMAT and NRMN algorithms in terms of MSD
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Fig. 9 MSDComparison of the proposed algorithms when the background noise is comprised of white noise
with uniform distribution within the range (−1, 1) and impulsive noise and the correlated input signal for the
system with sparsity S �1. The simulation parameters for sparse NLMAT algorithms are given asμ � 0.8,
δ � 1 × 10−3, ρZA � 1 × 10−4, ρRZA � 3 × 10−4, εRZA � 20, ρRL1 � 1 × 10−5, δRL1 � 0.01,
ρNNC � 1 × 10−3, εNNC � 20, ρCIM � 2 × 10−3, σ � 0.05

Fig. 10 MSD Comparison of the proposed algorithms with background noise comprising of a Rayleigh
distributed noise with 1 and impulsive noise and the input is the correlated signal for the systemwith sparsity
S �1. The simulation parameters for sparse NLMAT algorithms are given as μ � 0.8, δ � 1 × 10−3,

ρZA � 1 × 10−4, ρRZA � 5 × 10−4, εRZA � 20, ρRL1 � 3 × 10−5, δRL1 � 0.01, ρNNC � 3 × 10−3,

εNNC � 20, ρCIM � 1 × 10−3, σ � 0.05

for the very sparse system. Moreover, like for the previous simulations, the proposed
CIM-NLMAT algorithm achieves the lowest steady-state error value.

The EMSE values of the proposed algorithms obtained for different noises with
correlated/colored input and system sparsity S �1 are given in Table 4. It can be
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Fig. 11 MSD Comparison of the proposed algorithms with background noise comprising of an exponential
distribution with 2 and impulsive noise and the input is the correlated signal for the system with sparsity
S �1. The simulation parameters for sparse NLMAT algorithms are given as μ � 0.8, δ � 1 × 10−3,

ρZ A � 1× 10−4, ρRZA � 5× 10−4, εRZA � 20, ρRL1 � 3× 10−5, δRL1 � 0.01, ρNNC � 2 × 10−3,

εNNC � 20, ρCIM � 2 × 10−3, σ � 0.05

easily noticed that the proposed sparse algorithms outperform the NLMAT algorithm
in identifying a sparse system.

In Figs. 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, the performance of the proposed
algorithms when the system sparsity is changed to S �4 is shown.

In Fig. 12, the simulation results for the proposed algorithms are shown for thewhite
Gaussian input and when the background noise consists of only white Gaussian noise
for the system with sparsity S �4. The simulation results shown in Fig. 13 are carried
out for the white Gaussian input with background noise consisting of white Gaussian
noise and impulsive noise with sparsity level S �4. It can be seen from Figs. 12 and 13
that the proposed sparse NLMAT algorithms exhibit better performance than NLMAT
and NRMN algorithms in terms of MSD even after changing the system sparsity to S
�4.

In Fig. 14, the simulation results for the proposed algorithms are shown for thewhite
Gaussian input, while the background noise has white noise with uniform distribution
within the range (−1, 1) and impulsive noise for the system with sparsity S �4. In
Fig. 15, the input is white Gaussian with background noise consisting of Rayleigh
distributed noise with 1 and impulsive noise for the system with sparsity S �4. In
Fig. 16, the input is white Gaussian signal and the background noise is composed of
an exponential distribution of 2 and impulsive noise for the system with sparsity S �
4.

It can be easily seen from Figs. 14, 15 and 16 that the proposed sparse NLMAT
algorithms provide better performance than NLMAT and NRMN algorithms in terms
ofMSDeven after changing the system sparsity toS�4.As shownabove, the proposed
CIM-NLMAT algorithm achieves lower steady-state error too.
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Fig. 12 MSD Comparison of the proposed algorithms with white Gaussian noise as the background noise
and the Gaussian white input signal for the system with sparsity S �4. The simulation parameters for
sparse NLMAT algorithms are given as μ � 0.8, δ � 1 × 10−3, ρZA � 1 × 10−4, ρRZA � 5 × 10−3,

εRZA � 20, ρRL1 � 1 × 10−4, δRL1 � 0.01, ρNNC � 5 × 10−3, εNNC � 20, ρCIM � 5 × 10−3,

σ � 0.05

Fig. 13 MSD Comparison of the proposed algorithms with white Gaussian noise and impulsive noise as the
background noise and the white Gaussian input signal for the system with sparsity S �4. The simulation
parameters for sparse NLMAT algorithms are given as μ � 0.8, δ � 1 × 10−3, ρZA � 5 × 10−4,

ρRZA � 5 × 10−3, εRZA � 20, ρRL1 � 8 × 10−5, δRL1 � 0.01, ρNNC � 5 × 10−3, εNNC � 20,
ρCIM � 5 × 10−3, σ � 0.05

The EMSE values of the proposed algorithms obtained for different noises with
uncorrelated input and system sparsity S �4 are given in Table 5. It is confirmed that
the proposed sparse algorithms outperform the NLMAT algorithm in identifying a
sparse system.
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Fig. 14 MSD Comparison of the proposed algorithms when the background noise is composed of white
noise with uniform distribution within the range (−1, 1) and impulsive noise and the white Gaussian input
signal for the system with sparsity S �4. The simulation parameters for sparse NLMAT algorithms are
given as μ � 0.8, δ � 1 × 10−3, ρZA � 1 × 10−4, ρRZA � 5 × 10−3, εRZA � 20, ρRL1 � 1 × 10−4,

δRL1 � 0.01, ρNNC � 8 × 10−3, εNNC � 20, ρCIM � 5 × 10−3, σ � 0.05

Fig. 15 MSD Comparison of the proposed algorithms with background noise comprising of a Rayleigh
distributed noise with 1 and impulsive noise and the input is white Gaussian signal for the system with
sparsityS�4.The simulation parameters for sparseNLMATalgorithms are given asμ � 0.8, δ � 1×10−3,

ρZA � 1 × 10−4, ρRZA � 5 × 10−3, εRZA � 20, ρRL1 � 1 × 10−4, δRL1 � 0.01, ρNNC � 5 × 10−3,

εNNC � 20, ρCIM � 5 × 10−3, σ � 0.05

In the simulations shown in Figs. 17, 18, 19, 20 and 21, the input signal is the
correlated/colored input and the system sparsity is changed to S �4. In Fig. 17, the
system noise is only white Gaussian noise, while for Fig. 18 is both white Gaussian
noise and impulsive noise. The system noise for simulations shown in Fig. 19 is
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Fig. 16 MSD Comparison of the proposed algorithms with background noise comprising of an exponential
distribution with 2 and impulsive noise and the white Gaussian input signal for the system with sparsity
S �4. The simulation parameters for sparse NLMAT algorithms are given as μ � 0.8, δ � 1 × 10−3,

ρZA � 5 × 10−4, ρRZA � 5 × 10−3, εRZA � 20, ρRL1 � 8 × 10−5, δRL1 � 0.01, ρNNC � 6 × 10−3,

εNNC � 20, ρCIM � 5 × 10−3, σ � 0.05

Fig. 17 MSD Comparison of the proposed algorithms with white Gaussian noise as the background noise
and the input is the correlated signal for the system with sparsity S �4. The simulation parameters for
sparse NLMAT algorithms are given as μ � 0.8, δ � 1 × 10−3, ρZA � 1 × 10−4, ρRZA � 5 × 10−3,

εRZA � 20, ρRL1 � 1 × 10−4, δRL1 � 0.01, ρNNC � 5 × 10−3, εNNC � 20, ρCIM � 5 × 10−3,

σ � 0.05

comprised of white noise with uniform distribution within the range (−1, 1) and
impulsive noise. In the case of Fig. 20, the system noise has Rayleigh distributed noise
of 1 and impulsive noise, while for Fig. 21 consists of an exponential distribution
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Fig. 18 MSD Comparison of the proposed algorithms with white Gaussian noise and impulsive noise as the
background noise and the input is the correlated signal for the system with sparsity S �4. The simulation
parameters for sparse NLMAT algorithms are given as μ � 0.8, δ � 1 × 10−3, ρZA � 4 × 10−4,

ρRZA � 4 × 10−3, εRZA � 20, ρRL1 � 8 × 10−5, δRL1 � 0.01, ρNNC � 5 × 10−3, εNNC � 20,
ρC IM � 5 × 10−3, σ � 0.05

Fig. 19 MSD Comparison of the proposed algorithms when the background noise is comprised of white
noise with uniform distribution within the range (−1, 1) and impulsive noise and the correlated input signal
for the system with sparsity S �4. The simulation parameters for sparse NLMAT algorithms are given
as μ � 0.8, δ � 1 × 10−3, ρZA � 3 × 10−4, ρRZA � 5 × 10−3, εRZA � 20, ρRL1 � 7 × 10−5,

δRL1 � 0.01, ρNNC � 5 × 10−3, εNNC � 20, ρCIM � 8 × 10−3, σ � 0.05

of 2 and impulsive noise. It is observed from Figs. 17, 18, 19, 20 and 21 that the
proposed sparse NLMAT algorithms exhibit better performance than NLMAT and
NRMN algorithms in terms of MSD even after changing the system sparsity to S �
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Fig. 20 MSD Comparison of the proposed algorithms with background noise comprising of a Rayleigh
distributed noise with 1 and impulsive noise and the input is the correlated signal for the systemwith sparsity
S �4. The simulation parameters for sparse NLMAT algorithms are given as μ � 0.8, δ � 1 × 10−3,

ρZA � 2 × 10−4, ρRZA � 5 × 10−3, εRZA � 20, ρRL1 � 1 × 10−4, δRL1 � 0.01, ρNNC � 8 × 10−3,

εNNC � 20, ρCIM � 5 × 10−3, σ � 0.05

Fig. 21 MSD Comparison of the proposed algorithms with background noise comprising of an exponential
distribution with 2 and impulsive noise and the input is the correlated signal for the system with sparsity
S �4. The simulation parameters for sparse NLMAT algorithms are given as μ � 0.8, δ � 1 × 10−3,

ρZA � 2 × 10−4, ρRZA � 5 × 10−3, εRZA � 20, ρRL1 � 2 × 10−4, δRL1 � 0.01, ρNNC � 1 × 10−2,

εNNC � 20, ρCIM � 5 × 10−3, σ � 0.05

4. Moreover, like for the previous simulations, the proposed CIM-NLMAT algorithm
achieves the lowest steady-state error.

The EMSE values of the proposed algorithms obtained for different noises with
correlated/colored input and system sparsity S �4 are given in Table 6. It can be shown
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Fig. 22 Network echo path impulse response

that the proposed sparse algorithms outperform the NLMAT algorithm in identifying
a sparse system.

Let us now consider a network echo cancelation (NEC) system with the echo path
impulse response of length L=512 as shown in Fig. 22. This is a sparse impulse
response.

In Fig. 23, the simulation results for the proposed algorithms are shown for thewhite
Gaussian input and when the background noise consists of both white Gaussian noise
with SNR�20 dB, and impulsive noise. It can be seen from Fig. 23 that the proposed
sparse NLMAT algorithms exhibit better performance than the NLMAT algorithm for
long echo paths with sparse impulse response.

In Fig. 24, the input signal is the correlated/colored input and the system noise
is comprised of both white Gaussian noise and impulsive noise. It is observed that
the proposed sparse NLMAT algorithms exhibit better performance than NLMAT
algorithm. Moreover, like for the previous simulations, the proposed CIM-NLMAT
algorithmachieves the lowest steady-state error for long echopathswith sparse impulse
response.

6 Conclusion

The normalized LMAT algorithm based on high-order error power (HOEP) criterion
achieves improved performance and mitigates the noise interference effectively, but
it does not promote sparsity. Hence, in this paper, we have proposed different sparse
normalized LMAT algorithms in the sparse system identification context. From the
simulation results, it is verified that our proposed sparse algorithms are capable of
exploiting the system sparsity as well as providing robustness to impulsive noise.
Moreover, the proposed CIM-NLMAT algorithm exhibits superior performance in the
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Fig. 23 MSD Comparison of the proposed algorithms in a NEC sparse system with white Gaussian noise
and impulsive noise as the background noise and the input is white Gaussian signal

Fig. 24 MSD Comparison of the proposed algorithms in a NEC sparse system with white Gaussian noise
and impulsive noise as the background noise and the input is the AR(1) correlated signal

presence of different types of noise. The comparison of the proposed algorithms with
the fractional adaptive algorithms will be investigated in a future paper.
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