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Abstract
Spoken language identification (LID) or spoken language recognition (LR) is defined
as the process of recognizing the language from speech utterance. In this paper, a new
Fourier parameter (FP) model is proposed for the task of speaker-independent spo-
ken language recognition. The performance of the proposed FP features is analyzed
and compared with the legacy mel-frequency cepstral coefficient (MFCC) features.
Two multilingual databases, namely Indian Institute of Technology Kharagpur Multi-
lingual Indian Language Speech Corpus (IITKGP-MLILSC) and Oriental Language
Recognition Speech Corpus (AP18-OLR), are used to extract FP and MFCC features.
Spoken LID/LR models are developed with the extracted FP and MFCC features
using three classifiers, namely support vector machines, feed-forward artificial neu-
ral networks, and deep neural networks. Experimental results show that the proposed
FP features can effectively recognize different languages from speech signals. It can
also be observed that the recognition performance is significantly improved when
compared to MFCC features. Further, the recognition performance is enhanced when
MFCC and FP features are combined.
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1 Introduction

Spoken language identification (LID) or spoken language recognition (LR) is defined
as the process of identifying or recognizing the language from a speech utterance
[20]. So far, human beings are considered to be the most highly accurate language
recognition systems.1 It is considered as a trendy research problem for many years
and is attracting more attention from the past two decades [18]. It is far different from
the traditional speech recognition or speaker identification tasks, for which either the
identity of the speaker or the utterance information is unavailable. However, in the task
of spoken LID/LR, both the identity of the speaker and the utterance information are
not available, which makes an added challenge [2]. It plays a vital role in numerous
multilingual speech processing applications as described in [1,2,15,20,21,30].

The spoken LID/LR systems can be broadly classified into two types, [25] namely
explicit and implicit systems. Explicit spokenLID/LRsystemsuse phoneme sequences
derived from speech signals for recognition of language, whereas implicit systems use
the derived language-specific speech features. The performance of explicit spoken
LID/LR systems is better compared to implicit counterparts, which is achieved at the
cost of an increase in the complexity. Implicit systems are of favored choice to many
researchers for developing less complex and efficient spoken LID/LR systems.

The motivation for this work comes from the following facts: (1) In the context
of Indian languages, few attempts have been reported in the field of spoken language
recognition. One of the main reasons is due to the non-availability of standard native
speech corpora covering majority of the Indian languages. (2) India is a multilingual
nation having 22 official languages and 1650 unofficial languages [18]. These lan-
guages can be broadly classified into four major linguistic families, [15] namely (a)
Indo-Aryan, (b) Dravidian, (c) Austroasiatic, and (d) Tibeto-Burman. The languages
within the respective linguistic families are known to share some common set of
scripts and phonemes, thereby exhibiting some similarities among them. Moreover, it
is believed that Sanskrit (ancient Indian language) is the main root and many (not all)
other Indian languages are evolved from it. The similarity between different languages
poses significant challenges to develop spoken language recognitionmodels for Indian
languages. The implementation of explicit spoken LID/LR systems is practically not
feasible due to the similarity issues among different Indian languages. As a result, the
implicit systems become the only choice to proceed with the development of spoken
LID/LR systems for Indian languages.

Themain objectives of this paper are: (1) to design an implicit, less complex acoustic
speech system for spoken language recognition in Indian languages using spectral
features and (2) to design spoken LID/LR systems which can perform well even on
shorter (10-s duration) speech utterances apart from longer (30-s or 45-s duration)
speech utterances.

In this paper, harmonic sequences, named Fourier parameter (FP) features, are pro-
posed to identify the language from the perceptual content of speech signals, instead of
using the traditional spectral features. To the best of authors’ knowledge, it is an early
attempt to apply this new set of FP features, along with their associated first-order and

1 The terms ‘system,’ ‘model,’ and ‘classifier’ are interchangeably used in this article.
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second-order differences for the task of speaker-independent spoken language recog-
nition. The FP features are evaluated on the Indian Institute of Technology Kharagpur
Multilingual Indian Language Speech Corpus (IITKGP-MLILSC). For comparing
the performance of FP features, the state-of-the-art legacy features such as the mel-
frequency cepstral coefficients (MFCC) are also extracted from the speech signals of
the said corpus.2 Spoken LID/LRmodels are developed using support vectormachines
(SVM), artificial neural networks (ANN), and deep neural networks (DNN). Experi-
mental results show that the proposed FP features are effective in recognizing different
Indian languages and resulted in improving the recognition performance of the systems
when compared to MFCC features. The recognition performance is further improved
by combining MFCC and FP features. The performance of the proposed FP features
is also evaluated on the Oriental Language Recognition Speech Corpus (AP18-OLR).
Significant improvements in the performance of the spoken LID/LR systems using
FP features, and the combination of MFCC and FP features are also observed with
respect to this database.

The rest of the paper is organized as follows: Sect. 2 presents about the literature
survey. Section 3 provides the brief details of two multilingual speech corpora used
in this paper for performing the experimental study. Section 4 discusses about various
topics, namely the theoretical aspects of the conventional block or frame-level pro-
cessing for speech signals, FP and MFCC speech features for spoken LID/LR tasks,
feature normalization, feature scaling, and finally the feature selection for dimen-
sionality reduction. Section 5 presents the details of SVM, ANN, and DNN classifier
architectures used in this paper to develop spoken LID/LR systems. Section 6 presents
and discusses about the obtained experimental results. Section 7 concludes with the
insights toward future extensions to this work.

2 Literature Review

A detailed literature survey on the state-of-the-art language identification, more spe-
cific toward speech features and models, is discussed by Ambikairajah et al. [2]. Most
of the approaches employed spectral and prosodic features for spoken language recog-
nition [6]. With respect to Indian languages, few attempts are reported in the area of
spoken language recognition. Early attempts have been made on the recognition of
Indian languages by Balleda et al. [5], using 17-dimensional MFCC feature vectors
with vector quantization (VQ) for four Indian languages. Rao et al. [28] have explored
prosodic features to develop language recognition models for four Indian languages.
Leena et al. [19] have explored spectral features with auto-associative neural networks
(AANN) for language recognition with varying duration of test speech samples for
three Indian languages.

Maity et al. [21] have explored two spectral features, namely MFCC and linear
predictive cepstral coefficients (LPCC) with Gaussian mixture models (GMM), to
develop speaker-dependent and speaker-independent language recognition models for
27 Indian languages using IITKGP-MLILSC database. The corresponding recognition

2 The terms ‘corpus’ and ‘database’ are interchangeably used in this article.
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accuracies for both the cases are reported as 96% and 45%, respectively. Reddy et al.
[30] have exploredmultilevel spectral andprosodic featureswithGMM, todevelop lan-
guage recognition models for 27 Indian languages using IITKGP-MLILSC database.
The recognition accuracies reported using MFCC features and the combination of
spectral and prosodic features are 51.42% and 62.13%, respectively. Nandi et al. [26]
have explored magnitude and phase information of excitation source (represented by
Hilbert envelope (HE) and residual phase (RP), respectively) present in the linear pre-
diction (LP) residual signal with GMM, to develop language recognition models for
27 Indian languages using IITKGP-MLILSC database. The evidences of HE and RP
from sub-segmental, segmental, and supra-segmental levels are combined in differ-
ent ways to achieve language-specific excitation source information. The maximum
recognition accuracy of 63.70% is reported with respect to these features.

Jothilakshmi et al. [15] have explored spectral features, namely MFCC and shifted
delta cepstral (SDC)with hiddenMarkovmodels (HMM),GMMandANN, to develop
language recognition models for nine Indian languages. Koolagudi et al. [18] have
explored two spectral features (MFCC and SDC) and a set of prosodic features (pitch
contour, energy contour, zero-crossing rate, and duration) with ANN, to develop lan-
guage recognition models for four Indian languages from Dravidian linguistic family.
Mounika et al. [24] have explored MFCC features with DNN and DNN with attention
(DNN-WA), to develop language recognition models for 12 Indian languages. Veera
et al. [41] have explored residual cepstral coefficients (RCC), MFFC and SDC with
DNN, DNN-WA, and the state-of-the-art i-vector systems, to develop language recog-
nition models for 13 Indian languages. Improvement in the recognition performance
is observed using DNN-WA model with combined RCC and MFCC features. Vud-
dagiri et al. [42] have explored MFCC features with i-vectors, DNN, and DNN-WA,
to develop language recognition models for 23 Indian languages using International
Institute of Information Technology Hyderabad—Indian Language Speech Corpus
(IIITH-ILSC). It is observed that the performance of DNN-WA architecture is better
than i-vector and DNN models. Bhanja et al. [7] have proposed new parameters to
model the prosodic characteristics of the speech signal. The extracted prosodic fea-
tures are combined with MFCC features to develop a two-stage LID system for seven
northeast Indian languages. Three classifiers, namely ANN, GMM with universal
background model (UBM), and i-vector-based SVM, have been used.

From the state-of the-art literature on spoken language recognition in Indian lan-
guages, it is observed that most of the works are focused on traditional spectral
and prosodic features for capturing the language-specific information. To the best of
authors’ knowledge, none of the studies have analyzed the use of new spectral features
for spoken language recognition in Indian languages. In this paper, new FP spectral
features with their associated first-order and second-order differences are introduced.
These new spectral features are used to develop spoken LID/LR models for 15 Indian
languages using IITKGP-MLILSC database. The spoken LID/LR models are devel-
oped using the state-of-the-art classifiers, namely SVM, ANN, and DNN. Similar
kind of LID/LR models is also developed for ten oriental languages using AP18-OLR
database to evaluate the performance of the proposed FP spectral features for the task
of spoken language recognition.
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3 Multilingual Speech Corpora/Databases

In this paper, two multilingual speech databases, namely the Indian Institute of Tech-
nology Kharagpur Multilingual Indian Language Speech Corpus (IITKGP-MLILSC)
[21] and the Oriental Language Recognition Speech Corpus (AP18-OLR), are used to
develop spoken LID/LR systems in Indian and oriental languages, respectively. These
databases are employed to develop and validate the spoken LID/LR systems in Indian
and oriental languages using MFCC, FP, and combined MFCC+FP features. The
details of these databases are summarized in the following sub-sections.

3.1 IITKGP-MLILSC Database

The IITKGP-MLILSC database was developed by the Indian Institute of Technology
Kharagpur.3 It comprises of recorded speech data in 27 major Indian languages, out
of which 15 languages from 3 major Indian linguistic families, namely Indo-Aryan,
Dravidian, and Tibeto-Burman, are considered in this paper for the task of speaker-
independent spoken language recognition. Out of 15 chosen languages, 9 languages
(Bengali, Chhattisgarhi, Gujarati, Hindi, Kashmiri, Punjabi, Rajasthani, Sanskrit, and
Sindhi) are chosen from the Indo-Aryan family [30], 3 languages (Konkani, Tamil, and
Telugu) are chosen from the Dravidian family [30], and 3 languages (Manipuri, Mizo,
and Nagamese) are chosen from the Tibeto-Burman family [30]. On an average, each
language in the database has around 5–10 min of speech recordings corresponding
to at least ten speakers. More details of this database are provided in [21,30]. This
database is freely available upon request, for non-commercial and academic research
purpose.

3.2 AP18-OLR (AP16-OL7+AP17-OL3) Multilingual Database

The AP18-OLR database [39] was developed to provide support for the oriental lan-
guage recognition challenge4 (AP18-OLR) organized by the center for speech and
language technologies (CSLT) at Tsinghua University and SpeechOcean. It provides
recorded speech data in 10 oriental languages which belong to 5 Asian linguistic fam-
ilies, namely Altaic, Austroasiatic, Austronesian, Indo-European, and Sino-Tibetan.
Out of 10 languages, 4 languages (Japanese, Kazakh, Korean, and Uyghur) belong
to Altaic family, and 3 languages (Cantonese, Mandarin, and Tibetan) belong to
Sino-Tibetan family. The remaining 3 languages, namely Indonesian, Russian, and
Vietnamese, belong to Austronesian, Indo-European, and Austroasiatic families,
respectively. More details of this database are provided in [39] and can also be found
in the challenge Web site.5 This database is freely available upon request, for non-
commercial and academic research purpose.

3 http://www.iitkgp.ac.in.
4 http://www.olrchallenge.org.
5 http://cslt.riit.tsinghua.edu.cn/mediawiki/index.php/OLR_Challenge_2018.

http://www.iitkgp.ac.in
http://www.olrchallenge.org
http://cslt.riit.tsinghua.edu.cn/mediawiki/index.php/OLR_Challenge_2018
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The AP18-OLR database is a combination of two multilingual databases, namely
AP16-OL7 and AP17-OL3. The AP16-OL7 [43] multilingual database was developed
by the SpeechOcean.6 It provides recorded speech data in 7 oriental languages (Can-
tonese, Indonesian, Japanese, Korean, Mandarin, Russian, and Vietnamese). On an
average, each language in this database has around 10 h of speech recordings corre-
sponding to 24 speakers (12 males and 12 females). The data set of each language was
divided into an independent training and testing data sets, each containing recorded
speech data of 18 and 6 independent speakers, respectively. This database has a vari-
ation in the recording environment with respect to languages. More details of this
database are provided in [43] and can also be found in the challenge Web site.7

The AP17-OL3 [38] multilingual database was developed by NSFC8-M2ASR9

project. It provides recorded speech data in 3 oriental languages (Kazakh, Tibetan,
and Uyghur). On an average, each language in this database has around 10 h of speech
recordings. Unlike AP16-OL7, this database has much more variations in terms of the
recording environment and the number of speakers. More details of this database are
provided in [38] and can also be found in the challenge Web site.10

4 Frame-Level Acoustic Speech Features for Spoken Language
Recognition

4.1 Conventional Block Processing of Speech Signal

The method of conventional block processing (CBP) is used to extract the intrinsic
segmental (frame level) and supra-segmental (across frames) acoustic features from
speech signal. Prior toCBP, the speech signals are initially subjected to pre-processing,
which includes low-pass filtering followed by pre-emphasis [36]. In CBP, the continu-
ous speech signal is divided into a consecutive sequence of individual frames11 (either
in terms of overlapping or non-overlapping format) of short duration, and finally the
segmental and supra-segmental features are extracted from them. The method of CBP
can be mathematically described as follows:

Consider a discrete-time continuous speech signal, say x(m) of finite duration t s,
having sampling frequency Fs. Let C , Q, and R represent the type of the channel,
bit resolution, and bit rate of the recorded speech signal, respectively. This speech
signal is passed through a digital low-pass FIR filter, having the cutoff frequency

Fc
(
Fc < Fs

2

)
[36]. The corresponding output is the desired low-pass filtered speech

signal xf(m), given by,

6 http://en.speechocean.com.
7 http://cslt.riit.tsinghua.edu.cn/mediawiki/index.php/OLR_Challenge_2016.
8 National Natural Science Foundation of China, http://www.nsfc.gov.cn.
9 Multilingual Minorlingual Automatic Speech Recognition, http://m2asr.cslt.org.
10 http://cslt.riit.tsinghua.edu.cn/mediawiki/index.php/OLR_Challenge_2017.
11 The terms ‘frame’ and ‘segment’ are interchangeably used in this article.

http://en.speechocean.com
http://cslt.riit.tsinghua.edu.cn/mediawiki/index.php/OLR_Challenge_2016
http://www.nsfc.gov.cn
http://m2asr.cslt.org
http://cslt.riit.tsinghua.edu.cn/mediawiki/index.php/OLR_Challenge_2017
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xf(m) =
P∑

n=0

h(n)x(m − n), (1)

where P is the order of the low-pass filter, and h is the vector containing the filter
coefficients.

The low-pass-filtered speech signal xf (m) is then passed through a digital first-order
pre-emphasis (high pass) filter to reduce the differences in the power levels of different
frequency components present in the speech signal. The corresponding output is the
pre-emphasized speech signal xpe(m), given by,

xpe(m) = xf(m) − αxf(m − 1), (2)

where α is the pre-emphasis constant.
The pre-emphasized speech signal xpe(m) is then used inCBP,where it is segmented

into l finite consecutive overlapping frames of short duration Tf , each having Nf
samples. The corresponding segmented speech is represented in the form of a matrix
xs, given by,

[xs] = [s1, s2, . . . , sl ], (3)

where s1, s2, . . . , sl denotes l vectors, each having dimension of Nf × 1, containing
samples of respective speech segments. The matrix xs has a dimension of Nf × l,
indicating that the speech segments are arranged in columns and rows correspond to
the individual frame samples.

The number of overlapping frames into which the given speech signal can be seg-
mented, is computed using,

l =
⌈(

1 +
(
Ns − Nf

Nof

))⌉
; � Nf > Nof or Tf > Tof , (4)

where Ns is the number of samples in the speech signal, Nf is the number of samples
in individual frames, Nof is the number of new samples in individual frames after
frame shift or overlap, Tf is the duration of the individual frame in ms, and Tof is the
duration of the frame shift in ms. Here, Ns is the speech signal-dependent parameter,
whereas Nf and Nof (or Tf and Tof ) are tunable parameters, whose values are defined
during the development phase of the spoken language recognition system. Equation
(4) is expressed in terms of sample domain parameters for computing the number of
overlapping frames.

The number of samples Ns available in the recorded speech signal having sampling
frequency Fs and time duration t is given by,

Ns = t × Fs. (5)
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The number of samples Nf in each individual frame l can be computed using,

Nf = Tf
Ts

; � Tf > Ts, (6)

where Ts is the speech signal-dependent parameter which denotes the time duration
of a single speech sample in ms, given by, Ts = 1

Fs
.

Overlapping the frame by shifting it with a duration of Tof is equivalent to shifting
it by Nof samples, given by,

Nof = Tof
Ts

; � Tof > Ts. (7)

Equation (4) can also be expressed in terms of time domain parameters by substi-
tuting (5), (6), and (7) for computing the number of overlapping frames.

The percentage of frame overlap Fol can be computed using,

Fol =
(
Nf − Nof

Nf

)
× 100 %. (8)

It is evident from (8) that, if Fol = 50%, then Nof = Nf
2 . Similarly, if Fol < 50%,

then Nof < Nf
2 , and if Fol > 50%, then Nof > Nf

2 .
In speech signal segmentation, apart from the overlapping frames format, another

format does exist for a special case having Fol = 0% and it is termed as non-
overlapping frames format. For this case, Nof = Nf (or Tof = Tf ), and the number of
such frames into which the given speech signal can be segmented, is computed using
the reduced form of (4), given by,

l =
⌈
Ns

Nf

⌉
. (9)

The non-overlapping frames format for signal segmentation is rarely incorporated in
speech signal analysis.

It is a usual practice to multiply the individual speech frames with a windowing
function (whose window length Nw is equal to the frame length Nf ) while segmenting
the speech signal into a set of individual frames. The windowing operation helps to
reduce the edge effects, while taking the discrete Fourier transform (DFT) on the
speech segments [22]. The windowed speech segments are represented in the form of
a matrix xws, given by,

[xws] = [xs] × w, (10)

where w denotes a vector with windowing function coefficients having dimension of
Nw × 1 (here, Nw = Nf ), and × denotes the array multiplication. The matrix xws
has a dimension of Nf × l (similar to xs), containing speech segments obtained after
multiplying with the coefficients of the windowing function. In general, for speech
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applications, hamming window is widely used as a windowing function. It is defined
as [27],

w(m) = 0.54 − 0.46 cos

(
2πm

K

)
; f or 0 ≤ m ≤ K ,

K = Nw − 1 & Nw = Nf , (11)

where K is the order of the filter, and Nw is the hamming window length.
The matrix xws finally contains the samples corresponding to the windowed speech

segments. The segments with speech activity carry information of the language traits
as opposed to the leading and trailing segments with silence or non-speech activity.
Therefore, it becomes necessary to discard the unwanted leading and trailing silence or
non-speech segments from xws. This is achieved by performing a simple voice activity
detection (VAD) using segment energy estimation (SEE), which identifies the starting
and ending boundaries of the entire speech utterance in the given speech signal. The
process of VAD by SEE is briefly summarized as follows [2]:

Initially, the energy El of all the segments in xws is computed as,

El = 10 log10

(
Nf−1∑
m=0

∣∣∣xlws(m)

∣∣∣
2
)

, (12)

where El is the energy of lth frame in dB.
From energy estimates of El , the maximum energy Emax of the entire speech

utterance is determined. Using Emax, a threshold energy level Eth is computed as,

Eth = (Emax − Ec) , (13)

where Ec is a tunable parameter which represents a constant energy in dB. It is used to
adjust the level of Eth. Its value is defined during the development phase of the spoken
language recognition system.

From (13), it can be noted that Eth is fixed at Ec dB below Emax. Finally, all the
leading and trailing speech segments whose energy fall below Eth are considered to
be silence or non-speech segments and therefore discarded from xws. The resultant
matrix obtained is denoted as x̂ws. This matrix has l ′ segments, where l ′ < l. The
obtained speech segments in x̂ws are then processed with the chosen speech feature
extraction techniques to extract salient speech features that can be used to develop
spoken LID/LR systems. The values of various CBP parameters used in this paper are
presented in Table 1.

4.2 Fourier Parameter Features

A speech signal x (m) which is divided into l consecutive overlapping frames can be
represented by a combination of an FP model, given by [44],
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Table 1 CBP parameters chosen with respect to multilingual speech databases

Type Parameter Value

For IITKGP-MLILSC For AP18-OLR

Speech signal t 10 s∗ 5–10 s

Fs 8 kHz 16 kHz

Ts 125 µs 62.5 µs

C Monochannel Monochannel

Q 16 bits/sample 16 bits/sample

R 128 kbps 256 kbps

Low-pass filter P 100 100

Fc 3.4 kHz 6.8 kHz

Pre-emphasis filter α 0.95 0.95

Speech segments Nf 256 256

Nof 128 128

Tf 32 ms 16 ms

Tof 16 ms 8 ms

Fol 50% 50%

Hamming window K 255 255

Nw 256 256

VAD by SEE Ec 30 dB 30 dB

∗For the purpose of experiments, each recorded speech wave file in IITKGP-MLILSC database is sliced
into chunks of 10-s duration using WavePad® sound editor tool of NCH®

x(m) =
M∑
k=1

Hl
k(m)

(
cos

(
2π

f lk
Fs

m

)
+ φl

k

)
, (14)

where Fs is the sampling frequency of x(m), Hl
k , f lk , and φl

k are the amplitude, fre-
quency, and phase of the kth harmonic’s sine component, respectively, l is the index
of the frame, and M is the number of speech harmonic components.

The harmonic part of the model corresponds to the Fourier representation of
the speech signal’s periodic components. Since acoustic speech is non-periodic in
nature, when its non-periodic components are sampled, the resultant Fourier trans-
form becomes periodic and continuous function of frequency.

For a finite duration discrete-time speech signal x(m) of length N samples, the
DFT is defined as [27],

H(k) =
N−1∑
m=0

x(m) exp

(
− j

2π

N
mk

)
; k = 0, 1, 2, . . . , N − 1, (15)

where H(k) are Fourier Parameters [44].
Harmonics generally include amplitude, frequency, and phase. In this paper, only

the harmonic amplitudes are used as features. Harmonic amplitude FPs are estimated
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from each frame of the speech signal, as shown in (14), in which Hl
k is referred as lth

frames FP. Intrinsic segmental and supra-segmental FPs are extracted from the speech
segments (in x̂ws) to use them as features.

Initially, the characteristics of the harmonic amplitude FPs are studied by consid-
ering the mean statistical parameter. At first, one particular harmonic amplitude FPs
are extracted from the frames of the speech signals corresponding to a single speaker
from each language of both databases (IITKGP-MLILSC and AP18-OLR). Their cor-
responding means are computed across speech signals with respect to frames. The
obtained results with respect to both databases (IITKGP-MLILSC and AP18-OLR)
are presented in Figs. 1 and 2. These figures show the mean H3 plots among languages
in IITKGP-MLILSC and AP18-OLR databases, respectively. It is observed that the
amplitudes vary with respect to different languages. The similar kind of variation is
observed in the case of other harmonics. An adequate number of harmonic amplitude
FPs are to be extracted from the speech signals to incorporate them for pattern classi-
fication/recognition problems, since it is difficult to classify/recognize signals based
on the features obtained from single harmonics.

To investigate further in this direction, the first 120 harmonic amplitude FPs are
extracted from a randomly chosen speech signal of each language for both databases
(IITKGP-MLILSC and AP18-OLR). Their corresponding means are computed across
the frames. The obtained results with respect to both databases (IITKGP-MLILSC and
AP18-OLR) are presented in Figs. 3 and 4. Interesting characteristics can be studied
from the maximum peaks of the mean harmonic amplitudes. For better peak visualiza-
tion, scatter plots are provided separately in Figs. 5 and 6 for IITKGP-MLILSC and
AP18-OLR databases, respectively. Figures 5 and 6 present the results of 6 random
observation trails. Each observation trail (subplot) consists of the maximum peaks
of the mean harmonic amplitudes corresponding to a randomly chosen speech signal
from each language of the respective databases. From Fig. 5, it is observed that:

– For all observation trails, the majority of the Indian languages have the maximum
peaks of the mean harmonic amplitudes at lower harmonics.

– In each observation trail, for any particular language, the maximum peak of the
mean harmonic amplitude is formed at random harmonics. This is evident with
the fact that for each observation trail, one speech signal is randomly picked from
every language.

– To investigate this random nature of the peak formation, the maximum peaks of
the mean harmonic amplitudes across adjacent harmonics and farthest maximum
peaks of themeanharmonic amplitudes at the sameharmonics are grouped together
in the form of clusters (as indicated in the form of circles and ellipses in Fig. 5).

– Majority peaks of different languages within the cluster belong to one among the
three major categories of Indian linguistic families. In Fig. 5, different cluster
groups are denoted by different line styles. Clusters with solid, dashed, and dotted
lines denote Indo-Aryan, Dravidian, and Tibeto-Burman families, respectively.

– For example, in Fig. 5c and 5f, three Dravidian languages, namely Konkani,
Tamil, and Telugu, together formed a single cluster. Similarly, in Fig. 5d, e,
two Dravidian languages, namely Konkani and Telugu, together formed a single
cluster.
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– For example, in Fig. 5a, b, d, e, two Tibeto-Burman languages, namely Manipuri
and Mizo, together formed a single cluster. Similarly, in Fig. 5c, f, two Tibeto-
Burman languages, namely Manipuri and Nagamese, together formed a single
cluster.

– Similar kind of analysis can also be made to Indo-Aryan languages as well, and
the respective clusters so formed can be observed in Fig. 5.

Similarly, from Fig. 6, it is observed that:

– For all observation trails, majority of the oriental languages have the maximum
peaks of the mean harmonic amplitudes at lower harmonics.

– The maximum peaks of the mean harmonic amplitudes are grouped together in
the form of clusters using the same procedure followed in Fig. 5. Majority peaks
of different languages within the cluster belong to one among the two categories
of oriental linguistic families. In Fig. 6, different cluster groups are denoted by
different line styles. Clusters with solid and dashed lines denote Altaic and Sino-
Tibetan families, respectively.

– For example, in Fig. 6a, b, c, two Altaic languages, namely Japanese and Korean,
together formed a single cluster. Similarly, in Fig. 6d, three Altaic languages,
namely Japanese, Korean, and Kazakh, together formed a single cluster.

– For example, in Fig. 6a, d, e, three Sino-Tibetan languages, namely Cantonese,
Mandarin, and Tibetan, together formed a single cluster. Similarly, in Fig. 6c, f,
two Sino-Tibetan languages, namely Cantonese and Tibetan, together formed a
single cluster.

The characteristics as described above are seen in multiple number of observation
trails, where in each trail, a speech signal is randomly chosen from each language
of the respective databases to generate similar kind of plots. The distinct character-
istics exhibited by FPs show that there is a relationship associated with FPs and the
language traits. This relationship is exploited to make use in the task of spoken lan-
guage recognition. The characteristics of the harmonic amplitude FPs studied from
Figs. 1, 2, 3, 4, 5, and 6 are with respect to the mean statistical parameter. A similar
kind of investigation can be performed using other statistical parameters as well.

The global features usually provide superior performance capability in terms of
the computational efficiency and classification accuracy [4]. Therefore, the statistical
parameters like the mean, median, standard deviation, minimum, and maximum of
the FP features across all l frames are calculated to derive global FP features. The
computed global FP features are used to construct the global FP feature vectors. The
resultant global FP feature vectors are used to develop spoken LID/LR systems.

The global FP feature vector is constructed for each speech signal as per the proce-
dure described in [44], which can be briefly summarized as follows: At first, M set of
FP features are extracted fromall frames of the speech signal as described in (14). From
each frame, the first 120 harmonic coefficients (H) are considered. Dynamic coef-
ficients including 120 first-order difference (�H) and 120 second-order difference
(��H) are computed. Finally the mean, median, standard deviation, minimum, and
maximum of 120 harmonic amplitudes corresponding to (H1−120), (�H1−120), and
(��H1−120) across all l frames are computed and are concatenated to form a 1800-
dimensional global FP feature vector. The resultant structure of the feature vector is
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Table 2 Structure of global FP feature vector

Feature index
range

Feature
description

Feature index
range

Feature
description

Feature index
range

Feature
description

1–120 x̄ (H p
k ) 601–720 x̄ (�H p

k ) 1201–1320 x̄ (��H p
k )

121–240 x̃ (H p
k ) 721–840 x̃ (�H p

k ) 1321–1440 x̃ (��H p
k )

241–360 σx (H p
k ) 841–960 σx (�H p

k ) 1441–1560 σx (��H p
k )

361–480 min (H p
k ) 961–1080 min (�H p

k 1561–1680 min (��H p
k )

481–600 max (H p
k ) 1081–1200 max (�H p

k ) 1681–1800 max (��H p
k )

Here, the range of k is defined as, 1 ≤ k ≤ 120, where k denotes the harmonic coefficients. The range of p
is defined as 1 ≤ p ≤ l, where l is the number of speech frames. Hk denotes FPs, �Hk denotes first-order
FPs, and��Hk denotes second-order FPs. The statistical parameters are computed with respect to k across
l. x̄ . = mean, x̃ . = median, σx . = standard deviation, min. = minimum, and max . = maximum

depicted in Table 2. The global FP feature vectors of all speech signals, each having
1800 features, are finally used for the task of speaker-independent spoken language
recognition.

4.3 Mel-Frequency Cepstral Coefficient Features

MFCC is considered as the benchmark feature set, widely employed in diverse fields
of speech signal processing, since from the time they were first introduced in [10].
These features are popularly used for spoken language recognition. In this paper,
MFCC features are used for performance comparison with the proposed FP features
for the task of spoken language recognition. The mel-filter bank used for extracting
MFCC features is based on MFCC-FB40 configuration. It comprises of 40 individual
and equal height triangular filters with logarithmically spaced center frequencies. The
filter bank spans across the desired frequency range of (0, Fs/2] Hz. Further details of
the mel-filter bank design equations and the procedure for MFCC feature extraction
are provided in [29,37].

In this paper, global MFCC feature vectors are used for spoken language recogni-
tion. It includes the mean, median, standard deviation, minimum, and maximum of
the traditional MFCC feature vector. At first, the 13-MFCCs along with their associ-
ated first-order difference (�-MFCC) and second-order difference (��-MFCC) are
extracted from the individual frames of speech signals to forma39-dimensional feature
vector [29]. Further, its mean, median, standard deviation, minimum, and maximum
are computed across all frames to form a 195-dimensional global MFCC feature vec-
tor. The resultant structure of the feature vector is depicted in Table 3. The global
MFCC feature vectors of all speech signals, each having 195 features, are finally used
for the task of speaker-independent spoken language recognition.

4.4 Normalization and Scaling of Feature Vectors

Normalization and scaling are the two important data pre-processing techniques,
widely used in the fields of data science and machine learning to standardize the
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Table 3 Structure of global
MFCC feature vector

Feature index range Feature description

1–39 x̄ (MFCCp
k )

40–78 x̃ (MFCCp
k )

79–117 σx (MFCCp
k )

118–156 min (MFCCp
k )

157–195 max (MFCCp
k )

Here, the range of k is defined as, 1 ≤ k ≤ 39, where k denotes
the mel-frequency cepstral coefficients. The range of p is defined as
1 ≤ p ≤ l, where l is the number of speech frames. MFCCk denotes
mel-frequency cepstral coefficients. The statistical parameters are com-
puted with respect to k across l
x̄ .=mean, x̃ .=median, σx .= standard deviation, min.=minimum,
and max.=maximum

data. These techniques are used in this paper to pre-process the data of feature vectors.
These techniques assist to develop robust spoken LID/LR systems.

Feature normalization allows elimination of recording and speaker variability [8,
44], thereby preserving the effectiveness of language discrimination. In this paper, a
simplemean-variance normalization is used for normalizing the feature vectors, which
is given by,

f ij =
(

f̂ ij − μ j

σ j

)
. (16)

Here, (16) normalizes each feature j of the feature vector i (from a given set of
i = 1, 2, . . . , r feature vectors), using mean and variance of each feature j over
all feature vectors, respectively. f̂ ij is the feature j of the current feature vector i .
Normalization does not bound the feature values to any specific range. It onlymakes the
features to have a unit variance. So it is desirable to perform scaling after normalization,
since most of the machine learning algorithms work better with scaled data (features).

Feature scaling makes the data of the feature vectors to fall within the specified
range (say, [0, 1] or [−1, 1]), which helps to improve the overall training (learning)
efficiency of the classifier. The scaled feature vectors are usually fed as inputs to the
classifier at the time of training and testing. In this paper, a simple min–max scaling
is employed, which is defined as [11],

f
′i
j =

(
(smax − smin) × ( f ij − min( f j ))(

max( f j ) − min( f j )
)

)
+ smin,

where f
′i
j =

⎧⎪⎨
⎪⎩

0 or − 1, if f ij = min( f j ),

1, if f ij = max( f j ),

(0, 1) or (−1, 1) otherwise.

(17)
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Here, (17) scales the range of each feature j of the feature vector i (from a given
set of i = 1, 2, . . . , r feature vectors) to the range specified by [smin, smax], which
is chosen either as [0, 1] or [−1, 1]. min( f j ) and max( f j ) are the minimum and
maximum values of feature j over all feature vectors, respectively. f ij is the feature j
of the current feature vector i .

Feature scaling transform is applied only to the training data and not to the entire
data set (including the test data set) [11]. The min( f j ) and max( f j )must be preserved
to use them for scaling: (1) the future inputs that will be applied to the classifier for
performing additional training, (2) the new inputs that will be applied to the classifier
for testing. Therefore, min( f j ) and max( f j ) effectively become an integral part of the
classifier model, similar to its weights and biases.

Scaling the target12 values are usually not necessary. If the original targets are
scaled, then the classifier will be trained to produce outputs in the scaled range. So
necessary post-processing tasks are to be made using min(t j ) and max(t j ) (where
min(t j ) and max(t j ) are the minimum and maximum values of the target j over all
target vectors, respectively) in order to convert the classifier outputs back to original
targets. In such cases, min(t j ) and max(t j ) will also become an integral part of the
classifier model, similar to min( f j ) and max( f j ). This is usually seen in the case of
ANN classifiers, since by default they operate with the numeric targets.

4.5 Feature Selection

Processing thehigh-dimensional feature vectors requires huge computational resources
and time [35]. Moreover, all the available features are not pertinent. The performance
of the classification algorithm degrades with the presence of irrelevant, noisy, and
redundant features. Therefore, it is necessary to reduce the dimensionality of the fea-
ture vectors to improve the efficiency and effectiveness of the classifiers. Thus, the
method of feature selection is employed in this paper.

Feature selection is one of the traditional and the state-of-the-art dimensionality
reduction methods which aim at finding a subset of useful features from the original
feature vectors. It provides many benefits in terms of improving the understandability,
scalability, generalization, and recognition capability of the classifiers [3]. In this
paper, ReliefF algorithm13 is employed to perform feature selection, whose details are
briefly discussed in the following sub-section.

4.5.1 ReliefF Feature Selection

ReliefF algorithm belongs to the category of supervised and filter-method approach-
based feature selection. It comes under the family of Relief-based feature selection
algorithms (RFAs). It is capable of detecting the conditional dependencies between
the feature vector attributes,14 and provides a unified view on the attribute estimation

12 The terms ‘target’ and ‘class’ are interchangeably used in this article.
13 https://in.mathworks.com/help/stats/relieff.html.
14 The terms ‘attribute’ and ‘feature’ are interchangeably used in this article.

https://in.mathworks.com/help/stats/relieff.html
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for classification problems [32]. Attribute estimations involve computation of attribute
scores (weights) which are used to rank and select top scoring features.

The locality of the estimates (predictor ranks and weights) is generally controlled
by the user-defined parameter k.15 If k is set to 1, then the computed estimates can
become unreliable especially for the noisy data. If k is set to any positive integer,
whose value is comparable with the total number of observations (instances), then
ReliefF algorithm fails to find the important predictors. For most of the applications,
the value of k can be safely set to 10 [32].

In this paper, the ReliefF algorithm is used to reduce the dimensionality of global
FP and MFCC features and to improve the recognition accuracies of spoken LID/LR
systems. The obtained results of ReliefF feature selection for global FP and MFCC
features corresponding to IITKGP-MLILSC and AP18-OLR databases are shown in
Figs. 7, 8, and 9. The plots of computed weights versus feature attributes for both
global FP and MFCC features are shown in Figs. 7 and 8, respectively. The plots of
computed weights (arranged in descending order of the magnitudes) versus assigned
predictor ranks for both global FP and MFCC features are shown in Fig. 9. Selection
of important features can be done either in terms of the estimated feature weights or
assigned predictor ranks.

Figures 7 and 8 show the selection of important features in terms of the estimated
feature weights. It is observed that for global FP and MFCC features, the estimated
weights of all attributes vary through out the length of the feature vector. Attributes
with relatively higher weights are considered to be significant, while those with rela-
tively lower weights are considered to be insignificant. Significant features contribute
more toward enhancing the recognition performance of the classifiers. So only the
top attributes having relatively higher weights are selected, and the rest are ignored.
For illustration purpose, Figs. 7 and 8 show the selection of top 50 features having
relatively higher weights. From Fig. 7, it is observed that the ReliefF algorithm selects
top 50 features among different sub-parts (features corresponding to H , �H , and
��H ) of the feature vector. Figure 7 also depicts the importance of incorporating
both first-order and second-order dynamic coefficients in global FP feature vectors by
selecting significant amount of important features from them.

Figure 9 shows the selection of important features in terms of the assigned predictor
ranks. Ranks are assigned to the attributes based on their estimated weights. The
attribute with highest weight gets the lowest rank and vice versa. It is observed that
as the feature rank increases, the corresponding feature weight decreases. So only the
top attributes having relatively lower ranks are selected, and the rest are ignored. In
either of the two ways, the selected attributes will always have relatively lower ranks
and higher weights. Finally, the feature selection achieves the goal of dimensionality
reduction in the case of global FP and MFCC feature vectors.

For the task of speaker-independent spoken LID/LR, the ReliefF feature selection
algorithm is used to select top 900 and top 100 discriminative features from 1800
global FP and 195 global MFCC features, respectively.

15 The user-defined parameter k in ReliefF feature selection refers to k-nearest neighbors. In this paper,
the value of k is set to 10.
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Fig. 9 Plot of ReliefF computed weights versus assigned ranks. a For global FP features. b For global
MFCC features

5 Machine Learning Classification

This section discusses about the architectures of SVM, ANN, and DNN classifiers
used in this paper to develop spoken LID/LRmodels in Indian and oriental languages.

5.1 Support Vector Machine Classification

In the literature, SVMs gained popularity by demonstrating good performance over
classical problems in diverse fields of pattern recognition. They are widely incorpo-
rated due to the fact that they make use of the convex quadratic optimization which
results in achieving a global optimal solution. They are discriminative in nature, and
their performance is independent of the number of feature vectors [28]. They provide
good generalization on classification problems by implementing the concept of struc-
tural risk minimization [40]. Originally, SVMs are designed for binary classification
problems [9]. Different methods have been proposed in the literature for constructing
a multiclass classifier by combining several binary classifiers [14].

Twosuchmethods, namely ‘one-versus-one’ (OVO16) and ‘one-versus-all’ (OVA17)
are considered in this paper to develop SVM-based spoken LID/LR models. Linear
kernel function is chosen for SVM, since it is found to give good performance for
spoken language recognition task [34]. Iterative single data algorithm (ISDA) is used
as solver (for training the kernel machines). ISDA is ideal to carry out the learning pro-
cess with huge training data sets, since it requires minimum computational resources
[16].

16 For a q-class classification problem, SVM with OVO configuration uses q(q−1)
2 binary learners.

17 For a q-class classification problem, SVM with OVA configuration uses q binary learners.
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In total, 2 different SVM architectures are considered to develop spoken LID/LR
systems in Indian and oriental languages. The SVM models are separately trained
and tested with global MFCC, FP, and the combination of MFCC+FP features. The
obtained results are presented, analyzed, and discussed in Sect. 6.1.

5.2 Artificial Neural Network Classification

ANNs are capable in learning highly complex and nonlinear mappings between inputs
and outputs. They are especially useful in applications where the underlying statistics
of the considered task are not well known. There are wide varieties of neural network
architectures available in the literature, out ofwhich the architecture ofmultilayer feed-
forward back-propagation ismost commonly used in pattern classification/recognition
problems. This architecture is considered in this paper to develop spoken language
recognition models.

Three different variants of feed-forward back-propagation ANN architectures, each
with one, two, and three hidden layers, respectively, are considered.With each variant,
three further sub-variants are considered by choosing three different neuron activation
functions, namely tan sigmod,18 log sigmoid,19 and elliot sigmoid,20 respectively, in
the hidden layers. Thus, a total of 9 different ANN architectures are used to develop
spoken LID/LR systems. The neuron activation function in the output layer of all ANN
models is kept fixed by considering softmax21 function. The total number of passive
neurons in the input layer and active neurons in the output layer is equal to the size
of the feature vectors fed to the network as inputs and the number of output targets,
respectively. The number of active neurons in the hidden layer(s) is set to 2/3 times
the number of passive neurons in the input layer (or the preceding hidden layer) [33]
plus the number of active neurons in the output layer.

The feature vectors are divided into two different sets, namely training set and
testing set. A small part of the training set is reserved as the validation set. ANNmod-
els are trained with the scaled conjugate gradient (SCG) back-propagation algorithm
as described in [23]. The SCG algorithm is attractive for pattern recognition prob-
lems. It is very efficient and computationally faster than other training algorithms, for
relatively larger networks having huge number of weights [13]. During the training
(learning) phase, the SCG algorithm uses the training set to calculate the gradient
and accordingly updates the network weights and biases. The training process is con-
trolled by the validation parameter, named the cross-entropy error. It measures the
network generalization and halts the training process when the network generaliza-
tion stops improving (i.e., before over-fitting, which is indicated by an increase in the
cross-entropy error). The cross-entropy error is evaluated on the validation set and is
monitored during the training process. The testing set has no effect on the training and

18 tansig(n) = 2
(1+e−2n )−1

.

19 logsig(n) = 1
(1+e−n )

.

20 elliotsig(n) = 0.5 n
1+|n| + 0.5.

21 softmax(n) = en∑
en .
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validation process. It provides an independent measure of the network performance
during and after training.

In total, 9 different ANN architectures are considered to develop spoken LID/LR
systems in Indian and oriental languages. The ANN models are separately trained
and tested with global MFCC, FP, and the combination of MFCC+FP features. The
obtained results are presented, analyzed, and discussed in Sect. 6.2.

5.3 Deep Neural Network Classification

Recently, the splendid gains in the performance achieved using deep neural networks
for classification problems havemotivated the use of DNNs to develop spoken LID/LR
systems [31]. There are wide varieties of DNN architectures available in the litera-
ture. The use of the traditional end-to-end DNNs poses a drawback to model spoken
language recognition. In traditional end-to-end DNNs, the decision is usually taken at
every frame and the context used is fixed, while the language clue is generally assigned
to the whole speech utterance [24]. This paper overcomes the above-mentioned draw-
back by considering the long short-term memory networks-based recurrent neural
networks (LSTM-RNN) as DNN (similar to the one used in [38]) to develop spoken
LID/LR systems. The LSTMunits perform utterance-wise classification by effectively
capturing and memorizing the long temporal context [12].

In this paper, the LSTM-RNN network architecture is used to develop spoken
LID/LR systems. This network is made up of 5 different types of layers, namely (in
order) the sequence input layer, LSTM layer, fully connected (FC) layer, softmax
layer, and classification output layer. The network starts with the sequence input layer,
followed by theLSTM layer. The network endswith the FC, softmax, and classification
output layers tomake predictions about the language (targets or classes). The sequence
input layer inputs the feature sequences into the network. The LSTM layer learns the
long-term dependencies from the feature sequences. It performs additive interactions
to improve gradient flow during the training process. In LSTM layers, the hyperbolic
tangent22 and sigmoid23 functions are used as the state and gate activation functions,
respectively. The FC layer is similar to the hidden layers in ANN. All hidden units
(neurons) in the FC layer connect to all the hidden units in the previous layer. The
network is made deeper by inserting additional (more than one) LSTM and FC layers.
The number of hidden units in the last FC layer is equal to the number of targets.
Optimal number of hidden units is considered in the LSTMand FC layers. The softmax
layer applies a softmax function (also called as the normalized exponential) to the
input. The softmax function is the output unit activation function after the last FC
layer. Finally, the classification layer assigns each input to one of the k mutually
exclusive classes using the cross-entropy function.

The training of LSTM-RNN networks is carried out using adaptive moment esti-
mation (ADAM) algorithm [17]. The number of epoches is set between 500 and 2000.
Three different mini-batch sizes, namely 32, 1024, and 2048, are considered. The
training data are shuffled before each training epoch. The hyperparameters of the lay-

22 tanh.
23 σ (x) = (

1 + e−x )−1.
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ers (LSTM and FC) and the network (apart from those mentioned in this paper) are
set to default values.24,25,26

In total, 6 differentLSTM-RNNnetwork architectures, namely (1) a 5-layer network
with 1 LSTM and 1 FC layer, (2) a 6-layer network with 1 LSTM and 2 FC layers, (3)
a 6-layer network with 2 LSTM and 1 FC layers, (4) a 7-layer network with 1 LSTM
and 3 FC layers, (5) a 7-layer network with 2 LSTM and 2 FC layers, and (6) a 8-layer
network with 2 LSTM and 3 FC layers are considered to develop spoken LID/LR
systems in Indian and oriental languages. The LSTM-RNN networks are separately
trained and testedwith globalMFCC, FP, and the combination ofMFCC+FP features.
The obtained results are presented, analyzed, and discussed in Sect. 6.3.

6 Experimental Results and Discussion

The experimental results presented in this section are obtained by evaluating the spoken
LID/LRmodels, developed using IITKGP-MLILSC and AP18-OLR databases. In the
case of IITKGP-MLILSC database, the training and testing speech utterances have a
fixed duration of 10 s, respectively. On an average, 23-min duration of speech data
per language is used for training, while 10 min is used for testing. This accounts to
an average of 4-min duration of speech data per speaker for training and 2 min for
testing. In the case of AP18-OLR database, the entire training and development data
sets are used for training and testing, respectively.The speakers and their corresponding
feature vectors used for training and testing the models are completely independent
andmutually exclusive for all the experiments presented in this paper. SVM,ANN, and
DNN (LSTM-RNN) classifiers-based spokenLID/LRmodels are developed for Indian
and oriental languages using global FP, MFCC, and the combination of MFCC+FP
features.

Initially, the performance of FP features is evaluated by choosing 10, 20, 30, and
40 FP features (along with their associated first-order and second-order differences),
for speaker-independent spoken LID/LR. The respective global FP feature vectors are
constructed for different combinations of features, including (H), (H + �H), and
(H + �H + ��H), in the similar manner as described in Sect. 4.2 and Table 2
(in the case of 120 FP features). Here, the only difference is in the total number
of features present in the respective feature vectors. SVM and ANN classifiers are
trained and tested with the resultant global FP feature vectors. The obtained results
are presented in Fig. 10. From this figure, it is observed that the recognition accuracy
increases with each increment of 10 FP features. Moreover, the recognition accuracy
increases by incorporating the dynamic features, namely the first-order and second-
order differences. On the other hand, the third-order and fourth-order differences are
also evaluated and found to be ineffective toward improving the recognition accuracy.
This figure clearly projects the significance of dynamic features in enhancing the
recognition performance of the spoken LID/LR systems. The performance capability

24 http://in.mathworks.com/help/deeplearning/ref/nnet.cnn.layer.lstmlayer.html.
25 http://in.mathworks.com/help/deeplearning/ref/nnet.cnn.layer.fullyconnectedlayer.html.
26 https://in.mathworks.com/help/deeplearning/ref/trainingoptions.html.

http://in.mathworks.com/help/deeplearning/ref/nnet.cnn.layer.lstmlayer.html
http://in.mathworks.com/help/deeplearning/ref/nnet.cnn.layer.fullyconnectedlayer.html
https://in.mathworks.com/help/deeplearning/ref/trainingoptions.html
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Fig. 10 Spoken language recognition using H , �H , and ��H . Here, x-axis represents the number of
Fourier parameters. a Results of SVM classifier with respect to IITKGP-MLILSC database. b Results of
SVM classifier with respect to AP18-OLR database. c Results of ANN classifier with respect to IITKGP-
MLILSC database. d Results of ANN classifier with respect to AP18-OLR database

of these dynamic features has resulted to take them into account while constructing
global FP feature vectors, as described in Sect. 4.2 and Table 2.

Finally, the performance of 120 FP features is evaluated by developing spoken
LID/LR systems using SVM, ANN, and DNN (LSTM-RNN) classifiers. The perfor-
mance of global FP features is then compared with the performance of global MFCC
features. The net effect in the performance of spoken LID/LR systems using the com-
bination of global MFCC+FP features is also evaluated. The obtained results are
independently analyzed with respect to SVM, ANN, and DNN (LSTM-RNN) classi-
fiers in Sects. 6.1, 6.2, and 6.3, respectively. The best results achieved by SVM, ANN,
and DNN (LSTM-RNN) classifiers using global MFCC, FP, and the combination of
MFCC+FP features are compared in Sect. 6.4.

6.1 SVM-Based Spoken LID/LR Systems

Table 4presents the results of recognition accuracies achievedbySVMclassifiers using
global MFCC, FP, and MFCC+FP features on IITKGP-MLILSC and AP18-OLR
databases. The maximum recognition accuracies achieved with respect to different
feature sets on both databases are marked in bold. As can be seen from Table 4, the
models with OVA configuration perform well when compared to OVO configuration.
For example, in the case of MFCC+FP features on IITKGP-MLILSC database, the
OVA configuration achieves the recognition accuracy of 86.40%. On the other hand,
for the same feature set, the OVO configuration achieves the recognition accuracy
of 78.40%, showing a significant reduction in the performance. Comparatively, the



Circuits, Systems, and Signal Processing (2019) 38:5018–5067 5047

Table 4 Recognition performance of SVM-based spoken LID/LR systems

Features IITKGP-MLILSC AP18-OLR

OVO-SVM OVA-SVM OVO-SVM OVA-SVM

MFCC 67.70 64.80 57.62 59.16

FP 68.00 73.40 62.63 62.83

MFCC+FP 78.40 86.40 69.67 70.73

Bold values indicate the maximum recognition accuracies of SVM-based spoken LID/LR systems with
respect to databases and feature sets

models with OVA configuration are less complex and computationally efficient over
the models with OVO configuration with respect to the number of binary learners.

In the case of IITKGP-MLILSC database, with respect to the proposed FP features,
the SVMmodel with OVA configuration achieves the maximum recognition accuracy
of 73.40%. The corresponding confusion matrix is shown in Table 5.

As can be seen from Table 5, languages, namely Bengali, Hindi, Manipuri, Tamil,
and Telugu, are majorly mis-classified with other languages. Similarly, with respect
to MFCC features, the SVM model with OVO configuration achieves the maximum
recognition accuracy of 67.70%. The use of FP features shows an improvement27 in
the recognition accuracy by 8.42%when compared toMFCC features. With respect to
MFCC+FP features, the SVMmodel with OVA configuration achieves the maximum
recognition accuracy of 86.40%. The use of MFCC+FP features shows a significant
improvement in the recognition accuracies by 27.62% and 17.71% when compared
to MFCC and FP features, respectively. Finally, the recognition accuracies achieved
with respect to individual languages by the best SVM models trained with global
MFCC, FP, and MFCC+FP features on IITKGP-MLILSC database are depicted in
a bar graph comparison plot as shown in Fig. 11. It is clear from Fig. 11 that the use
of combined MFCC+FP features outperforms the use of MFCC and FP features, for
most of the languages.

In the case of AP18-OLR database, with respect to the proposed FP features, the
SVM model with OVA configuration achieves the maximum recognition accuracy of
62.83%. The corresponding confusionmatrix is shown in Table 6. As can be seen from
Table 6, languages, namely Indonesian, Korean, Mandarin, and Kazakh, are majorly
mis-classified with other languages. Similarly, with respect to MFCC features, the
SVM model with OVA configuration achieves the maximum recognition accuracy of
59.16%. The use of FP features shows an improvement in the recognition accuracy
by 6.20% when compared to MFCC features. With respect to MFCC+FP features,
the SVM model with OVA configuration achieves the maximum recognition accu-
racy of 70.73%. The use of MFCC+FP features shows a significant improvement
in the recognition accuracies by 19.56% and 12.57% when compared to MFCC and
FP features, respectively. Finally, the recognition accuracies achieved with respect
to individual languages by the best SVM models trained with global MFCC, FP,
and MFCC+FP features on AP18-OLR database are depicted in a bar graph com-

27 The percentage improvement I% in recognition accuracy is computed using, I% = A1−A2
A2

× 100% �
A1 > A2, where A1 and A2 are recognition accuracies in percentages.
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Fig. 11 Comparison of individual language recognition accuracies of best SVM classifiers with respect to
global MFCC, FP, and MFCC+FP features on IITKGP-MLILSC database. The results depicted in this
plot correspond to the models presented in Table 4, whose recognition accuracies are marked in bold.
Ben.=Bengali, Chh.=Chhattisgarhi, Guj.=Gujarati, Hin.=Hindi, Kas.=Kashmiri, Kon.=Konkani,
Man.=Manipuri, Miz.=Mizo, Nag.=Nagamese, Pun.=Punjabi, Raj.=Rajasthani, San.=Sanskrit,
Sin.=Sindhi, Tam.=Tamil, and Tel.=Telugu

Table 6 Confusion matrix of SVM classifier for speaker-independent spoken language recognition using
120 FP features on AP18-OLR database (%)

Can. Ind. Jap. Kor. Rus. Vie. Mand. Kaz. Tib. Uyg.

Can. 82.79 1.12 3.23 1.56 2.30 1.04 0.06 6.31 0.48 1.11

Ind. 0.37 33.14 7.25 7.30 7.36 35.18 7.36 2.04

Jap. 0.05 14.55 73.03 4.85 0.16 0.26 0.26 6.21 0.63

Kor. 12.17 5.11 11.28 32.42 4.95 5.78 8.56 13.45 5.45 0.83

Rus. 0.06 3.63 0.39 9.98 65.59 6.53 8.80 1.62 1.45 1.95

Vie. 1.06 0.28 0.45 2.38 9.07 85.09 0.83 0.67 0.17

Mand. 22.50 3.78 1.00 6.00 4.89 8.28 49.44 1.56 0.28 2.27

Kaz. 4.33 1.18 1.88 2.78 10.50 5.22 22.67 32.00 5.22 14.22

Tib. 0.17 0.11 0.11 0.11 0.22 99.00 0.28

Uyg. 3.57 0.20 0.62 1.18 1.47 0.20 2.26 2.18 9.09 79.23

The rows and columns of the confusion matrix correspond to the targets and outputs, respectively. The diag-
onal elements are marked in bold, indicating the percentage of true classification with respect to individual
languages. The off-diagonal elements indicate the percentage of mis-classification
Can.=Cantonese, Ind.= Indonesian, Jap.= Japanese, Kor.=Korean, Rus.=Russian, Vie.=Vietnamese,
Mand.=Mandarin, Kaz.=Kazakh, Tib.=Tibetan, and Uyg.=Uyghur

parison plot as shown in Fig. 12. It is clear from Fig. 12 that the use of combined
MFCC+FP features outperforms the use of MFCC and FP features, for most of the
languages.
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Fig. 12 Comparison of individual language recognition accuracies of best SVM classifiers with respect
to global MFCC, FP, and MFCC+FP features on AP18-OLR database. The results depicted in this
plot correspond to the models presented in Table 4, whose recognition accuracies are marked in bold.
Can.=Cantonese, Ind.= Indonesian, Jap.= Japanese, Kor.=Korean, Rus.=Russian, Vie.=Vietnamese,
Mand.=Mandarin, Kaz.=Kazakh, Tib.=Tibetan, and Uyg.=Uyghur

6.2 ANN-Based Spoken LID/LR Systems

Table 7presents the results of recognition accuracies achievedbyANNclassifiers using
global MFCC, FP, and MFCC+FP features on IITKGP-MLILSC and AP18-OLR
databases. The maximum recognition accuracies achieved with respect to different
feature sets on both databases are marked in bold. As can be seen from Table 7, there
is a significant drop in the recognition performance with respect to an increase in the
number of hidden layers, for most of the cases. For example, in the case ofMFCC+FP
features on IITKGP-MLILSC database, the ANN model with 1 hidden layer using
log-sigmoid activation function achieves the recognition accuracy of 89.40%. On the
other hand, for the same set of features and activation function, the corresponding
ANNmodels with 2 and 3 hidden layers achieve the recognition accuracies of 88.60%
and 88.30%, respectively, showing a nominal drop in the performance. The use of a
single hidden layer is found to be sufficient for achieving reasonably good recognition
performance. Comparatively, the models with single hidden layer are less complex
and computationally efficient over the models with two and three hidden layers. It is
observed that most of the models with tan-sigmoid activation function in the hidden
layers perform well when compared to the rest.

In the case of IITKGP-MLILSC database, with respect to the proposed FP features,
the ANN model with 1 hidden layer using tan-sigmoid activation function achieves
the maximum recognition accuracy of 74.20%. The corresponding confusion matrix
is shown in Table 8. As can be seen from Table 8, languages, namely Bengali, Hindi,
and Punjabi, are majorly mis-classified with other languages. Similarly, with respect
to MFCC features, the ANN models with 2 and 3 hidden layers using tan-sigmoid
activation function achieve the maximum recognition accuracy of 71.10%, respec-
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Table 7 Recognition performance of ANN-based spoken LID/LR systems

Feature Hidden layer
activation
function

IITKGP-MLILSC AP18-OLR

Number of hidden layers Number of hidden layers

1 2 3 1 2 3

MFCC Tan sigmoid 70.00 71.10 71.10 59.50 59.30 60.80

Log sigmoid 70.50 70.30 70.90 61.30 59.70 60.20

Elliot sigmoid 69.40 69.00 65.70 58.80 57.40 56.80

FP Tan sigmoid 74.20 72.90 71.00 64.70 64.00 64.70

Log sigmoid 72.50 69.30 70.80 63.80 64.20 64.70

Elliot sigmoid 71.50 69.40 69.90 62.20 62.90 56.00

MFCC+FP Tan sigmoid 89.00 86.90 88.70 70.50 70.40 64.70

Log sigmoid 89.40 88.60 88.30 64.80 70.80 70.80

Elliot sigmoid 86.50 85.60 84.80 70.50 70.70 70.30

Bold values indicate the maximum recognition accuracies of ANN-based spoken LID/LR systems with
respect to databases and feature sets

tively. The use of FP features shows an improvement in the recognition accuracy by
4.36% when compared to MFCC features. With respect to MFCC+FP features, the
ANN model with 1 hidden layer using log-sigmoid activation function achieves the
maximum recognition accuracy of 89.40%. The use of MFCC+FP features shows a
significant improvement in the recognition accuracies by 25.74% and 20.49% when
compared to MFCC and FP features, respectively. Finally, the recognition accura-
cies achieved with respect to individual languages by the best ANN models trained
with global MFCC, FP, and MFCC+FP features on IITKGP-MLILSC database are
depicted in a bar graph comparison plot as shown in Fig. 13. It is clear from Fig. 13
that the use of combined MFCC+FP features outperforms the use of MFCC and FP
features, for most of the languages.

In the case of AP18-OLR database, with respect to the proposed FP features, the
ANNmodels with 1 and 3 hidden layers using tan-sigmoid and log-sigmoid activation
functions achieve the maximum recognition accuracy of 64.70%, respectively. The
corresponding confusion matrix is shown in Table 9. As can be seen from Table 9,
languages, namely Russian, Mandarin, and Uyghur, are majorly mis-classified with
other languages. Similarly, with respect to MFCC features, the ANN model with 1
hidden layer using log-sigmoid activation function achieves the maximum recognition
accuracy of 61.30%. The use of FP features shows an improvement in the recognition
accuracy by 5.55% when compared to MFCC features. With respect to MFCC+FP
features, the ANN models with 2 and 3 hidden layers using log-sigmoid activation
function achieve the maximum recognition accuracy of 70.80%, respectively. The use
ofMFCC+FP features shows a significant improvement in the recognition accuracies
by 15.50% and 9.43%when compared toMFCC and FP features, respectively. Finally,
the recognition accuracies achieved with respect to individual languages by the best
ANNmodels trained with global MFCC, FP, and MFCC+FP features on AP18-OLR
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Fig. 13 Comparison of individual language recognition accuracies of best ANN classifiers with respect to
global MFCC, FP, and MFCC+FP features on IITKGP-MLILSC database. The results depicted in this
plot correspond to the models presented in Table 7, whose recognition accuracies are marked in bold.
Ben.=Bengali, Chh.=Chhattisgarhi, Guj.=Gujarati, Hin.=Hindi, Kas.=Kashmiri, Kon.=Konkani,
Man.=Manipuri, Miz.=Mizo, Nag.=Nagamese, Pun.=Punjabi, Raj.=Rajasthani, San.=Sanskrit,
Sin.=Sindhi, Tam.=Tamil, and Tel.=Telugu

Table 9 Confusion matrix of ANN classifier for speaker-independent spoken language recognition using
120 FP features on AP18-OLR database (%)

Can. Ind. Jap. Kor. Rus. Vie. Mand. Kaz. Tib. Uyg.

Can. 66.11 3.06 9.67 2.00 1.06 1.20 1.67 5.56 2.50 7.17

Ind. 0.06 98.94 0.44 0.22 0.06 0.11 0.17

Jap. 5.33 4.56 84.84 1.89 0.07 0.14 0.93 1.05 0.14 1.05

Kor. 8.14 1.15 3.03 79.39 0.52 1.10 1.36 1.46 3.60 0.25

Rus. 4.02 0.05 4.07 2.14 11.90 0.21 14.40 10.86 12.58 39.77

Vie. 1.30 1.88 1.98 8.87 81.59 4.17 0.16 0.05

Mand. 5.78 6.45 2.45 14.95 7.34 10.06 38.19 3.61 7.17 4.00

Kaz. 2.40 1.39 1.45 0.22 1.73 0.84 14.11 61.41 5.47 10.98

Tib. 1.39 0.17 0.61 0.39 1.28 7.40 87.20 1.56

Uyg. 11.67 0.50 1.33 15.44 2.00 0.50 12.23 7.72 5.72 42.89

The rows and columns of the confusion matrix correspond to the targets and outputs, respectively. The diag-
onal elements are marked in bold, indicating the percentage of true classification with respect to individual
languages. The off-diagonal elements indicate the percentage of mis-classification
Can.=Cantonese, Ind.= Indonesian, Jap.= Japanese, Kor.=Korean, Rus.=Russian, Vie.=Vietnamese,
Mand.=Mandarin, Kaz.=Kazakh, Tib.=Tibetan, and Uyg.=Uyghur

database are depicted in a bar graph comparison plot as shown in Fig. 14. It is clear
from Fig. 14 that the use of combined MFCC+FP features outperforms the use of
MFCC and FP features, for most of the languages.
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Fig. 14 Comparison of individual language recognition accuracies of best ANN classifiers with respect
to global MFCC, FP, and MFCC+FP features on AP18-OLR database. The results depicted in this
plot correspond to the models presented in Table 7, whose recognition accuracies are marked in bold.
Can.=Cantonese, Ind.= Indonesian, Jap.= Japanese, Kor.=Korean, Rus.=Russian, Vie.=Vietnamese,
Mand.=Mandarin, Kaz.=Kazakh, Tib.=Tibetan, and Uyg.=Uyghur

Table 10 Recognition performance of DNN (LSTM-RNN)-based spoken LID/LR systems

Database Feature Number of layers in LSTM-RNN & (number of LSTM and fully
connected layers)

5 (1L-1FC) 6 (1L-2FC) 7 (1L-3FC) 6 (2L-1FC) 7 (2L-2FC) 8 (2L-3FC)

IITKGP-
MLILSC

MFCC 60.43 59.22 55.05 58.95 49.39 54.37

FP 60.70 58.82 55.59 58.55 64.87 58.14

MFCC+FP 84.52 81.29 82.91 83.85 81.97 79.68

AP18-
OLR

MFCC 54.63 54.83 56.67 54.61 54.12 53.79

FP 59.05 60.52 58.94 59.41 58.24 60.38

MFCC+FP 68.54 67.74 66.77 67.01 66.75 66.04

L.=LSTM layer, FC.= fully connected layer
Bold values indicate the maximum recognition accuracies of DNN (LSTM-RNN)-based spoken LID/LR
systems with respect to databases and feature sets

6.3 DNN-Based Spoken LID/LR Systems

Table 10 presents the results of recognition accuracies achieved by LSTM-RNN clas-
sifiers using global MFCC, FP, and MFCC+FP features on IITKGP-MLILSC and
AP18-OLR databases. The maximum recognition accuracies achieved with respect
to different feature sets on both databases are marked in bold. As can be seen from
Table 10, there is a nominal drop in the recognition performance with respect to an
increase in the number of layers (either LSTM or FC or both), for most of the cases.
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The use of LSTM-RNN networks with 5 layers (having 1 LSTM and 1 FC layer) and
6 layers (having 1 LSTM and 2 FC layers) is found to be sufficient for achieving rea-
sonably good recognition performance. Comparatively, the networks with few layers
are less complex and computationally efficient when compared to the networks with
more layers.

In the case of IITKGP-MLILSC database, with respect to the proposed FP features,
the LSTM-RNN network with 7 layers (having 2 LSTM and 2 FC layers) achieves
the maximum recognition accuracy of 64.87%. The corresponding confusion matrix
is shown in Table 11. As can be seen from Table 11, languages, namely Bengali,
Hindi, Konkani, Punjabi, and Telugu, are majorly mis-classified with other languages.
Similarly with respect to MFCC features, the LSTM-RNN network with 5 layers
(having 1 LSTM and 1 FC layers) achieves the maximum recognition accuracy of
60.43%. The use of FP features shows an improvement in the recognition accuracy
by 7.35% when compared to MFCC features. With respect to MFCC+FP features,
the LSTM-RNN network with 5 layers (having 1 LSTM and 1 FC layers) achieves the
maximum recognition accuracy of 84.52%. The use of MFCC+FP features shows a
significant improvement in the recognition accuracies by 39.86% and 30.29% when
compared to MFCC and FP features, respectively. Finally, the recognition accuracies
achievedwith respect to individual languages by thebestLSTM-RNNnetworks trained
with global MFCC, FP, and MFCC+FP features on IITKGP-MLILSC database are
depicted in a bar graph comparison plot as shown in Fig. 15. It is clear from Fig. 15
that the use of combined MFCC+FP features outperforms the use of MFCC and FP
features, for most of the languages.

In the case of AP18-OLR database, with respect to the proposed FP features, the
LSTM-RNNnetworkwith 6 layers (having 1LSTMand2FC layers) achieves themax-
imum recognition accuracy of 60.52%. The corresponding confusion matrix is shown
inTable 12.As can be seen fromTable 12, languages, namely Indonesian,Korean,Rus-
sian, and Mandarin, are majorly mis-classified with other languages. Similarly with
respect toMFCC features, the LSTM-RNNnetworkwith 6 layers (having 1LSTMand
2FC layers) achieves themaximumrecognition accuracy of 54.83%.Theuse of FP fea-
tures shows an improvement in the recognition accuracy by 10.38% when compared
to MFCC features. With respect to MFCC+FP features, the LSTM-RNN network
with 5 layers (having 1 LSTM and 1 FC layers) achieves the maximum recognition
accuracy of 68.54%. The use ofMFCC+FP features shows a significant improvement
in the recognition accuracies by 25.00% and 13.25%when compared toMFCC and FP
features, respectively. Finally, the recognition accuracies achievedwith respect to indi-
vidual languages by the best LSTM-RNNnetworks trainedwith globalMFCC, FP, and
MFCC+FP features on AP18-OLR database are depicted in a bar graph comparison
plot as shown in Fig. 16. It is clear from Fig. 16 that the use of combined MFCC+FP
features outperforms the use of MFCC and FP features, for most of the languages.

6.4 Performance Comparison of Different Spoken LID/LRModels

Table 13 shows the comparison of recognition performance for the best spokenLID/LR
systems in terms of databases, features, and classifiers. Table 13 summarizes the results
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Fig. 15 Comparison of individual language recognition accuracies of best DNN (LSTM-RNN) classi-
fiers with respect to global MFCC, FP, and MFCC+FP features on IITKGP-MLILSC database. The
results depicted in this plot correspond to the models presented in Table 10, whose recognition accuracies
are marked in bold. Ben.=Bengali, Chh.=Chhattisgarhi, Guj.=Gujarati, Hin.=Hindi, Kas.=Kashmiri,
Kon.=Konkani, Man.=Manipuri, Miz.=Mizo, Nag.=Nagamese, Pun.=Punjabi, Raj.=Rajasthani,
San.=Sanskrit, Sin.=Sindhi, Tam.=Tamil, and Tel.=Telugu

Table 12 Confusion matrix of DNN (LSTM-RNN) classifier for speaker-independent spoken language
recognition using 120 FP features on AP18-OLR database (%)

Can. Ind. Jap. Kor. Rus. Vie. Mand. Kaz. Tib. Uyg.

Can. 71.52 0.94 0.41 0.89 6.16 4.69 0.73 8.87 1.88 3.91

Ind. 0.58 4.60 0.27 27.10 5.71 17.34 41.82 0.79 1.47 0.32

Jap. 9.18 84.87 1.51 0.74 2.14 1.56

Kor. 8.00 7.84 21.12 23.85 7.84 6.17 4.61 15.23 1.50 3.84

Rus. 1.78 1.39 0.17 28.28 44.06 4.96 9.82 7.08 0.73 1.73

Vie. 0.95 0.83 0.12 1.11 9.40 81.91 4.40 0.78 0.33 0.17

Mand. 5.33 1.17 0.06 16.11 17.44 4.78 39.61 1.06 0.94 13.50

Kaz. 0.83 1.28 2.11 2.28 1.95 0.33 4.56 77.04 1.50 8.12

Tib. 0.06 0.28 0.06 0.11 0.11 0.60 0.28 97.11 1.39

Uyg. 1.82 0.21 0.28 0.42 1.12 0.08 1.26 4.77 2.46 87.58

The rows and columns of the confusion matrix correspond to the targets and outputs, respectively. The diag-
onal elements are marked in bold, indicating the percentage of true classification with respect to individual
languages. The off-diagonal elements indicate the percentage of mis-classification
Can.=Cantonese, Ind.= Indonesian, Jap.= Japanese, Kor.=Korean, Rus.=Russian, Vie.=Vietnamese,
Mand.=Mandarin, Kaz.=Kazakh, Tib.=Tibetan, and Uyg.=Uyghur

presented in Tables 4, 7, and 10, by reporting the recognition accuracies of the best
spoken LID/LR systems. The maximum recognition accuracies are marked in bold.
As can be seen from Table 13, with respect to two databases (IITKGP-MLILSC and
AP18-OLR) and three classifiers (SVM, ANN, and DNN), the use of FP features
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Fig. 16 Comparison of individual language recognition accuracies of best DNN (LSTM-RNN) classifiers
with respect to global MFCC, FP, andMFCC+FP features on AP18-OLR database. The results depicted in
this plot correspond to the models presented in Table 10, whose recognition accuracies are marked in bold.
Can.=Cantonese, Ind.= Indonesian, Jap.= Japanese, Kor.=Korean, Rus.=Russian, Vie.=Vietnamese,
Mand.=Mandarin, Kaz.=Kazakh, Tib.=Tibetan, and Uyg.=Uyghur

Table 13 Comparison of recognition performance achieved by the best spoken LID/LR systems in terms
of databases, features, and classifiers

Database Feature SVM ANN DNN (LSTM-RNN)

IITKGP-MLILSC MFCC 67.70 71.10 60.43

FP 73.40 74.20 64.87

MFCC+FP 86.40 89.40 84.52

AP18-OLR MFCC 59.16 61.30 54.83

FP 62.83 64.70 60.52

MFCC+FP 70.73 70.80 68.54

Bold values indicate the maximum recognition accuracies of spoken LID/LR systems with respect to
databases and feature sets

outperformed MFCC features, and the use of combined MFCC+FP features outper-
formed MFCC and FP features, for all the cases. In the case of IITKGP-MLILSC and
AP18-OLR databases, the ANN-based spoken LID/LR systems trained with the com-
bined MFCC+FP features achieve the maximum recognition accuracies of 89.40%
and 70.80%, respectively.

Tables 14 and 15 show the optimal combination of features using MFCC, FP, and
MFCC+FP, for different languages on IITKGP-MLILSC and AP18-OLR databases,
respectively. In the case of SVM, ANN, and DNN classifiers, the use of MFCC+FP
features shows a significant improvement in terms of individual language recognition
accuracies when compared to MFCC and FP features. From the results presented in
Tables 13, 14, and 15, it can be summarized that when compared toMFCC features, the
FP features improved the recognition performance of the speaker-independent spoken
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Table 14 Best features among MFCC, FP, and MFCC+FP for improved recognition with respect to
individual languages of IITKGP-MLILSC database

Language Feature

SVM ANN DNN

Bengali MFCC+FP MFCC+FP MFCC+FP

Chhattisgarhi FP FP MFCC+FP

Gujarati MFCC/MFCC+FP MFCC+FP MFCC+FP

Hindi MFCC+FP MFCC+FP MFCC

Kashmiri MFCC+FP MFCC+FP MFCC+FP

Konkani MFCC+FP FP MFCC+FP

Manipuri MFCC+FP MFCC MFCC+FP

Mizo FP/MFCC+FP FP/FP+MFCC MFCC+FP

Nagamese MFCC+FP FP MFCC+FP

Punjabi MFCC+FP MFCC+FP MFCC

Rajasthani MFCC+FP FP/MFCC+FP FP

Sanskrit MFCC/MFCC+FP MFCC+FP MFCC+FP

Sindhi MFCC MFCC+FP FP

Tamil MFCC+FP MFCC+FP MFCC+FP

Telugu FP MFCC+FP MFCC+FP

Table 15 Best features among
MFCC, FP, and MFCC+FP for
improved recognition with
respect to individual languages
of AP18-OLR database

Language Feature

SVM ANN DNN

Cantonese FP MFCC+FP MFCC+FP

Indonesian MFCC MFCC+FP MFCC+FP

Japanese MFCC+FP MFCC+FP MFCC+FP

Korean MFCC+FP MFCC+FP MFCC+FP

Russian MFCC+FP MFCC FP

Vietnamese MFCC+FP MFCC+FP FP

Mandarin FP MFCC+FP FP

Kazakh MFCC+FP MFCC+FP FP

Tibetan MFCC+FP MFCC+FP MFCC

Uyghur MFCC+FP FP MFCC

LID/LR systems. The recognition performance is further enhanced when MFCC and
FP features are combined. The results presented in this paper with respect to IITKGP-
MLILSC database can be compared with the existing results in the literature obtained
using the same database. Table 16 compares the obtained results (corresponding to
IITKGP-MLILSC database) of this paper with the results presented in [21,26,30].

It is clear from Table 16 that the proposed FP and the combination of MFCC+FP
features improve the recognition performance of the spoken LID/LR systems when
compared to the existing systems.
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Table 16 Comparison of obtained results with few benchmark works in the literature using IITKGP-
MLILSC database

Ref. Description Recog Perf. (%)

[21] Speaker-independent LID/LR system (for 16 Indian languages) 36.85

Features: MFCC. Classifier: GMM with 128 components

Speaker-independent LID/LR system (for 16 Indian languages) 40.68

Features: LPCC. Classifier: GMM with 32 components

Speaker-independent LID/LR system (for 16 Indian languages)
with proposed speaker-specific language models

44.92

Features: MFCC. Classifier: GMM with 32 components

Speaker-independent LID/LR system (for 16 Indian languages)
with proposed speaker-specific language models

35.96

Features: LFCC. Classifier: GMM with 64 components

Speaker-independent LID/LR system (for 16 Indian languages)
(k-best performance model, where k = 3)

61.84#

Features: MFCC. Classifier: GMM with 32 components

Speaker-independent LID/LR system (for 16 Indian languages)
(k-best performance model, where k = 3)

54.44#

Features: LFCC. Classifier: GMM with 64 components

[30] Speaker-independent LID/LR system (for 27 Indian languages) 55.62∗
Features: MFCC derived from CBP. Classifier: GMM

Speaker-independent LID/LR system (for 27 Indian languages) 58.65∗
Features: MFCC derived from pitch synchronous analysis (PSA).
Classifier: GMM

Speaker-independent LID/LR system (for 27 Indian languages) 61.06∗
Features: MFCC derived from glottal closure regions (GCR).
Classifier: GMM

Speaker-independent LID/LR system (for 27 Indian languages) 33.20∗
Features: intonation, rhythm, and stress features at syllable level.
Classifier: GMM

Speaker-independent LID/LR system (for 27 Indian languages) 34.65∗
Features: intonation, rhythm, and stress features at word level.
Classifier: GMM

Speaker-independent LID/LR system (for 27 Indian languages) 28.04∗
Features: prosodic features at phrase level using �F0 contour.
Classifier: GMM

Speaker-independent LID/LR system (for 27 Indian languages) 24.77∗
Features: prosodic features at phrase level using duration contour.
Classifier: GMM

Speaker-independent LID/LR system (for 27 Indian languages) 21.08∗
Features: prosodic features at phrase level using �E contour.
Classifier: GMM

Speaker-independent LID/LR system (for 27 Indian languages) 33.26∗
Features: prosodic features at phrase level using �F0+ duration

+�E contour. Classifier: GMM
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Table 16 continued

Ref. Description Recog Perf. (%)

Speaker-independent LID/LR system (for 27 Indian languages) 36.97∗
Features: combination of prosodic features at syllable + word
levels. Classifier: GMM

Speaker-independent LID/LR system (for 27 Indian languages) 38.94∗
Features: combination of prosodic features at syllable + word +
phrase levels. Classifier: GMM

Speaker-independent LID/LR system (for 27 Indian languages) 65.08∗
Features: combination of spectral and prosodic features. Classifier:
GMM

[26] Speaker-independent LID/LR system (for 27 Indian languages) 19.00∗
Features: magnitude components of linear prediction (LP) residual
signal represented by Hilbert envelope (HE), extracted at
sub-segmental level. Classifier: GMM

Speaker-independent LID/LR system (for 27 Indian languages) 39.33∗
Features: Magnitude components of LP residual signal represented
by HE, extracted at segmental level. Classifier: GMM

Speaker-independent LID/LR system (for 27 Indian languages) 29.33∗
Features: magnitude components of LP residual signal represented
by HE, extracted at supra-segmental level. Classifier: GMM

Speaker-independent LID/LR system (for 27 Indian languages) 49.33∗
Features: phase components of LP residual signal represented by
residual phase (RP), extracted at sub-segmental level. Classifier:
GMM

Speaker-independent LID/LR system (for 27 Indian languages) 54.00∗
Features: phase components of LP residual signal represented by
RP, extracted at segmental level. Classifier: GMM

Speaker-independent LID/LR system (for 27 Indian languages) 50.00∗
Features: phase components of LP residual signal represented by
RP, extracted at supra-segmental level. Classifier: GMM

Speaker-independent LID/LR system (for 27 Indian languages) 56.67∗
Features: magnitude components of LP residual signal represented
by HE, extracted at sub-segmental + segmental +
supra-segmental levels. Classifier: GMM

Speaker-independent LID/LR system (for 27 Indian languages) 69.67∗
Features: phase components of LP residual signal represented by
RP, extracted at sub-segmental + segmental + supra-segmental
levels. Classifier: GMM

Speaker-independent LID/LR system (for 27 Indian languages) 69.67∗
Features: combined magnitude and phase components of LP
residual signal represented by HE and RP, respectively, extracted
at sub-segmental + segmental + supra-segmental levels.
Classifier: GMM

Speaker-independent LID/LR system (for 27 Indian languages) 51.00∗
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Table 16 continued

Ref. Description Recog Perf. (%)

Features: combined magnitude and phase components of LP
residual signal represented by HE and RP, respectively, extracted
at sub-segmental level. Classifier: GMM

Speaker-independent LID/LR system (for 27 Indian languages) 55.33∗
Features: combined magnitude and phase components of LP
residual signal represented by HE and RP, respectively, extracted
at segmental level. Classifier: GMM

Speaker-independent LID/LR system (for 27 Indian languages) 52.00∗
Features: combined magnitude and phase components of LP
residual signal represented by HE and RP, respectively, extracted
at supra-segmental level. Classifier: GMM

Speaker-independent LID/LR system (for 27 Indian languages) 70.33∗
Features: combined evidences of composite magnitude and phase
components of LP residual signal represented by HE and RP,
respectively, extracted at sub-segmental + segmental +
supra-segmental levels. Classifier: GMM

In this Paper Speaker-independent LID/LR system (for 15 Indian languages) 60.43

Features: Global MFCC. Classifier: DNN (5-Layer LSTM-RNN),
having 1 LSTM and 1 FC layer

Speaker-independent LID/LR system (for 15 Indian languages) 67.70

Features: global MFCC. Classifier: SVM with OVO configuration

Speaker-independent LID/LR system (for 15 Indian languages) 71.10

Features: global MFCC. Classifier: ANN with 2 and 3 hidden layers

Speaker-independent LID/LR system (for 15 Indian languages) 64.87

Features: global FP. Classifier: DNN (7-Layer LSTM-RNN),
having 2 LSTM and 2 FC layer

Speaker-independent LID/LR system (for 15 Indian languages) 73.40

Features: global FP. Classifier: SVM with OVA configuration

Speaker-independent LID/LR system (for 15 Indian languages) 74.20

Features: global FP. Classifier: ANN with 1 hidden layer

Speaker-independent LID/LR system (for 15 Indian languages) 84.52

Features: global MFCC + FP. Classifier: DNN (5-Layer
LSTM-RNN), having 1 LSTM and 1 FC layer

Speaker-independent LID/LR system (for 15 Indian languages) 86.40

Features: global MFCC + FP. Classifier: SVM with OVA
configuration

Speaker-independent LID/LR system (for 15 Indian languages) 89.40

Features: global MFCC + FP. Classifier: ANN with 1 hidden layer

Ref.=Reference. Recog Per.=Recognition performance (%)
#The recognition performances are quoted with respect to seven Indian languages (Bengali, Gujarati, Hindi,
Kashmiri, Punjabi, Tamil, and Telugu) used in this paper
∗The recognition performances are quoted with respect to 15 Indian languages (Bengali, Chhattisgarhi,
Gujarati, Hindi, Kashmiri, Konkani, Manipuri, Mizo, Nagamese, Punjabi, Rajasthani, Sanskrit, Sindhi,
Tamil, and Telugu) used in this paper
The recognition performances presented in this table are quoted with respect to the test speech signals of
10-s duration
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This concludes that the FP features are efficient in terms of discriminating languages
and can be employed effectively to develop robust spoken LID/LR systems.

7 Conclusion and FutureWork

In previous studies, different frame-based spectral features have been used for spoken
language recognition. In this paper, a new Fourier parameter (FP) model is proposed
to extract salient features from acoustic speech signals, for capturing the language-
specific information. The proposed features are evaluated on two multilingual speech
databases, namely IITKGP-MLILSC andAP18-OLR databases, in Indian and oriental
languages, respectively.

Harmonic amplitude FPs are estimated from every frame of the speech signal. Ini-
tially, the characteristics of the harmonic amplitude FPs are studied by considering
the mean statistical parameter. At first, one particular harmonic amplitude FPs are
extracted from the frames of speech signals corresponding to a single speaker from
each language of both databases. Their corresponding means are computed across
speech signals with respect to frames. It is observed that the amplitudes vary with
respect to different languages. The similar kind of variation is observed in the case of
other harmonics. An adequate number of harmonic amplitudes FPs are necessary since
it is difficult to classify/recognize signals based on the features obtained from single
harmonics. So initially, the first 120 harmonic amplitude FPs are extracted from a ran-
domly chosen speech signal of each language for both databases. Their corresponding
means are computed across frames. Interesting characteristics are observed from the
maximum peaks of the mean harmonic amplitudes. The maximum peaks of the mean
harmonic amplitudes corresponding to the speech signals of different languages which
occur at the same or adjacent harmonics are grouped together in the form of clusters.
The clusters so formed contain majority of the peaks corresponding to a distinct lin-
guistic family. This phenomenon is observed in a number of trails performed with a
randomly chosen speech signal from each language of both databases. The distinct
characteristics exhibited by FPs show that there is a relationship associated with FPs
and the language traits. This relationship is exploited to develop robust spoken LID/LR
models.

The global features are known to provide superior performance. Therefore, the
statistical parameters like the mean, median, standard deviation, minimum, and max-
imum of 120 FP features across frames are computed to derive global FP features.
The computed global FP features, along with their associated first-order and second-
order differences, are used to construct a 1800-dimensional global FP feature vector.
MFCC features are also extracted alongside with FP features for performance com-
parison. The 39-dimensional MFCC features are extracted and later transformed to a
195-dimensional globalMFCC features by considering the same statistical parameters
(used in the case of global FP features). Later, the ReliefF feature selection algorithm
is used to reduce the dimension of global MFCC and FP features by ignoring irrele-
vant, noisy, and redundant features. From the estimates of ReliefF feature selection,
top 100 and 900 discriminative features (having higher weights and lower ranks) are
selected from 195 global MFCC and 1800 global FP features. The global MFCC and
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FP feature sets with reduced dimensions are used to develop spoken LID/LR models
in Indian and oriental languages for 15 and 10 languages, respectively.

Spoken LID/LR models are developed using SVM-, ANN-, and DNN (LSTM-
RNN)-based classifiers. The models are independently trained and tested using global
MFCC, FP, and MFCC+FP features. In the case of IITKGP-MLILSC database, the
experimental results show that the proposed FP features improve the recognition accu-
racies over MFCC features by 8.42%, 4.36%, and 7.35% (with respect to SVM, ANN,
and DNN classifiers). The use of combined MFCC+FP features improves the recog-
nition accuracies over MFCC features by 27.62%, 25.74%, and 39.86% (with respect
to SVM, ANN, and DNN classifiers) and over FP features by 17.71%, 20.49%, and
30.29% (with respect to SVM, ANN, and DNN classifiers).

Similarly, in the case of AP18-OLR database, the experimental results show that
the proposed FP features improve the recognition accuracies over MFCC features
by 6.20%, 5.55%, and 10.38% (with respect to SVM, ANN, and DNN classifiers).
The use of combined MFCC+FP features improves the recognition accuracies over
MFCC features by 19.56%, 15.50%, and 25.00% (with respect to SVM, ANN, and
DNN classifiers), and over FP features by 12.57%, 9.43%, and 13.25% (with respect
to SVM, ANN, and DNN classifiers).

The experimental results show that the proposed FP features are very much effec-
tive in characterizing and recognizing languages from speech signals when compared
to MFCC features. Moreover, the FP features also assist in improving the perfor-
mance of language recognition when they are combined with MFCC features. The
obtained results establish that the proposed FP features are useful for spoken language
recognition.

This paper analyzes the performance of combining MFCC and FP features to
develop robust spoken LID/LR systems in Indian and oriental languages. The present
study can be extended to develop and analyze the performance of different spoken
LID/LRsystemsusing the combinationofFPandother sophisticated language-specific
spectral and prosodic features with different classification models. One can investi-
gate the robustness and degree of contribution made by each type of feature sets in
improving the recognition performance of the systems.Development of robust LID/LR
models can be explored for noisy environments.
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